
Versa: A Dataflow-Centric Multiprocessor with 36 Systolic ARM Cortex-M4F Cores
and a Reconfigurable Crossbar-Memory Hierarchy in 28nm

Sung Kim1, Morteza Fayazi1, Alhad Daftardar1, Kuan-Yu Chen1, Jielun Tan1, Subhankar Pal1, Tutu Ajayi1,
Yan Xiong2, Trevor Mudge1, Chaitali Chakrabarti2, David Blaauw1, Ronald Dreslinski1, Hun-Seok Kim1

1University of Michigan, Ann Arbor, MI 2Arizona State University, Tempe, AZ
Abstract: We present Versa, an energy-efficient processor with 36
systolic ARM Cortex-M4F cores and a runtime-reconfigurable
memory hierarchy. Versa exploits algorithm-specific characteristics
in order to optimize bandwidth, access latency, and data reuse.
Measured on a set of kernels with diverse data access, control, and
synchronization characteristics, reconfiguration between different
Versa modes yields median energy-efficiency improvements of
11.6× and 37.2× over mobile CPU and GPU baselines, respectively.

Introduction: Conventional programmable architectures have
structurally limited support for diverse, dynamically-varying
algorithm characteristics. CPUs provide broad programmability, but
are burdened by large out-of-order cores and costly data transfers
through fixed-function, coherent caches. GPUs have large SIMD
thread arrays and employ scratchpad memories but suffer on
irregular workloads. FPGAs are highly configurable but incur high
hardware overheads and long reconfiguration times. In contrast,
Versa is a highly-parallel architecture that supports regular, irregular,
and systolic workloads via fast (2 cycle) reconfiguration. The
flexible architecture enables algorithm-specific runtime
optimizations. Finally, a tree-based method accelerates multi-
threaded barrier synchronization operations. Versa is a standalone
flexible architecture, in contrast to coarse-grained systems like [2].

Architecture Overview: The Versa architecture (Fig. 1) consists of
compute tiles and a 3-level memory hierarchy. Each tile has a cluster
of 8 ARM Cortex-M4F worker cores equipped with IEEE 754-
compliant floating point units (FPUs). We introduce register-to-
register (R2R) links between workers in a 4x2 spatial array,
extending transparently across tiles, to support chip-wide systolic
algorithms with efficiency gains up to 66.8×. A reconfigurable
crossbar (RXB) and 8-slice reconfigurable on-chip memory
(ROCM) provide a number of data transfer patterns, each optimized
for access latency and throughput. Fast access to cross-mode
persistent data (e.g., mutexes) is supported with fixed-function
scratchpads in each tile and at the global level. Supervisory tasks and
runtime reconfiguration are offloaded to a manager core in each tile.

Reconfigurable Crossbar and Memory: The RXB and ROCM
(Fig. 2) are co-designed to provide reconfigurable memory slices
that are private per worker, shared across all workers in a tile, or
FIFO-buffered between core-pairs. The RXB has 1 bidirectional port
per worker/ROCM slice and is reconfigurable to either 1) RXB-
shared, 2) RXB-private, or 3) RXB-queue modes. RXB-shared
provides all-to-all connectivity between workers and ROCM slices
with least-recently-granted arbitration [1]. From the perspective of
worker cores, shared slices function as single memory that has 8x the
capacity of private slices. RXB-shared is also beneficial for
workloads where common data is accessed by multiple cores. In
RXB-private, RXB crosspoints lock worker-to-slice connections
vertically and skip arbitration cycles, reducing access latency by
33%. Privatization eliminates false bank contention with up to ~8×
additional improvement in latency and bandwidth. RXB-queue
supports common streaming DSP and filtering kernels. Since
addresses are unnecessary for streaming FIFO accesses, 'crosspoint
splitting' enables simultaneous reads/writes by producer-consumer
cores over the same RXB port, and effectively doubled bandwidth.

