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Abstract:  We present Versa, an energy-efficient processor with 36
systolic  ARM  Cortex-M4F  cores  and  a  runtime-reconfigurable
memory hierarchy. Versa exploits algorithm-specific characteristics
in  order  to  optimize  bandwidth,  access  latency,  and  data  reuse.
Measured on a set of kernels with diverse data access, control, and
synchronization  characteristics,  reconfiguration  between  different
Versa  modes  yields  median  energy-efficiency  improvements  of
11.6× and 37.2× over mobile CPU and GPU baselines, respectively. 

Introduction:  Conventional  programmable  architectures  have
structurally  limited  support  for  diverse,  dynamically-varying
algorithm characteristics. CPUs provide broad programmability, but
are burdened by large out-of-order cores and costly data transfers
through  fixed-function,  coherent  caches.  GPUs  have  large  SIMD
thread  arrays  and  employ  scratchpad  memories  but  suffer  on
irregular workloads. FPGAs are highly configurable but incur high
hardware  overheads  and  long  reconfiguration  times.  In  contrast,
Versa is a highly-parallel architecture that supports regular, irregular,
and  systolic  workloads  via  fast  (2  cycle)  reconfiguration.  The
flexible  architecture  enables  algorithm-specific  runtime
optimizations.  Finally,  a  tree-based  method  accelerates  multi-
threaded barrier synchronization operations.  Versa is a  standalone
flexible architecture, in contrast to coarse-grained systems like [2].

Architecture Overview: The Versa architecture (Fig. 1) consists of
compute tiles and a 3-level memory hierarchy. Each tile has a cluster
of  8  ARM  Cortex-M4F  worker  cores  equipped  with  IEEE  754-
compliant  floating  point  units  (FPUs).  We  introduce  register-to-
register  (R2R)  links  between  workers  in  a  4x2  spatial  array,
extending  transparently  across  tiles,  to  support  chip-wide  systolic
algorithms  with  efficiency  gains  up  to  66.8×.  A  reconfigurable
crossbar  (RXB)  and  8-slice  reconfigurable  on-chip  memory
(ROCM) provide a number of data transfer patterns, each optimized
for  access  latency  and  throughput.  Fast  access  to  cross-mode
persistent  data  (e.g.,  mutexes)  is  supported  with  fixed-function
scratchpads in each tile and at the global level. Supervisory tasks and
runtime reconfiguration are offloaded to a manager core in each tile.

Reconfigurable  Crossbar  and  Memory:  The  RXB and  ROCM
(Fig.  2)  are  co-designed  to provide  reconfigurable  memory slices
that are private per worker, shared across all workers in a tile, or
FIFO-buffered between core-pairs. The RXB has 1 bidirectional port
per  worker/ROCM  slice  and  is  reconfigurable  to  either  1)  RXB-
shared,  2)  RXB-private,  or  3)  RXB-queue modes.  RXB-shared
provides all-to-all connectivity between workers and ROCM slices
with least-recently-granted arbitration [1]. From the perspective of
worker cores, shared slices function as single memory that has 8x the
capacity  of  private  slices.  RXB-shared  is  also  beneficial  for
workloads  where  common data  is  accessed  by  multiple  cores.  In
RXB-private,  RXB  crosspoints  lock  worker-to-slice  connections
vertically  and skip arbitration cycles,  reducing access latency by
33%. Privatization eliminates false bank contention with up to ~8×
additional  improvement  in  latency  and  bandwidth.  RXB-queue
supports  common  streaming  DSP  and  filtering  kernels.  Since
addresses are unnecessary for streaming FIFO accesses, 'crosspoint
splitting'  enables  simultaneous  reads/writes  by  producer-consumer
cores over the same RXB port, and effectively doubled bandwidth.

The L1 ROCM is reconfigurable into cache,  SPM, or queue
(i.e., FIFO) modes. Cache logic with tags and hit/miss detection is
conditionally  enabled and data-gated if  unused.  SRAM banks are
fully reused across modes,  along with multi-purpose registers that
track mode-specific request states (e.g., cache miss handling, FIFO
fill  levels).  32-bit  wide  sub-banks  match  the  native  bit-width  of
worker cores. Sub-banking trades 34% area increase for 3.4× lower
common-case access energy. RXB-shared and private combine with
ROCM cache or SPM, resulting in 2x2 composite configurations in
addition to  FIFO queue.  Mode  control  is  memory-mapped to the
manager core, and mode transitions complete in 2 cycles. 

R2R  Tunneling: R2R  forms  a  chip-wide,  systolic  array
configuration where adjacent cores communicate directly, avoiding
crossbar and cache overheads (Fig. 3). If enabled at runtime (i.e., in
software), the FPU registers s0-s3 are aliased to scalar data links in
the  <W,  E,  N,  S>  directions,  respectively.  When  an  instruction
writes to an R2R register, data from register writeback - normally
directed to the local register file - is instead intercepted by the R2R
Shim,  and  forwarded  to  an  adjacent  core.  An R2R systolic-write
updates the link state, and allows a matching R2R systolic-read to
proceed at the neighbor. Systolic-reads from R2R registers proceed
normally if the link state is valid. Stall-based flow control prevents
stale reads and destructive writes. R2R is tightly-coupled with the
M4F  core,  and  flow  control  is  implemented  with  virtually  no
overhead by integrating with pipeline stall mechanisms. Similarly,
link state (i.e., data valid tracking) requires only 2 bits per link.

