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Abstract—To exploit users’ heterogeneous data demands, several mobile network operators worldwide have launched the mobile data
trading markets, where users can trade mobile data quota with each other. In this paper, we aim to understand the importance of data
trading market (DTM) by studying the users’ operator selection and trading decisions, and analyzing the operator’s profit maximizing
strategy. We model the interactions between the mobile operator and the users as a three-stage Stackelberg game. In Stage I, the
operator chooses the operation fee imposed on sellers to maximize its profit. In Stage II, each user chooses his operator. In Stage III,
each DTM user chooses his trading decisions. We derive the closed-form expression of the unique Nash equilibrium (NE) in Stages II
and III, where every user proposes the same price such that the total demand matches with the total supply. We further show that the
Stage I’s problem is convex and compute the optimal operation fee. Our analysis and numerical results show that an operator with a
small initial market share can increase its profit by proposing a DTM, which is in line with the real-world situation in Hong Kong.

Index Terms—Mobile data trading market, data pricing, Stackelberg game, network economics.
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1 INTRODUCTION

1.1 Background and Motivation

Due to the significant increase of video traffic on smart-
phones and tablets, global mobile data traffic has been
growing tremendously in the past few years [2]. To alle-
viate the tension between the mobile data demand and
network capacity, mobile network operators have been ex-
perimenting with several innovative pricing schemes, such
as time and location dependent pricing, shared data plans,
and sponsored data pricing [3]–[6]. However, these pricing
schemes do not fully take advantage of the heterogeneous
demands across all mobile users, as a user’s unused portion
of his month data quota will be wasted even if another user
is in need of additional data in all these schemes.

Seizing this opportunity, China Mobile Hong Kong
(CMHK), a Hong Kong mobile operator with the smallest
market share [7], launched the 2nd exChange Market (2CM)
[8] in 2014. It is a mobile data trading platform that allows
its users to trade their 4G mobile data quota with each other.
In this platform, a seller can list his desirable selling price
on the platform, together with the amount of data to be sold
(up to his monthly data quota). If there is a buyer who is
willing to buy the data at the listed price, the platform will
clear the transaction and transfer the corresponding amount
of the data to the buyer’s monthly quota limit.

With such a data trading market (DTM), users can make
better use of their quota in their data plan. However, op-
erators face tradeoff in deploying the DTM. On one hand,
DTM helps operators attract/retain customers by enabling
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• Part of this paper was presented in [1].

them a better control and ownership of their packages [9].
In addition, CMHK can benefit by charging the sellers an
operation fee for each GB of sold data in the form of
“transaction tax” [8]. On the other hand, CMHK’s profit
may be negatively affected, because its revenue from users’
overage usage is lower with the DTM. Hence, it is not clear
to the operator whether it is profitable to deploy this market.

Apart from studying the profitability of the market, we
are also interested in the market mechanism. The current
2CM market mechanism is not efficient, as only a seller can
list his trading price and quantity. This means that a buyer
needs to frequently check the platform to see whether he is
willing to buy according to the current (lowest) selling price.
This motivates us to consider a multi-unit double auction
mechanism based on the one adopted in stock markets [12],
[13]. With such a mechanism, in every time slot, a user can
choose his role (seller or buyer) and submit his (selling or
buying) price and quantity to the platform.1 The platform
clears the market at a market clearing price, which the
buying price of some buyers is larger than the selling price
of some sellers. The sellers with very high selling prices and
the buyers with very low buying prices may not get all their
proposed quantities transacted.

Under such a mechanism, the mobile network operator
can obtain revenue from the DTM in two ways. First, the
operator profits from the gap between the subscription fee
and the service cost for each user. Second, the operator
charges the sellers an operation fee for each unit of sold data,
which is unique to a DTM. Hence, it needs to decide the
optimal operation fee to maximize its profit.

In this paper, we would like to understand three impor-
tant questions in such a DTM:

• Why does the operator propose a DTM?
• How should the operator set the operation fee to

maximize its profit?
• Given a fixed operation fee, what are the equilibrium

trading behaviors among the users?

1. If a user is not willing to trade in a time slot, he can set his trading
quantity as zero.
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User �’s Profile (� ∈ ):
Quota:  Q GB/Month

Demand: ���,� , ��,	 , 
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Original operator choice: ��

Buyers’ Market Sellers’ Market

Price (per GB) Available (GB) Price (per GB) Available (GB)

$15 5 $13 10

$14 15 $15 10

$13 20 $16 20

… … … …

User �’s decision: Updated operator choice ��

… …

DTM operator’s decision: Sellers’ operation fee � 

Stage I:
Operation fee optimization

Stage II:
Operator selection

Non-DTM operators

Stage III:
Mobile data trading

DTM user �’s decision (� ∈   �):
Role: ��  
Price: ��  
Quantity: ��

Fig. 1. Stackelberg Model of the Operator and Users’ Interactions.

1.2 Contributions

To answer the above questions in a coherent framework, we
model the interactions between the mobile operator and the
users as a three-stage Stackelberg game with different time
scales, as shown in Fig. 1. We assume that there are multiple
mobile operators, while only one operator proposes the
DTM.2 We refer to this operator as the DTM operator, and
its users as the DTM users. The operator and users make
decisions in different time scales (which will be discussed in
details in Section 2). At the beginning of every subscription
horizon (Stage I), the DTM operator optimizes its operation
fee imposed on the sellers to maximize its profit. After the
DTM operator proposes the operation fee (Stage II), each
user chooses his operator given the operation fee. At the
beginning of every data trading horizon (Stage III), the
DTM users decide their roles as sellers or buyers and the
corresponding trading prices and quantities given the users
choices of operators.

Analyzing such a two-sided market is very challenging,
as it involves the complicated interactions among the op-
erators and users in three stages. Moreover, it is difficult
to guarantee the existence of the Nash equilibrium (NE)
for the users’ decisions due to the discontinuity of their
utility functions (to be discussed in details in Section 3) [10],
[11]. Nevertheless, we are able to characterize the optimal
operation fee in Stage I and the unique NE in Stages II and
III in closed-form.

In summary, our key results and contributions are as
follows.

• Novel two-sided data trading market formulation: Our
model captures several key practical issues, such as
the users’ decision of trading prices and quantities
without knowing in advance how much data they
can sell or buy at the proposed prices. These issues
have not been considered before in the context of
mobile data trading.

• Closed-form solution of the three-stage problem: Despite
the discontinuity in the user’s utility functions, we
characterize the unique NE for the users’ operator

2. To the best of our knowledge, CMHK is the only operator in Hong
Kong that deploys the DTM [8].

selection and mobile data trading game in closed-
form, where different types of buyers and sellers pro-
pose the same price such that the total supply matches
the total demand in the DTM. In addition, we show
the operator’s operation fee optimization problem is
convex and derive the closed-form solution.

• Benefit of data trading market to a small operator: We
show that an operator with a small market share ben-
efits from launching a DTM. This is in line with the
real-world observation in Hong Kong that CMHK,
which is the smallest mobile operator [7], is the only
DTM operator.

1.3 Related Literature on Mobile Data Trading

The research on mobile DTM only emerged recently [14]–
[20]. In [14], Wang et al. proposed a user-initiated network
for cellular users to trade data plans by leveraging personal
hotspots with users’ smartphones without considering the
operator’s participation and cooperation. In [15] and [16],
Zheng et al. studied the users’ optimal bids in the market
and proposed an algorithm for mobile operator to match the
buyers and sellers. In [17], Yu et al. studied a single user’s
optimal mobile data trading problem under the future de-
mand uncertainty from a behavioral economics perspective.
However, the authors in [15], [16], and [17] assumed that
the sellers and buyers in the DTM can always bid prices
that ensure that all their demand are satisfied and all their
supply are cleared. In [18], Andrews presented a dynamic
programming problem to characterize the trading behav-
ior of mobile users without considering the interactions
between the operator and the users. Wang et al. in [19]
studied the data plan sharing through personal hotspots
and proposed a pricing mechanism that takes into account
the uncertainty of mobility and sharing cost. Wang et al. in
[20] analyzed the economic viability of offering a DTM with
rollover mechanism to explore the connection between user-
flexibility and time-flexibility.