The L1 ROCM is reconfigurable into cache, SPM, or queue
(i.e., FIFO) modes. Cache logic with tags and hit/miss detection is
conditionally enabled and data-gated if unused. SRAM banks are
fully reused across modes, along with multi-purpose registers that
track mode-specific request states (e.g., cache miss handling, FIFO
fill levels). 32-bit wide sub-banks match the native bit-width of
worker cores. Sub-banking trades 34% area increase for 3.4× lower
common-case access energy. RXB-shared and private combine with
ROCM cache or SPM, resulting in 2x2 composite configurations in
addition to FIFO queue. Mode control is memory-mapped to the
manager core, and mode transitions complete in 2 cycles.

R2R Tunneling: R2R forms a chip-wide, systolic array
configuration where adjacent cores communicate directly, avoiding
crossbar and cache overheads (Fig. 3). If enabled at runtime (i.e., in
software), the FPU registers s0-s3 are aliased to scalar data links in
the <W, E, N, S> directions, respectively. When an instruction
writes to an R2R register, data from register writeback - normally
directed to the local register file - is instead intercepted by the R2R
Shim, and forwarded to an adjacent core. An R2R systolic-write
updates the link state, and allows a matching R2R systolic-read to
proceed at the neighbor. Systolic-reads from R2R registers proceed
normally if the link state is valid. Stall-based flow control prevents
stale reads and destructive writes. R2R is tightly-coupled with the
M4F core, and flow control is implemented with virtually no
overhead by integrating with pipeline stall mechanisms. Similarly,
link state (i.e., data valid tracking) requires only 2 bits per link.

Tree-Based Scratchpad Barriers: Synchronization barriers are key
operations in multi-threaded programs that consume up to 60% of
cycles for complex workloads [3]. Versa averts coherence overheads
with dedicated scratchpads that provide predictable low-latency
access. To reduce the serialized barrier section, scratchpads are
placed at the tile (T-SPM) and global (G-SPM) levels, enabling a
tree-based strategy (Fig. 4). The centralized scratchpad-based
approach alone achieves a 1.7× speedup compared to cache-based
barriers from the pthreads library on CPU. The tree-based strategy
yields additional 3.8× speedup (6.5× total), despite a 9× higher
threadcount.

Measurement Results: Versa was tested on MachSuite kernels [4]
against a mobile-class 4-core ARM A57 CPU and 256-core Tegra
X1 GPU. Stencil2D (2D convolution) and GeMM (matrix mult.)
exhibit regular data accesses to dense data, while KMP (string
search) and SpMV (sparse matrix-vector mult.) have data-dependent
variation in access patterns. Mergesort is a branch and
synchronization-heavy comparison-based sort. We selected 2 Versa
modes per kernel, and modulated data sizes up to 512 KB.

Across kernels, median energy-efficiency improvements of
11.6× and 37.2× (Fig. 5) are achieved versus the CPU and GPU,
respectively. Energy-efficiency improvements between Versa modes
extend up to 3.17×, illustrating how reconfiguration captures
workload-dependent variation (Fig. 6). For instance, Stencil2D with
Versa private cache yields 1.37× higher GFLOPS/W relative to
private SPM+R2R at small data sizes, but the advantage between
modes is inverted at larger sizes. This result is largely due to the use
of R2R to share and reuse overlapped input patches across cores, and
cache pressure as dataset footprint increases. On Mergesort, Versa
attains 2.33× and 71.6× speedups over the CPU and GPU,
respectively, translating to 14.4× and 105× energy-efficiency
improvements. GPU profiling indicates bottlenecks in parallel
synchronization and branch-heavy comparison operations. Results
from Mergesort suggest that Versa's independent scalar cores and
tree-based scratchpad barriers are effective in-practice.

At 1.0V nominal voltage, the chip operates at 510 MHz clock
frequency resulting in 11.9 GFLOPS peak-practical performance and
810 mW power dissipation (Fig. 7). Voltage scaling to the 0.6V
minimum-energy point (MEP) improves energy-efficiency by 2.47×
(36.4 GFLOPS/W) while dissipating 7.9 mW at 31 MHz. Energy-
per-cycle varies from 543 - 1588 pJ/cycle between 0.6 - 1.0V. Versa
was fabricated in 28 nm CMOS (Fig. 8) and occupies 12 mm2.