Tree-Based Scratchpad Barriers: Synchronization barriers are key
operations in multi-threaded programs that consume up to 60% of
cycles for complex workloads [3]. Versa averts coherence overheads
with  dedicated  scratchpads  that  provide  predictable  low-latency
access.  To  reduce  the  serialized  barrier  section,  scratchpads  are
placed at the tile (T-SPM) and global (G-SPM) levels, enabling a
tree-based  strategy  (Fig.  4).  The  centralized  scratchpad-based
approach alone achieves a 1.7× speedup compared to cache-based
barriers from the pthreads library on CPU. The tree-based strategy
yields  additional  3.8×  speedup  (6.5×  total),  despite  a  9×  higher
threadcount.

Measurement Results: Versa was tested on MachSuite  kernels [4]
against a mobile-class 4-core ARM A57 CPU and 256-core Tegra
X1 GPU.  Stencil2D (2D convolution)  and  GeMM (matrix  mult.)
exhibit  regular  data  accesses  to  dense  data,  while  KMP  (string
search) and SpMV (sparse matrix-vector mult.) have data-dependent
variation  in  access  patterns.  Mergesort  is  a  branch  and
synchronization-heavy comparison-based sort. We selected 2 Versa
modes per kernel, and modulated data sizes up to 512 KB. 

Across  kernels,  median  energy-efficiency  improvements  of
11.6× and 37.2×  (Fig. 5) are achieved versus the CPU and GPU,
respectively. Energy-efficiency improvements between Versa modes
extend  up  to  3.17×,  illustrating  how  reconfiguration  captures
workload-dependent variation (Fig. 6). For instance, Stencil2D with
Versa  private  cache  yields  1.37×  higher  GFLOPS/W  relative  to
private SPM+R2R at small  data sizes,  but the advantage between
modes is inverted at larger sizes. This result is largely due to the use
of R2R to share and reuse overlapped input patches across cores, and
cache pressure as dataset footprint increases. On Mergesort, Versa
attains  2.33×  and  71.6×  speedups  over  the  CPU  and  GPU,
respectively,  translating  to  14.4×  and  105×  energy-efficiency
improvements.  GPU  profiling  indicates  bottlenecks  in  parallel
synchronization  and  branch-heavy  comparison  operations.  Results
from Mergesort  suggest that Versa's  independent scalar cores and
tree-based scratchpad barriers are effective in-practice.

At 1.0V nominal voltage, the chip operates at 510 MHz clock
frequency resulting in 11.9 GFLOPS peak-practical performance and
810 mW power dissipation (Fig.  7).  Voltage  scaling  to  the  0.6V
minimum-energy point (MEP) improves energy-efficiency by 2.47× 
(36.4 GFLOPS/W) while dissipating 7.9 mW at 31 MHz. Energy-
per-cycle varies from 543 - 1588 pJ/cycle between 0.6 - 1.0V. Versa
was fabricated in 28 nm CMOS (Fig. 8) and occupies 12 mm2.
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Fig. 1: Main components of a Versa tile (left), and the chip overview
(right). Worker cores connected by systolic R2R links and dynamically-
reconfigurable memories exploit algorithm-dependent characteristics.

Fig. 3: R2R tunneling and integration in the ARM Cortex M4F.

Fig. 4: Illustration of reduced serialization with tree-based barrier
synchronization (left), and latency improvements over pthreads (right). 

Fig. 6: Trends (top) in energy efficiency across dataset sizes with
different Versa configurations, and summary boxplots (bottom).

Fig. 2: Shared, private, and queue modes in the reconfigurable crossbar
(top), and summary of the L1-ROCM implementation  (bottom). 

Fig. 5: Median energy-efficiency (GFLOPS/W) and performance
(GFLOPS) gained with runtime reconfiguration at nominal voltage.
'Reconfig. Gain' shows the median gain provided by either Config A or
Config B, since the optimal mode varies.

Fig. 7: Power (left), energy-per-cycle (middle), and compute efficiency
(right) under VDD scaling between 0.55 - 1.0V. 0.6V coincides with
the minimum-energy point.

Fig. 8: Die photo and chip summary. 
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Fig. 6: Trends (top) in energy efficiency across dataset sizes with different Versa 
configurations. Boxplots (bottom) show aggregate medians, min, max, and quartiles.
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Fig. 9: Power (left), energy per cycle (mid), and compute efficiency (right) under VDD scaling 
from 0.55 - 1.0V (minimum energy point @ 0.6V).
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Fig. 8: Die photo and chip summary.
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