To the best of our knowledge, our work in [1] is the first
paper that studied the DTM involving the active decisions of
both the operator and the users. Specifically, we formulated
a two-stage decision problem, where the mobile operator
determines the operation fee in the first stage, while the
subscribers determine their trading decisions in the second
stage. In this paper, as a practical extension to [1], we further
consider the market competition between operators with and
without DTM. As a result, we include a new stage regard-
ing the users’ operator selections and formulate a three-
stage decision problem, which significantly complicates the
problem structure. It also complicates the operation fee
optimization in the first stage, as we need to keep track of
the fraction of users choosing between the DTM and non-
DTM operators. Nevertheless, we are able to characterize
the optimal solution and the NE in closed-form.

The rest of the paper is organized as follows. In Section
2, we introduce the system model. In Section 3 and Section
4, we analyze the users’ mobile data trading game and
operator selection game in Stages III and II, respectively.
In Section 5, we analyze the mobile operator’s operation fee
optimization problem in Stage I. We present the numerical
results in Section 6, and conclude in Section 7.
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TABLE 1
Key Notation

Notation Meaning

i, I, I1 User index, set of users, and set of DTM users
θ DTM operation fee on sellers in Stage I
oi, ni User i’s original operator choice

and updated operator choice in Stage II
xi = (ai, πi, qi) DTM user i’s trading decision in Stage III:

Role ai, trading price πi, trading quantity qi
ri(x) DTM user i’s transaction quantity allocated

by the DTM mechanism (i.e., Algorithm 1)
Ui,1(ri(x)) DTM user i’s expected payoff defined in (3)
Ui,0 Non-DTM user i’s expected payoff defined

in (16)
Ui(n) User i’s expected payoff given all users’

operator choices n defined in (17)
Qi User i’s monthly quota
Q Mean value of Qi’s distribution
di ∈ {di,h, di,l} User i’s demand (high or low demand)
pi Probability that user i has a high demand
Dh, Dl Mean values of di,h and di,l’s distributions
L(·) Satisfaction loss function defined in (2)
κ Operator’s overage usage fee imposed on users
π̂(n, θ) Market clearing price (Stage III’s analysis)
n∗(θ) Users’ operator choices at NE

(Stage II’s analysis)
π̂(θ) Market clearing price (Combining both Stage II
(, π̂(n∗(θ), θ)) and Stage III’s analysis)
α DTM operator’s original market share
ei(ni) User i’s switching cost for choosing operator ni
PL(π), PH(π) DTM user’s type thresholds at price π
P ′L(π), P

′
H(π) Non-DTM user’s type thresholds at price π

P (θ) DTM operator’s profit given operation fee θ
defined in (29)

2 SYSTEM MODEL

In this work, we study the operator’s operation fee op-
timization problem and the users’ joint operator selection
and mobile data trading problem comprehensively. We first
introduce the three-stage sequential interactions model in
Section 2.1. Then, we introduce the users’ mobile data trad-
ing platform in Section 2.2. Finally, we outline the solution
of the three-stage Stackelberg game model in Section 2.3.
The list of key notations are shown in Table 1.

2.1 Three-Stage Sequential Interactions Model
As illustrated in Fig. 1, we consider a market consisting of
multiple mobile operators and a set I = {1, ..., I} of users,
where one of the operators (i.e., the DTM operator) deploys
a mobile DTM [8]. Among these I users, a set I1 of users are
DTM users. We use ni = 1 to denote that user i is a DTM
user and ni = 0 otherwise, so I1 , {j ∈ I : nj = 1}. We
assume that the number of users in the market is very large
(e.g., I → ∞), hence the impact of a single user’s action on
the whole population can be ignored [21].

We model the interactions between the mobile operator
and the users in three stages with different time horizons
as illustrated in Fig. 2. First, we assume that the users’
subscription horizon is one year because the unit cost of

Data trading 

horizon 1
Time

Stage II:
Users choose operators

Stage III:
DTM users make data trading decisions

…

Subscription horizon

Data trading 

horizon T

Data trading 

horizon 2

Stage I:
DTM operator decides operation fee θ

Fig. 2. Timescales of the sequential decisions by the operator and the
users.

providing services (e.g., the annual license fee for mobile
spectrum [25]) usually varies annually. Second, according to
[24], the period of CMHK’s data plan contract is 12 months,
hence users can only change operator at the beginning of
every subscription horizon. Third, we assume that a data
trading horizon is a billing cycle (or a month).3 Hence, one
subscription horizon can be divided into T = 12 data trading
horizons. The three stages are as follows:

• Stage I: At the beginning of every subscription hori-
zon, the DTM operator decides the operation fee θ
charged on the sellers for each unit of sold data.

• Stage II: After the DTM operator has proposed the
operation fee θ, the users choose their operators n =
(n1, . . . , nI) for the entire subscription horizon.

• Stage III: At the beginning of each data trading hori-
zon, the DTM users decide their trading decisions
x = (x1, . . . ,xI).4 The users’ decisions on choices
of operators n are fixed within each subscription
horizon.

2.2 Mobile Data Trading Platform
2.2.1 Users’ Decisions
For DTM user i ∈ I1, his trading decision is defined as xi =
(ai, πi, qi), which consists of three components. First, user i
needs to decide his role ai ∈ {s, b}, i.e., whether to be a seller
(ai = s) or a buyer (ai = b), or not participate in the market.
Correspondingly, he has to determine his trading price πi
and his trading quantity qi. Specifically, if user i chooses to
be a seller, the price πi and the quantity qi refer to his selling
price and selling quantity, respectively. On the other hand, if
user i chooses to be a buyer, the price πi and the quantity qi
refer to his buying price and buying quantity, respectively.
In the DTM, the proposed prices must be smaller than the
usage-based price κ, otherwise no transaction will happen
in the market. Hence, we have πi ∈ Π = [0, κ] and qi ∈
[0,∞). Let xi = (ai, πi, qi) be the trading decision of DTM
user i ∈ I1 and x = (xi, i ∈ I1) be all the DTM users’

3. We have conducted a survey of 51 CMHK users regarding the
trading frequency. The survey shows that about 60% of the users
(31/51) only trade once during a billing cycle. We assume that all the
users trade at the beginning of the billing cycle.

4. If we allow each user to trade multiple times in a billing cycle,
we can formulate the DTM user’s decision process as a dynamic
programming (DP) problem [20]. However, it is challenging to derive
the DTM users’ equilibrium trading decisions (in Stage III) in closed-
form, so it would significantly complicate the analysis in Stages I and
II. Thus, we leave the general model with multiple trading periods as a
future work.
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trading decisions. We define the set of feasible strategies of
DTM user i’s trading decisions as

Xi = {(ai, πi, qi) : ai ∈ {s, b}, πi ∈ [0, κ], qi ∈ [0,∞)}. (1)

2.2.2 Sellers’ and Buyers’ Markets
We consider a two-sided mobile data trading platform for
the DTM users in set I1. It is based on the first-price multi-
unit double auction mechanism [13], which consists of four
main steps5:

• Step 1 (Bidding): At the beginning of every data
trading horizon, all users make their trading deci-
sions and submit their bids, which include their roles
a = (ai,∀i ∈ I1), trading prices π = (πi,∀i ∈ I1),
and trading quantities q = (qi,∀i ∈ I1), simultane-
ously to the platform.

• Step 2 (Prioritization): The platform sorts the bids
of the users in the sellers’ and buyers’ markets,
respectively, according to their proposed prices. For
the example in Fig. 1, in the table of mobile DTM in
Stage III, the total demand in the buyers’ market at
the highest buying price of $15 is 5 GB, which will be
satisfied with the highest priority. The total supply
in the sellers’ market with the lowest selling price
of $13 is 10 GB, which will be sold with the highest
priority.

• Step 3 (Allocation): The platform clears the markets
by allocating the bids through an auction mecha-
nism with the priority orders, and outputs all users’
transacted quantities r(x) = (ri(x),∀i ∈ I1). Notice
that the selling bids are only allocated to the buying
bids whose buying price is no smaller than the cor-
responding selling price. For example, the platform
first allocates the top row’s bids (5 GB data quota
supply with the selling price of $13 to 5 GB data
quota demand with the buying price of $15), and
then allocates the remaining 5 GB supply with the
selling price of $13 on the first row to 5 GB demand
with the buying price of $14 on the second row. The
remaining 10 GB demand with the buying price of
$14, however, is not satisfied, because the remaining
supply on the second row is with the selling price
of $15. If the 15 GB of demand with the buying
price of $14 is from multiple buyers, the buyers will
equally share the supplies. The details of the equally
share allocation mechanism among multiple buyers
are discussed in Algorithm 1 in Appendix A.