Acknowledgements: This work was sponsored in part by the U.S.
Government under the DARPA SDH program, agreement number
FA8650-18-2-7864. We thank ARM for IP and design support.

References
[1] S. Satpathy, et al., ISSCC, 2017, pp. 478-480.
[2] P. N. Whatmough, et al., VLSI, 2019, pp. 34-35.
[3] S. Xiao, et al., IPDPS, 2010.
[4] B. Reagen, IISWC, 2014, pp. 110-119.

Fig. 1: Main components of a Versa tile (left), and the chip overview
(right). Worker cores connected by systolic R2R links and dynamically-
reconfigurable memories exploit algorithm-dependent characteristics.

Fig. 3: R2R tunneling and integration in the ARM Cortex M4F.

Fig. 4: Illustration of reduced serialization with tree-based barrier
synchronization (left), and latency improvements over pthreads (right).

Fig. 6: Trends (top) in energy efficiency across dataset sizes with
different Versa configurations, and summary boxplots (bottom).

Fig. 2: Shared, private, and queue modes in the reconfigurable crossbar
(top), and summary of the L1-ROCM implementation (bottom).

Fig. 5: Median energy-efficiency (GFLOPS/W) and performance
(GFLOPS) gained with runtime reconfiguration at nominal voltage.
'Reconfig. Gain' shows the median gain provided by either Config A or
Config B, since the optimal mode varies.

Fig. 7: Power (left), energy-per-cycle (middle), and compute efficiency
(right) under VDD scaling between 0.55 - 1.0V. 0.6V coincides with
the minimum-energy point.

Fig. 8: Die photo and chip summary.

G
FL

O
PS

/W

(R
at

io
)

G
FL

O
PS

/W

(R
at

io
)

Versa Configuration

GEMMKMP SPMV

CPU (ARM A57) GPU (Tegra X1)Denominator Platform

STENCIL2D MERGESORT

Fig. 6: Trends (top) in energy efficiency across dataset sizes with different Versa
configurations. Boxplots (bottom) show aggregate medians, min, max, and quartiles.

Versa Configuration

Private Cache

Private SPM

Shared Cache

Shared SPM

Private SPM + R2R

Denominator Platform
CPU (ARM A57)
GPU (Tegra X1)

GEMM

KMP

SPMV

STENCIL2D

MERGESORT

543 pJ @ 31 MHz

1588 pJ @ 510 MHz

14.7 GFLOPS/W
@ 11.9 GFLOPS

36.4 GFLOPS/W
@ 0.74 GFLOPS

Fig. 9: Power (left), energy per cycle (mid), and compute efficiency (right) under VDD scaling
from 0.55 - 1.0V (minimum energy point @ 0.6V).

 RXB
DN

UP

x x

P
o

rt
 0

P
o

rt
 2

P
o

rt
s

4-
7

P
o

rt
 3

 To/From Core Cluster

1 2 3 5

0 1 2 3 4 5 6 7

X-Point Control

 RXB Mode Select
 (from manager)

 ➊: Shared

 ➋: Private

 ➌: Queue

 ➊ Shared : 1 cycle arbitration, pipelined

X-Point Control

0 4 6 7

Grant 0 4 6 7-

t[0] t[1] t[2] t[3] t[4]

2 3 5

0 2 3 4 5 6 7

X-Point Control

 ➋ Private : 0 cycle arbitration
 → Ports locked bidirectionally

X-Point control

0 4 6 71

1

xx
7/0

0

 ➌ Queue : 0 cycle arbitration
→ Downstream ports “split” for s​imultaneous RD/WR
→ Upstream ports (RD data) locked

ROCM
Slice 0

xx
0/1

1

ROCM
Slice 1

xx
1/2

2

ROCM
Slice 2

xx
2/3

3

ROCM
Slice 3

xx
6/7

7

ROCM
Slice 7

Core
0

Core
1

Core
2

Core
3

Core
7

rd_request

wr_request

wr_data

rd_data

rd_request

wr_request

wr_data

rd_data

“Winner Take All” Pattern

rd_request

wr_request

wr_data

rd_data

rd_request

wr_request

wr_data

rd_data

Port-Splitting Pattern

 To/From ROCM Slices

Miss Coalescing

ROCM Control

Tags
Hit/Miss

Detection
RD-Ptr

WR-Ptr

Queue LogicCache Logic

Multi-Purpose Regs (8 entries)

Rqst State: 48b x 8 (addr, core ID, ...)