• Step 4 (Payment): Finally, the platform decides the
payment of the users. If there is a gap between the
selling and buying prices of the transacted data, then
the price gap leads to the revenue of the operator. For
example, the operator gains $2 for allocating each GB
with the selling price of $13 to that with the buying
price of $15. The platform will also charge a seller θ
dollars of operation fee for each GB sold.

At the end of every data trading horizon, all users can
access the aggregate information on other users’ decisions
of the last data trading horizon, by checking the updated

5. For the details of the mechanism, please refer to Appendix A.

market information on the platform. We assume that by
learning from the historical market information, all the users
know the distribution of user types in the market.

2.3 Outline of Analysis
In the following three sections, we will use the backward
induction to solve the three-stage sequential game.6 We start
from the DTM users’ mobile data trading game of Stages
III in Section 3, and then study the users’ operator selec-
tion game of Stage II in Section 4. Finally, we discuss the
operator’s operation fee optimization problem of Stage I in
Section 5.

3 STAGE III: MOBILE DATA TRADING GAME

In this section, we study the users’ mobile data trading
game in Stage III, given the operator’s operation fee θ and
the users’ operator selection n = (n1, . . . , nI). We first
introduce the DTM user model in Section 3.1. Next, we
formulate the DTM users’ mobile data trading game in
Section 3.2, and analyze the DTM users’ game equilibrium
in Section 3.3.

3.1 Model: DTM User
3.1.1 Quota and Demand
Let Qi be the monthly quota of user i. For the ease of ex-
position, we assume that there are two possible realizations
of a user i’s data demand for the month (or simply called
demand): di ∈ {di,h, di,l}, with 0 < di,l < Qi < di,h.78 The
probability for user i to observe a high demand di,h is pi,
and the probability of observing a low demand di,l is 1−pi.9
We assume that the distributions of pi, Qi, di,l, and di,h are
mutually independent. In addition, we assume that Qi, di,l
and di,h can follow any distributions with the mean values
of Q, Dl and Dh, respectively.

3.1.2 Satisfaction Loss
Each user i will incur a satisfaction loss when his demand
di ∈ {di,h, di,l} exceeds his monthly data quota Qi. We
consider a linear satisfaction loss function

L(Qi − di) = −κ[di −Qi]+, (2)

where [z]+ = max{0, z}. Here, [di − Qi]
+ is the amount

of insufficient data. When di − Qi is positive, it means that
the quota is exceeded. The linear coefficient κ represents
the overage usage fee imposed by the mobile operator in a

6. Backward induction is the standard technique to analyze a sequen-
tial game, where we analyze the problem in the order of Stages III, II,
and I. As a result, we discuss the analysis of the three stages in reverse
order from Section 3 to Section 5.

7. The analysis for the case where both di,h and di,l are higher (or
lower) than the monthly quota Qi is relatively trivial, and hence is
omitted here due to space limitations.

8. It is possible that there will be no trade when all the DTM users
are sellers (i.e., when di,h < Qi, ∀i ∈ I1) or buyers (i.e., when
di,l > Qi, ∀i ∈ I1). However, these extreme scenarios are not realistic
in practice, as the operator has the freedom to adjust the quota Qi such
that they will not happen. It is also possible that no trade happens when
the DTM sets a very high operation fee θ. However, in reality, the DTM
operator can reduce operation fee to facilitate trading.

9. In other words, each DTM user only knows his demand distribu-
tion, but not the actual demand, when making his trading decision.
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Ui,1(ri(xi,x−i)) = Ui,1 (ri ((ai, πi, qi),x−i))

=

{
(πi−θ)ri((s, πi, qi),x−i)+piL(Qi−ri((s, πi, qi),x−i)−di,h)+(1−pi)L(Qi−ri((s, πi, qi),x−i)−di,l)−ei(1), if ai = s,

− πiri((b, πi, qi),x−i) +piL(Qi+ri((b, πi, qi),x−i))−di,h)+(1−pi)L(Qi+ri((b, πi, qi),x−i))−di,l)−ei(1), if ai = b.

(3)

two-part pricing tariff, where the user pays a fixed fee for
the data consumption up to a monthly quota and a linear
usage-based cost for any overage data consumption. Such
a pricing model is widely used by major mobile operators.
For example, for a 4G CMHK user, κ = $60 with a monthly
data quota of 1 GB. By selling or buying data in the market,
a user can change his effective remaining data quota (for the
current month only), and hence will change his expected
satisfaction loss.

3.2 Problem Formulation: DTM Users’ Non-cooperative
Game

First, we define a DTM user i’s payoff in Stage II in (3),
which equals to his expected satisfaction loss minus the net
payment of the trade and the switching cost.10 For the seller
case (ai = s), the first term (πi − θ)ri((s, πi, qi),x−i) is
the revenue from selling data. The second and third terms
correspond to the seller’s expected satisfaction loss after
selling qi data quota under the high and the low demand
realization, respectively. Notice that each seller has to pay
the operation fee of θ to the mobile operator for each unit
of transacted data.11 In addition, if user i is switching to
another operator, he is going to pay an additional switching
cost ei(ni), where we will define in more details in (15) in
Section 3 related to choice of operator. The buyer’s payoff
function on the last line of (3) is similar, except that the
operator does not charge the buyer an operation fee. Notice
that the payoff function in (3) is discontinuous. For example,
if a seller’s supply is only partially cleared, he can clear all
his supply by decreasing his selling price by a unit ε12, and
hence makes a discontinuous increase in his payoff.

Next, we model the DTM users’ interactions as the
following non-cooperative game:

Definition 1. A mobile data trading game is a tuple Ω =
(I1,X ,U1) defined by

• Players: The set I1 of DTM users.
• Strategies: Each player chooses an action (pure strategy)

xi = (ai, πi, qi) ∈ Xi, which is his bid to the platform.
The strategy profile of all the players is x = (xi,∀i ∈ I1)
and the set of feasible strategy profile of all the players is
X = X1 × . . .×XI1 .

10. Since we assume the data plan by all operators are with same
quota and same subscription fee, it will not affect the users’ decisions.
Hence, we omit the subscription fee in the user’s payoff function in (16)
and (3).

11. To benefit from reselling, a DTM user needs to first buy the data
at a very low price and later resells it at a very high price, such that
the difference between the selling price and the buying price is no less
than the DTM’s operation fee θ (on sellers). This condition is not easy
to satisfy in practice, so the reselling behavior in DTM is not common.

12. We assume that ε is the smallest price unit used in the mobile data
trading platform. For example, ε = 1 HKD in 2CM.

Fig. 3. An example of π̂s and π̂b.

• Payoffs: The vector U1 = (Ui,1,∀i ∈ I1) contains all
users’ payoffs as defined in (3).13

3.3 Analysis: Nash Equilibrium
We first investigate a user’s best response in Section 3.3.1,
and then characterize the NE in Section 3.3.2.

3.3.1 Best Response Analysis
We first define a user’s best response as the strategy that
maximizes his payoff given the fixed strategies of other
users.

Definition 2. User i’s best response is

xBRi (x−i) , (aBRi (x−i), π
BR
i (x−i), q

BR
i (x−i))

= arg max
xi∈Xi

Ui,1(ri(xi,x−i)).
(4)

To characterize the best response, we then define the
transaction selling price π̂s and the transaction buying price π̂b
for a given strategy profile x = (xi,∀i ∈ I1) in Definitions
3 and 4, respectively. Here, we use ε > 0 to denote the
smallest price unit. When a user makes a decision, he does
not need to know the choice of each of the other users, but
only needs to know the accumulated bids (e.g., the total
demands and supplies in terms of GBs at each price). This
allows us to analyze the users’ best responses based on π̂s
and π̂b instead of x.

Definition 3. The transaction selling price14 π̂s corresponds to
the minimum price such that a seller cannot get any of his selling
quantity transacted, if his proposed selling price is one unit larger
than the transaction selling price:

π̂s=min{πi :ri((s, πi + ε, qi),x−i) = 0,∀i ∈ I1}. (5)

13. We assume a non-cooperative game with complete information,
where the users may derive each other’s type distribution through
learning.

14. Based on the definition, the sellers who propose this price can
get some or all of their selling quantities transacted. The sellers who
propose selling prices lower than this price will get all their selling
quantities transacted, because they have higher priorities. Notice that
lower priority bids can only be cleared when all the higher priority bids
are cleared.
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xBRi (x−i)

=(s, π̂s, Qi−di,l), if pi≤
π̂s−θ
κ

and

∑
j∈HBi

qj−
∑
j∈LSi

qj−
∑
j∈{k:k∈Ei,qk<Qi−di,l}qj

|{k : k ∈ Ei, qk ≥ Qi − di,l}|
≥Qi−di,l,

=(s, π̂s−ε,Qi−di,l), if pi≤
π̂s−ε−θ

κ
and

∑
j∈HBi

qj−
∑
j∈LSi

qj−
∑
j∈{k:k∈Ei,qk<Qi−di,l}qj

|{k : k ∈ Ei, qk ≥ Qi − di,l}|
<Qi−di,l,

=(b, π̂b, di,h−Qi), if pi≥
π̂b
κ

and

∑
j∈LSi

qj−
∑
j∈HBi

qj−
∑
j∈{k:k∈Ei,qk<di,h−Qi}qj

|{k : k ∈ Ei, qk ≥ di,h −Qi}|
<di,h−Qi,

=(b, π̂b+ε, di,h−Qi), if pi≥
π̂b+ε

κ
and

∑
j∈LSi

qj−
∑
j∈HBi

qj−
∑
j∈{k:k∈Ei,qk<di,h−Qi}qj

|{k : k ∈ Ei, qk ≥ di,h −Qi}|
≥di,h−Qi,

= (s, 0, 0) or (b, 0, 0), otherwise.

(7)

Definition 4. The transaction buying price π̂b corresponds
to the maximum price such that a buyer cannot get any of his
buying quantity transacted, if his proposed buying price is one
unit smaller than the transaction buying price π̂b:

π̂b=min{πi :ri((b, πi − ε, qi),x−i) = 0,∀i ∈ I1}. (6)

An example of the definitions is shown in Fig. 3, based
on the market supply and demand shown in Fig. 1. The plat-
form sorts user’s bids according to their prices, then clears
the bids with the highest priorities first. In this example, the
transaction selling price π̂s = 14 and the transaction buying
price π̂b = 14, because the users who propose a price of
$14 can get some quantity transacted, and the sellers who
propose one unit higher ($15) and the buyers who propose
one unit lower ($13) cannot get any quantity transacted.

In the following proposition, we characterize user i’s
best response given other users’ strategies x−i.

Proposition 1. The best response xBRi (x−i) of user i with type
(pi, di,h, di,l) is given in (7).

The proof of Proposition 1 is given in Appendix B.
First, Proposition 1 states that every user who wants to

trade will either choose to sell the quota at the quantity
Qi − di,l or choose to buy at the quantity di,h − Qi if they
choose to join DTM, due to the piecewise linearity of (3) in
quantity qi.

Next, we discuss the five lines of equation (7) in details:

• The first and third lines: According to the transaction
functions in (38) and (39), if the supply is not enough,
the users with the same price will equally share the
supply. In this case, the bids of users with a low qi
will be fully satisfied15, while the bids of users with
a high qi will only be partially satisfied. Hence, the
users with a low pi and a low Qi−di,l will choose to
sell with a lower price π̂s (as shown in the first line of
(7)), and the users with a high pi and a low di,h−Qi
will choose to buy with a higher price π̂b (as shown
in the third line of (7)).

• The second and fourth lines: To make their bids
fully satisfied, the users with a higher quantity can
propose a price with a slightly higher priority. Hence,
the users with a low pi and a high Qi − di,l will

15. By saying “the bid of a user is satisfied”, we mean that “his
demand is satisfied” if the user is a buyer, or “his supply is cleared” if
the user is a seller.

choose to sell with a lower price π̂s − ε (as shown in
the second line of (7)), and the users with a high pi
and a high di,h−Qi will choose to buy with a higher
price π̂b + ε (as shown in the fourth line of (7)).

• The fifth line: A user who is not willing to participate
will propose a zero price and quantity as a seller or
a buyer.

3.3.2 Unique NE Characterization
Next, we define the NE as the intersection of all the users’
best response correspondences.

Definition 5. (Nash Equilibrium (NE)): A strategy profile x∗ is
an NE if and only if

Ui,1(ri(x
∗
i ,x
∗
−i)) ≥ Ui,1(ri(x

′
i,x
∗
−i)),∀x′i ∈ Xi, i ∈ I1.

(8)

If a strategy profile is a NE, none of the users has
the incentive to change his strategy, and the transacted
prices will not change. To obtain the NE, we first show the
conditions that any NE should satisfy in Lemma 1.

Lemma 1. At any NE x∗, there exists a unique transaction price
π̂(n, θ) such that for any fixed n and θ, the following conditions
are satisfied.∑

i∈{j:a∗j=s,π∗j≤π̂(n,θ)}

qi =
∑

i∈{j:a∗j=b,π∗j≥π̂(n,θ)}

qi, (9)

π∗i = π̂(n, θ),∀i ∈ {j ∈ I1 : pj <
π̂(n, θ)− θ

κ

or pj >
π̂(n, θ)

κ
}. (10)

Equation (9) implies that there exists an equilibrium
price π̂(n, θ) such that the market is cleared, where the total
supply matches the total demand. From (10), we observe
that those who want to make a transaction in the market
will propose the same price in their best responses.16 The
proof of Lemma 1 is in Appendix C.

By jointly solving equations (9) and (10) in Lemma
1, we obtain the unique NE in Theorem 1. For notation
convenience, we first define

PL(π) ,
π − θ
κ

, (11)

16. The users with type pi <
π̂(n,θ)−θ

κ
are sellers and the users with

type pi >
π̂(n,θ)
κ

are buyers. The sellers’ transaction selling price equals
to the buyers’ transaction buying price.
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TABLE 2
The equilibrium users’ decisions on roles, quantities, and prices

User Type pi Role a∗i Quantity q∗i Price π∗i
0 < pi ≤ PL(π̂(n, θ)) s Qi − di,l π̂(n, θ)
PL(π̂(n, θ)) < pi s or b 0 0
< PH(π̂(n, θ))

PH(π̂(n, θ)) ≤ pi < 1 b di,h −Qi π̂(n, θ)

and

PH(π) ,
π

κ
, (12)

which are the boundary indicators of user types. With these
indicators, we can divide the users into different groups
according to their types.

Theorem 1. The unique NE x∗ of game Ω is shown in Table 2,
where the equilibrium price π̂(n, θ) is the unique solution of the
following equation:∑
i∈{j:pj≤PL(π̂(n,θ))}

(Qi−di,l) =
∑

i∈{j:pj≥PH(π̂(n,θ))}

(di,h−Qi).

(13)

Theorem 1 states that at the NE, all the users who
participate in the market will propose the same price, and all
their proposed quantities will be transacted. This is because
the sellers proposing higher prices cannot get their selling
quantities transacted, and the sellers proposing lower prices
receive lower payoffs. The same intuition applies to the
buyers. The users who are not willing to participate will
propose a zero price and quantity, and will not affect the
market trading results. The proof of Theorem 1 is given in
Appendix D.

4 STAGE II: OPERATOR SELECTION GAME

In this section, we study the users’ operator selection game
in Stage II given the operation fee θ. We introduce the user
model in Section 4.1, and formulate the operator selection
game in Section 4.2. Finally, we analyze the NE in Section
4.3.

4.1 Model: User’s Operator Choice

Let oi be user i’s original choice of operator in the previous
subscription horizon. If user i is a subscriber of DTM op-
erator (i.e., user i is a DTM user), we denote it as oi = 1.
Otherwise, user i is a subscriber of other operators, and we
denote it as oi = 0. Thus, DTM’s original market share is

α ,
|{i : oi = 1}|

I
. (14)

At the beginning of a new subscription horizon, user i
needs to decide an updated choice of operator ni, where ni ∈
{0, 1}. Notice that a user i will incur a switching cost ei(ni)
for the following subscription horizon linear to his expected

usage17 if he choose to switch an operator (i.e., ni 6= oi).
Specifically, we have

ei(ni) =

{
e[pidi,h + (1− pi)di,l], if ni 6= oi,

0, if ni = oi,
(15)

where e ≥ 0 is the switching cost parameter.