RD/WR Data Pipe Regs: 32b x 8

RXB Port: 32b/cycle

L2$ Port: 128b/cycle (4 cycles/cache line)

Bank 0 Bank 1 Bank 2 Bank 3

0

255

256

511

512

767

768

1023

SPM and Queue
1D-Contiguous

Cache
4-Way Set
Associative

32b

Sets 1-15... ...

B0 B1 B2 B3

Wide Fill
Infrequent

Narrow R/W
Frequent

R/W Access Energy (pJ)

Sub-Banked

Single Bank

 ~3.4x

Bank 0 Bank 1 Bank 2 Bank 3

Set 0
(64B/way)

32b 32b 32b
Way 0
Way 1
Way 2
Way 3

4
4
4
4

 1R1W SRAM
Banks

R
W

R
W

 1.33x

Area (um sq.)

24.6k

18.4k

Fig. 8: Energy Efficiency (GFLOPS/W) and performance (GFLOPS) gained with
runtime reconfiguration at nominal VDD. The optimal configuration varies across
kernels, as well as data shapes.

GFLOPS GFLOPS/W Both

Technology 28 nm

Area (mm 2) Die: 12 (Ex. pads: 11.3)

Core Config 36 Cores (9 Cores / Tile)

Core μ-arch Arm Cortex-M4F, R2R

Total SRAM 1.27 MB

Voltage 0.55 - 1.0V (MEP @ 0.60V)

Frequency 12 - 510 MHz

Power 7.9 – 811.2 mW

Energy Eff. 14.7 – 36.4 GFLOPS/W

Performance 0.74 – 11.9 GFLOPS

Fig. 8: Die photo and chip summary.

R2R

R2R

L1 Reconfigurable On-Chip Memory (ROCM)

8 Reconfigurable Slices x 4 KB
(32 KB Shared / 4 KB Private)

Tile 3Tile 2Tile 1Tile 0

L2$ Slice 0

4 KB
(512B x 8)

4-Way Interleaving

L2$ Slice 1

4 KB
(512B x 8)

L2$ Slice 2

4 KB
(512B x 8)

L2$ Slice 3

4 KB
(512B x 8)

2-Way Interleaving

L2.5$
1 KB

L3$ Slice 0

256 KB
(64 KB x 4)

L3$ Slice 1

256 KB
(64 KB x 4)

Host I/F 0

Host
I/F 1

Core
Cluster

L1-ROCM

Host
I/F 2

Ctrl + DRAM Emu. Ctrl + DRAM Emu.

 256b x 1

128b x 1 multicast

Core
Cluster

L1-ROCM

Core
Cluster

L1-ROCM

Core
Cluster

L1-ROCM

Mode
Control

G-SPM 8 KB

Manager

Cortex
M4F

T-SPM
8 KB

Worker

Cortex
M4F

Worker

Cortex
M4F

R2RR2RR2R

Worker

Cortex
M4F

Worker

Cortex
M4F

Worker

Cortex
M4F

Worker

Cortex
M4F

Worker

Cortex
M4F

Worker

Cortex
M4F

R2R

R
2R

Cluster
Msg. Buffer

R
ec

o
n

fi
g

u
ra

b
le

 X
-B

ar
 (

R
X

B
) R2RR2R

R2RR2R

R2R

R
2R

R
2R

R
2R

R
2R

R
2R

G-SPM Bus (Managers)

Mgr and Worker Access –

Cross-Tile
R2R

 32b x 8