4.2 Problem Formulation: Users’ Operator Selection
Game
We first define user i’s payoff function if he chooses the
other operators (i.e., ni = 0) in Stage II. In this case, since no
DTM is available in the other operators, his payoff equals to
his expected satisfaction loss minus the switching cost:

Ui,0 = piL(Qi−di,h) +(1−pi)L(Qi−di,l)− ei(0). (16)

Then, by combining with the case of ni = 1 (which was
discussed in Section 3 for the payoff Ui,1(ri(xi,x−i))), we
can see that user i’s payoff Ui(ni,n−i) depends on the other
users’ decisions n−i = (nj ,∀j ∈ I, j 6= i). As shown in Fig.
2, each user makes operator selection decision to maximize
his utility in one subscription horizon (i.e., the summation
of utilities of T data trading horizons). By assuming that
a user’s demand statistics (as discussed in Section 3.1.1)
remain the same for each month, the utility function for user
i at Stage II over the T trading horizons can be written as

Ui(ni,n−i) =

{
T · Ui,0, if ni = 0,

T · Ui,1(ri(xi,x−i)), if ni = 1.
(17)

Hence, we model the interactions among DTM users as
the following non-cooperative game:

Definition 6. An operator selection game is a tuple Γ =
(I,N ,U) defined by

• Players: The set I of users, where user i ∈ I is associated
with a type (oi, pi, di,h, di,l).

• Strategies: Each player chooses an action (pure strategy)
ni as his choice of operator. The strategy profile of all the
players is n = (ni,∀i ∈ I), where ni ∈ {0, 1}.

• Payoffs: The vector U = (Ui,∀i ∈ I) contains all users’
payoffs as defined in (17).

4.3 Analysis: Nash Equilibrium
We first investigate a user’s best response in Section 4.3.1,
and then characterize the NE in Section 4.3.2.

4.3.1 Best Response Analysis
We assume that all the operators are the same, except that
the DTM operator has an additional DTM, so a DTM user
will not switch to other operators. In other words, ni = 1 is
a dominant strategy for the players with oi = 1. For user
i with oi = 0, he will switch to a DTM operator if his

17. The switching cost can be interpreted as the loss of the “repeat
purchase welfare” [26] [27]. According to [24], the users who repeatedly
purchase his data plan can enjoy a better service (e.g., 3G service up-
graded to 4G service, or a higher Internet speed due to the technology
development) with the service price unchanged. A user with a higher
usage can benefit more from the “repeat purchase welfare”. However, if
the user switch to the other operator, he can no longer enjoy the “repeat
purchase welfare”.
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benefit from trade is larger than the switching cost. Hence,
we characterize user i’s best response in the following
proposition.

Proposition 2. The best response nBRi (n−i) of user i with type
(oi, pi, di,h, di,l) is given in (18).

nBRi (n−i)=


0, if

(π̂(n, θ)−θ)(Q−Dl)− e
2 (Dh+Dl)

κ(Q−Dl)
<pi<

π̂(n, θ)(Dh−Q)+ e
2 (Dh+Dl)

κ(Dh −Q)
and oi=0,

1, otherwise,
(18)

where Q, Dl and Dh are the mean values of the distributions of
Qi, di,l and di,h, respectively.

The proof of Proposition 2 is given in Appendix E.

4.3.2 Unique NE Characterization
Now we study the NE of the above operator selection
game. According to the analysis of the equilibrium price
π̂(n, θ) in Theorem 1 and the best response in Proposition
2, we can obtain the unique NE in Lemma 2. For notation
convenience, we first define

P ′L(π) ,
(π−θ)(Q−Dl)− 1

2e(Dh+Dl)

κ(Q−Dl)
, (19)

and

P ′H(π) ,
π(Dh−Q)+ 1

2e(Dh+Dl)

κ(Dh−Q)
, (20)

which are the boundary indicators of user types. With these
indicators, we can divide the users into different groups
according to their user types.

Lemma 2. At any NE n∗(θ) for fixed θ, there exists a unique
transaction price π̂(n∗(θ), θ) such that the following condition is
satisfied.

n∗i (θ) =


0, if P ′L(π̂(n∗(θ), θ))<pi<

P ′H(π̂(n∗(θ), θ)) and oi=0,

1, otherwise,
(21)

where the equilibrium price π̂(n∗(θ), θ) is the unique solution of
the following equation:∑
i∈{j:pi≤PL(π̂(n∗(θ),θ))}

(Q−di,l) +
∑

i∈{j:pi≤P ′L(π̂(n∗(θ),θ))}

(Q−di,l) =

∑
i∈{j:pi≥PH(π̂(n∗(θ),θ))}

(di,h−Q) +
∑

i∈{j:pi≥P ′H(π̂(n∗(θ),θ))}

(di,h−Q).

(22)

Furthermore, if we assume that both the DTM users’ pi for i ∈ I1
and the non-DTM users’ pi for i ∈ I\I1 follow independent
uniform distributions in the interval [0, 1], we can obtain a closed-
form solution for equation (22) as

π̂(n∗(θ), θ) =
(Dh −Q)κ+ (Q−Dl)θ

Dh −Dl
. (23)

The proof of Lemma 2 is given in Appendix F.
In the long-run, since user i’s operator selection deci-

sions will in turn change his user type oi, the NE of Stages
II and III will further evolve. In this paper, we assume that

DTM’s 

users: αI

BuyersNot trade

Join DTM 

and be sellers

Join DTM 

and be buyersNot change operator

Sellers

Other 

operator’s 

users: 

(1 – α)I

Fig. 4. The operation and role selections by the users of both DTM and
other operators.

the operator makes Stage I decision based on a short-run
user behavior, and characterize the conditions under which
the operator will propose a DTM. In the next section, to
better illustrate the insights in the Stage I problem, we will
continue with our assumptions in Lemma 2. For notational
simplicity, we will write the equilibrium price π̂(n∗(θ), θ)
as π̂(θ) in the later sections.

5 STAGE I: OPERATION FEE OPTIMIZATION

In this section, we first discuss the DTM operator’s profit
in Section 5.1. We then formulate its maximization problem
in deciding the initial optimal operation fee given its initial
market share in Section 5.2. Next, we discuss DTM’s benefit
from proposing this DTM in Section 5.3.

5.1 Model: Operator’s Profit

The operator’s profit consists of three parts: (a) Base profit:
the difference between the subscription revenue and the cost
of providing service from the users, (b) the total operation fee
charged on the sellers for the transacted data quota, and (c)
the overage usage fee on the users for their data usage that
exceeds their quota.

These three parts are functions of the unit operation fee
θ, which should be less than the usage-based unit price
κ (i.e., 0 ≤ θ ≤ κ), or no transaction will happen in the
market. In addition, the operator has a cost of building and
maintaining the DTM, which is denoted as Cb. Based on
Theorem 1, the fractions of sellers, buyers, and the users
who do not trade are shown in Fig. 4.

First, the base profit in (a) can be calculated as the
product of (a1) the number of users and (a2) the difference
between subscription revenue and the cost of providing
service for each user. They are described as follows:

• (a1) First, according to Table 2, the number of users
is the original number of DTM subscribers αI plus
the number of users switched from other operators
(1 − α)I(P ′L(π̂(θ)) + 1 − P ′H(π̂(θ))) = (1 − θ/κ −
e/2(Dh+Dl)/(κ(Q−Dl))−e/2(Dh+Dl)/(κ(Dh−
Q)))(1 − α)I , where P ′L(·) and P ′H(·) are defined in
(19) and (20), respectively.

• (a2) Second, the subscription revenue of each user is
defined as β, and the average service cost of each
user equals to the product of unit cost c and the
average demand (Dh +Dl)/2.
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Hence, the base profit in (a) is:

Pa(θ) =

(
β − c(Dh +Dl)

2

)(
αI + (1− θ

κ
− e(Dh +Dl)

2κ(Q−Dl)

− e(Dh +Dl)

2κ(Dh −Q)
)(1− α)I

)
. (24)

Second, the total operation fee is charged on the sellers,
which includes the original sellers of DTM and the sellers
who are switched from other operators. It can be calculated
as the product of (b1) the total number of sellers, (b2) the
average trading quantity per seller, and the unit operation
fee θ.

• (b1) For the original sellers of DTM, according to
a∗i in Table 2, the total number of sellers with
oi = 1 equals to αIPL(π̂(θ)), where PL(π̂(θ)) is
the fraction of users who can successfully sell some
data18 as defined in (11). For the sellers who are
switched from other operators, according to Lemma
2, the total number of sellers with oi = 0 equals to
(1− α)IP ′L(π̂(θ)), where P ′L(·) is defined in (19).

• (b2) Then, from q∗i in Table 2, every seller i with a
type 0 ≤ pi ≤ PL(π̂(θ)) will propose a quantity Q−
di,l. Thus, the average quantity per seller equals to
Q−Dl.

Hence, the total operation fee in (b) is

Pb(θ) =
αθI(π̂(θ)−θ)

κ
(Q−Dl)

+
(1−α)Iθ(π̂(θ)−θ)(Q−Dl)− e

2 (Dh+Dl)

κ(Q−Dl)
(Q−Dl).

(25)

Third, based on Theorem 1, the overage usage fee in (c)
are charged on (c1) the sellers and (c2) the DTM users who
do not trade.

• (c1) First, the overage usage fee on the sellers can
be calculated as the product of the total number
of sellers (which is described in (b1)), the expected
overage usage of sellers, and the unit overage usage
fee κ. Since each original DTM seller will propose
Q− di,l and the users with pi < PL(π̂(θ)) are sellers,
their average overage usage is Dh − Dl, and the
average probability of high demand is PL(π̂(θ))/2 =
(π̂(θ) − θ)/(2κ). For the sellers who are switched
from other operators, according to Lemma 2, their
average overage usage is also Dh − Dl, but their
average probability of high demand is P ′L(π̂(θ))/2 =
((π̂(θ)− θ)(Q−Dl)− e/2(Dh +Dl))/(2κ(Q−Dl)).
Hence, the overage usage fee on the sellers is

Pc1(θ) =
αI(π̂(θ)− θ)

κ
κ (Dh −Dl)

(π̂(θ)− θ)
2κ

+
(1−α)Iκ(Dh−Dl)

2

(
(π̂(θ)−θ)(Q−Dl)− e

2 (Dh+Dl)

κ(Q−Dl)

)2

.

(26)

18. Notice that some users with type PL(π̂(θ)) < pi < PH(π̂(θ))
may choose to be a seller but cannot sell any data.

• (c2) Second, the overage usage fee on the DTM users
who do not trade can be calculated as the product of
the total number of DTM users who do not trade, the
expected overage usage of DTM users who do not
trade, and the unit overage usage fee κ. According to
the second row in Table 1, the total number of users
who do not trade is αIθ/κ. For the users who do not
trade, their average overage usage isDh−Q. Accord-
ing to the second row in Table 1, the average prob-
ability of high demand is (PL(π̂(θ)) + PH(π̂(θ)))/2.
Hence, the expected overage usage of users who do
not trade is (π̂(θ) − θ/2)(Dh − Q), and the overage
usage fee on the DTM users who do not trade is

Pc2(θ) = θαIκ(Dh −Q)
π̂(θ)− θ

2

κ
. (27)

Overall, the overage usage fee in (c) is

Pc(θ) = Pc1(θ) + Pc2(θ)

=
αI(π̂(θ)− θ)

κ
κ (Dh −Dl)

(π̂(θ)− θ)
2κ

+
(1−α)Iκ (Dh−Dl)

2

(
(π̂(θ)−θ)(Q−Dl)− 1

2e(Dh+Dl)

κ(Q−Dl)

)2

+ θαIκ(Dh −Q)
π̂(θ)− θ

2

κ
. (28)

5.2 Problem Formulation: Profit Maximization

Overall, by combining the above three parts, we can write
the operator’s profit maximization problem as

max
0≤θ≤κ

P (θ) , Pa(θ) + Pb(θ) + Pc(θ)− Cb. (29)

We can verify that P (θ) is a concave function of θ, so
problem (29) is a convex optimization problem. As a result,
by characterizing the first order condition, we can obtain the
unique optimal operation fee in closed-form.19

Theorem 2. The operator’s optimal seller’s operation fee θ∗ is
shown in (30).

5.3 Analysis: Benefit of Data Trading Market

Next, we will discuss the conditions under which an opera-
tor can benefit from proposing a DTM.

To quantify the benefit, we first derive the operator’s
profit without a DTM. The operator’s profit without a DTM
consists of two parts, namely the base profit and the overage
usage fee, which are structurally similar to the part (a) and
part (c) in Section 5.1. The base profit is the product of the
number of users and the difference between subscription
revenue and the cost of providing service for each user, so
it is equal to αIβ − αI(Dh + Dl)c/2. The overage usage
fee is the product of the number of users and the average
expected demand among users, so it is equal to αIκ(Dh −
Q)/2. Notice that we do not have operation fee as in part (b)

19. Overall, after applying backward induction to analyze the three-
stage game, the optimal operation fee θ∗ in Stage I (Theorem 2), the
equilibrium operator selection n∗i (θ) in Stage II (Lemma 2), and the
equilibrium trading decision x∗i = (a∗i , q

∗
i , π
∗
i ) in Stage III (Theorem 1)

together constitute the subgame perfect equilibrium [29].
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θ∗ = max

{
0,min

{
κ,
κ

2
+

(β− c(Dh+Dl)
2 )(α−1)(Q−Dl)

2 − 1
2 (Dh−Q)2(Dh−Dl)κ+ α

2 (Dh−Q)(Q−Dl)
2κ

(2− α)(Dh −Q)(Q−Dl)2 + 2α(Dh −Q)2(Q−Dl)− (Dh −Q)2(Dh −Dl)

}}
. (30)

α̃ =
(Dl −Q)(−2β + Cb(Dh +Dl) + 2κ(Q−Dh))

−2D2
hκ− 2βDl + CbD2

l + 2βQ− CbDlQ+ 2κDlQ− 4κQ2 +Dh(CbDl − 2κDl − CbQ+ 2κQ)
. (32)

in Section 5.1, because there is no DTM. The profit without
DTM as P0 is thus:

P0 =
αIκ(Dh −Q)

2
− αI(Dh +Dl)c

2
+ αIβ. (31)

To characterize whether the operator will benefit from
proposing a DTM, we define the threshold market share α̃
in (32) and obtain the following proposition.

Proposition 3. If an operator’s initial market share α < α̃, then
we have P (θ∗) > P0.

In other words, Proposition 3 establishes that an operator
with a small market share will benefit from proposing a DTM.
Interestingly, it is in line with the real-world observation
that CMHK, the smallest mobile operator in Hong Kong, is
the only operator that deploys the DTM [7].20

To better illustrate the insights, we will show the impact
of different parameters on the benefit of proposing the DTM
through numerical results in Section 6.

6 PERFORMANCE EVALUATION

In this section, we first provide simulation results to eval-
uate how an operator can benefit from proposing a mobile
DTM, and how different parameters impact on the benefit
in Section 6.1. Then, we evaluate the impact of the market
share on the operation fee in Section 6.2. We show the
equilibrium social welfare under different operation fees in
Section 6.3. Finally, we illustrate the users’ benefit from this
mobile DTM in Section 6.4.

6.1 Mobile Data Trading Market’s Benefit to Operator
We evaluate the operator’s benefit by comparing its profits
with and without the DTM.

In Fig. 5, we plot the profit increment P (θ∗) − P0

against the operator’s initial market share α for different
subscription fee β. In the simulation settings, we choose
the data quota Q = 22, the mean values of the high and
low demands Dh = 25 and Dl = 15, the unit service
cost c = 20, the switching cost parameter e = 50, and the
DTM maintenance cost Cb = 100. We observe that the profit
increment is increasing in β. This is because the operator can
attract more users by proposing a DTM, hence its profit will
increase if the benefit from attracting one more user is larger.

20. Consider the case with two identical DTM operators, who have
the same initial number of subscribers, subscription fee κ, unit cost c,
and subscription revenue per user β. We can formulate their competi-
tion for subscribers as a Bertrand competition, where they will propose
the same operation fee θ̂ such that P (θ̂) = P0 (i.e., both of them cannot
gain any profit from deploying such a DTM) at the equilibrium. This
also explains why there is only one operator (i.e., CMHK) that deploys
a DTM among all the operators in Hong Kong.
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Fig. 5. The mobile operator’s profit gain of proposing a DTM P (θ∗)−P0

versus the operator’s initial market share α for different subscription fee
β.
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Fig. 6. The mobile operator’s profit gain of proposing a DTM P (θ∗)−P0

versus the data quota Q for different α.

We can also see that the profit increment is decreasing in
the operator’s initial market share α, such that there exists
a threshold value α̃ (as defined in (32)), below which the
operator is willing to propose a DTM. This is because when
the initial market share is lower, the operator can attract
more users when proposing a DTM. However, if it cannot
attract many users, the operator will not benefit because
there is maintenance cost for the DTM. For example, when
β = 400, proposing the DTM always reduce the profit.
When β = 600, the operator will propose a DTM when
α < 0.52.

In Fig. 6, we plot the profit increment P (θ∗)−P0 against
the data quota Q for different initial market share α. In the
simulation settings, we choose β = 500, Dh = 25, Dl = 15,
c = 20, e = 50, and Cb = 100. From Fig. 6, we can see
that when the data quota is small (Q < 20), the operator’s
profit increment P (θ∗)− P0 is non-decreasing in Q. On the
other hand, when the data quota is large (Q > 20), the
operator’s profit increment P (θ∗)−P0 is decreasing in Q. It
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Fig. 7. The mobile operator’s profit gain of proposing a DTM P (θ∗)−P0

versus the mean value of high demand Dh for different initial market
share α.
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Fig. 8. The mobile operator’s profit gain of proposing a DTM P (θ∗)−P0

versus the switching cost parameter e for different initial market share α.

is because increasing data quota will make the sellers more
willing to trade but the buyers less willing to trade. When
Dh − Q > Q − Dl, the sellers’ average selling quantity is
less than buyers’ average buying quantity, hence a larger
Q will lead to more trades and increase the operator’s
revenue. On the other hand, when Dh − Q < Q − Dl,
the sellers’ average selling quantity is more than buyers’
average buying quantity, hence a larger Q will lead to less
trades and decrease the operator’s revenue.

To understand how the user demand affects the DTM
operator, we plot the DTM operator’s profit increment
P (θ∗) − P0 against the mean value of high demand Dh in
Fig. 7. We can see that when the high demand increases
beyond the data plan quota Q = 20, the operator’s profit
increment increases. It is because when the high demand is
larger than quotaQ, there will be more trades, so more users
are willing to switch to the DTM operator, which increases
its profit.

In Fig. 8, we plot the DTM operator’s profit increment
P (θ∗) − P0 against the switching cost parameter e for
different initial market share α. In the simulation settings,
we choose usage fee κ = 60, β = 500, Dh = 25, Dl = 15,
c = 20, Q = 20, and Cb = 100. From Fig. 8, we can see
that the operator’s profit increment is piecewise constant
with respect to e and there is a sharp drop at e = κ. It is
because when the switching cost parameter e is larger than
the overage usage fee κ, no user will change an operator,
and then the DTM’s profit only comes from its original
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Fig. 9. The mobile operator’s optimal operation fee θ∗ versus the opera-
tor’s initial market share α for different subscription fee β.
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user’s overage usage fee and operation fee, which is not
related to the switching cost. Notice that e is the switching
cost parameter, and the switching cost of a user equals to
the switching cost parameter multiplied by its usage, so that
the user’s usage and trading decisions is not related to the
switching cost parameter when it is smaller than the overage
usage fee κ.

6.2 The Impact of Parameters on Operation Fee

In Fig. 9, we plot the optimal operation fee θ∗ against the
operator’s initial market share α for different subscription
fee β. We observe that θ∗ is increasing in both β and α. It
is because when the benefit of attracting one more user is
higher or when proposing the DTM can attract more users,
the operator is more willing to decrease its operation fee to
better promote the DTM.

6.3 The Impact of Parameters on Social Welfare

We define the total equilibrium user payoff Wu as the sum
of all DTM users’ payoffs, where Wu ,

∑I
i=1 Ui,1

(
ri(x

∗)
)
.

We define the equilibrium social welfareWt as the sum of all
DTM users’ payoffs plus the maximal revenue of the DTM
operator (i.e., CMHK), where Wt ,

∑I
i=1 Ui,1

(
ri(x

∗)
)

+
P (θ∗).

In Fig. 10, we show that both the total equilibrium user
payoff Wu and the equilibrium social welfare Wt decrease
with the operation fee θ. This is because when θ is larger,
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users need to pay more to the DTM operator, which results
in fewer transactions. Hence, an operation fee that is too
large hurts both the users’ payoffs and the DTM operator’s
revenue.

6.4 Mobile Data Trading Market’s Benefit to Users

We evaluate the users’ benefits by calculating the gap Gi
between DTM user i’s payoffs with and without DTM.

In Fig. 11, we plot the payoff increment Gi against the
probability of high demand pi, high demand di,h, and low
demand di,l. We show that the users with small pi and large
pi will benefit from trading in the market, while those with
medium pi will not benefit. This is because the users with
medium pi are the most uncertain about whether their usage
will exceed quota or not, and hence will not trade data in
the market. On the other hand, the users who have less
uncertainty about their usage (i.e., the users whose pi are
close to zero or one) will benefit a lot through trading.

In addition, the high pi (i.e., pi > 0.75) users will benefit
more if they have a larger di,h, and the low pi (i.e., pi < 0.25)
users will benefit more if they have a smaller di,l. This is
because the users will benefit more when they trade a larger
quantity. Based on Theorem 1, a high pi user will be a buyer
and propose a demand of di,h −Q, while a low pi user will
be a seller and propose a supply of Q− di,l.

7 CONCLUSION

In this paper, we studied the users’ choices of operators and
their trading behavior in a data trading market (DTM). Our
analysis revealed the following interesting insights. First, all
the users who want to trade should propose the same price
such that the total demand matches the total supply. Second,
the non-DTM users who are certain about their usages can
benefit more from data trading and will switch to the DTM
operator. Third, it is beneficial for a small operator with
a low initial market share to propose a DTM to attract
subscribers, which is in line with the situation in Hong
Kong.

In the future, we would like to understand the counter-
measure of other operators in the market competition. Apart
from theoretical analysis, we would also conduct a market
survey to understand the users’ realistic responses to market
dynamics.
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APPENDIX A
DETAILS OF THE MARKET MECHANISM

The detailed market mechanism is shown in Algorithm 1.
To help explain the transaction rules, we first define the

following sets for every user before introducing Algorithm
1.

LSi=


{(aj , πj , qj) : aj = s and πj<πi,

∀j 6= i, j∈I1}, if ai=s,

{(aj , πj , qj) : aj = s and πj≤πi,
∀j 6= i, j∈I1}, if ai=b.

(33)

If user i is a seller, then set LSi refers to the set of sellers,
who have higher priorities than user i. If user i is a buyer,
then set LSi refers to the set of sellers who are feasible to be
matched with user i.

HBi=


{(aj , πj , qj) : aj = b and πj≥πi,

∀j 6= i, j∈I1}, if ai=s,

{(aj , πj , qj) : aj = b and πj>πi,
∀j 6= i, j∈I1}, if ai=b.

(34)

If user i is a buyer, then set HBi refers to the set of buyers
who have higher priorities than user i. If user i is a seller,
then set LSi refers to the set of buyers who are feasible to
be matched with user i.

Ei={(aj , πj , qj):aj=ai and πj=πi,∀j 6= i, j∈I1}. (35)

Set Ei refers to the set of users who have the same role and
the same priority as user i.

ESi={(aj , πj , qj) : aj=ai , πj=πi,

and qj < qi,∀j 6= i, j∈I1}. (36)

Set ESi refers to the set of users who have the same role and
the same priority as user i, and propose smaller quantity
than user i.

ẼSi={(aj , πj , qj) : aj=ai , πj=πi,

and qj ≤

∑
xk∈LSi

qk−
∑

xk∈HBi

qk−
∑

xk∈ESj

qk

|Ei| − |ESj |
,

∀j 6= i, j∈I1}. (37)

Set ẼSi is a subset of ESi. It refers to the set of users who
have the same role and the same priority as user i, and
propose a very small quantity. Every bid in ẼSi is with small
enough quantity such that all the users in ESi who propose
smaller quantities than it can be satisfied.

If the accumulated buying quantity proposed by the
buyers within the set HBi is smaller than the accumu-
lated selling quantity proposed by the sellers within the
set LSi, then a seller i’s supply cannot be cleared. On the
other hand, if

∑
xj∈HBi

qj ≥
∑

xj∈LSi
qj , then the seller

i will equally share the demands with the sellers of the
same priority (i.e., those in set Ei) [11], [30]. However, if
the equal share is larger than the seller i’s supply (i.e.,

Algorithm 1: Mobile Data Trading Market Alloca-
tion Mechanism
1 for i in I do
2 User i submit his bid xi = (ai, πi, qi) to the DTM

operator.

3 for i in I do
4 if ai = s then
5 User i can get ri(xi,x−i) allocated, where

ri(xi,x−i) =

min

qi,
∑

xj∈HBi

qj−
∑

xj∈LSi

qj−
∑

xj∈ẼSi

qj

|Ei| − |ẼSi|

 .

(38)

6 else if ai = b then
7 User i can get ri(xi,x−i) allocated, where

ri(xi,x−i) =

min

qi,
∑

xj∈LSi

qj−
∑

xj∈HBi

qj−
∑

xj∈ẼSi

qj

|Ei| − |ẼSi|

 .

(39)

8 Calculate the operator’s income of gap between the
selling and buying prices as follows:

Pgap =
∑

i∈{j∈I1:aj=s}

πiri(x)−
∑

i∈{j∈I1:aj=b}

πiri(x).

(40)

(
∑

xj∈HBi
qj−

∑
xj∈LSi

qj)/|Ei| > qi for some seller i), then
his ri(xi,x−i) = qi, and the “burden left” is averaged over
the other sellers with the same price. We will continue with
this procedure until each seller j that proposes the same
price has an rj(xj ,x−j) ≤ qj . The same rule also applies
when two buyers propose the same price.

Based on the transaction rule, among the sellers or
buyers proposing the same price, the users who propose a
smaller quantity will get all their quantity transacted before
the users who propose a higher quantity. As an example
in Fig. 1, consider three buyers, 1, 2, and 3, proposing the
same buying price of $14, where q1 = 3 GB, q2 = 4 GB, and
q3 = 8 GB. Hence their total demand is 15 GB as shown on
the second row, but there are only 5 GB left in seller’s market
(with the selling price of $13) that can be allocated to them.
According to the transaction rule in (38) and (39), they will
equally divide the 5 GB, i.e., r1(x) = r2(x) = r3(x) = 5/3
GB. Consider a different scenario where the three buyers’
demands are q1 = 1 GB, q2 = 6 GB, and q3 = 8 GB, then
the allocations are r1(x) = 1 GB and r2(x) = r3(x) = 2
GB. This is because with the result under the equal division
(5/3) exceeds user 1’s demand, hence the exceeded part is
equally shared by the remaining two buyers. �
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APPENDIX B
PROOF OF PROPOSITION 1
Given a strategy profile x, by (5) and (6), we can obtain
the corresponding transaction selling price π̂s and trans-
action buying price π̂b. We first study the user i’s optimal
decision of quantity, given his role and price, and other
users’ strategies. From (7), we can find the optimal proposed
quantity qBRi (x−i) for a user given his price πBRi (x−i) and
aBRi (x−i) as

qBRi (x−i)


= di,h−Q, if pi≥ πBR

i (x−i)
κ ,

= Q−di,l, if pi≤ πBR
i (x−i)−θ

κ ,

0, if πBR
i (x−i)−θ

κ <pi<
πBR
i (x−i)

κ .

(41)

Then we study the decision of price and role. According
to the utility function in (7) and the transaction rule in (38)
and (39), the low pi users will choose to be a seller and the
high pi users will choose to be a buyer, i.e.,

aBRi (x−i)


= b, if pi≥

πBRi (x−i)

κ
,

= s, if pi≤
πBRi (x−i)−θ

κ
.

(42)

Due to the discontinuity in the seller’s utility function
on the first line of (7), the utility Ui,1(ri(xi,x−i)) for a seller
first increases in πi when πi ∈ [0, π̂s − ε), then has one
or two discontinuous decreases (i.e., discontinuous jump
downwards) in πi when πi ∈ [π̂s−ε, π̂s+ε]21, and then stays
flat in πi when πi ∈ (π̂s + ε, κ]. Due to the equal division
rule, the sellers with smaller selling quantity Q − di,l (the
sellers whose supplies satisfy the condition on Line 1 in (7))
will be satisfied first, which means that their supplies will be
cleared by proposing a selling price π̂s. Hence, the unique
discontinuous decrease is between the point πi = π̂s and
the point πi = π̂s + ε, i.e.,

Ui,1(ri((a
BR
i , π̂s−ε, qBRi ),x−i))<Ui,1(ri((a

BR
i , π̂s, q

BR
i ),x−i)),

Ui,1(ri((a
BR
i , π̂s, q

BR
i ),x−i))>Ui,1(ri((a

BR
i , π̂s+ε, q

BR
i ),x−i)).

In this case, the optimal price is at the transaction selling
price π̂s. On the other hand, the sellers with a larger selling
quantity Q − di,l (the sellers whose supplies satisfy the
condition on Line 2 in (7)) can decrease their price by a
small amount ε to beat the sellers who propose π̂s and fully
get their quantity transacted. In other words, there is also a
discontinuous decrease between the point πi = π̂s − ε and
the point πi = π̂s, i.e.,

Ui,1(ri((a
BR
i , π̂s− ε, qBRi ),x−i))>Ui,1(ri((a

BR
i , π̂s, q

BR
i ),x−i)),

Ui,1(ri((a
BR
i , π̂s, q

BR
i ),x−i))>Ui,1(ri((a

BR
i , π̂s+ε, q

BR
i ),x−i)).

In this case, the optimal price is at π̂s − ε. By the above
analysis, we obtain the results on the first and second lines
of (7).

Similarly, due to the discontinuity in the buyer’s
utility function on the second line of (7), the utility
Ui,1(ri(xi,x−i)) for a buyer is first flat in πi when πi ∈

21. There is a discontinuous decrease in utility between πi = π̂s and
πi = π̂s+ε, but we still need to discuss whether there is a discontinuous
decrease between πi = π̂s − ε and πi = π̂s.

[0, π̂b − ε), then has one or two discontinuous increases in
πi when πi ∈ [π̂b− ε, π̂b + ε], and then decreases in πi when
πi ∈ (π̂b + ε, κ]. By a similar analysis, we can show that the
buyers with smaller buying quantity dh,l − Q (the buyers
whose demands satisfy the condition on Line 3 in (7)) have
an optimal price at π̂b, and the buyers with larger buying
quantity dh,l − Q (the buyers whose demands satisfy the
condition on Line 4 in (7)) have an optimal price at π̂b + ε.
Hence, we obtain the results on the third and fourth lines of
(7).

Finally, for the users with type (π̂s − θ)/κ < pi < π̂b/κ,
the utilityUi((ai, πi, qBRi ),x−i) stays flat in πi, so we choose
πBRi (x−i) = 0.

By the above analysis, we obtain the results in (7). �

APPENDIX C
PROOF OF LEMMA 1
In this proof, we do not consider the users who are not
willing to trade. In other words, we only consider the user
i ∈ Ĩ = {j : j ∈ I, rj(x) > 0}. First, we show that the
following lemma holds at the equilibrium.

Lemma 3. For any two sellers or two buyers proposing the same
price, both of them can get all their quantity transacted. That is, if
a∗j = a∗k and π∗j = π∗k, we have rj(x∗) = q∗j and rk(x∗) = q∗k.

Proof. We prove the lemma by contradiction. Assume that
there exist j and k such that

a∗j = a∗k = s, π∗j = π∗k, rj(x
∗) < q∗j ,

then based on (3), we have

Uj,1(rj((s, π
∗
j , q
∗
j ),x∗−j))

= (π∗j − θ)rj(x∗) + piκ(Qj − rj((s, π∗j , q∗j )− dj,h), (43)

and

Uj,1(rj((s, π
∗
j−ε, q∗j ),x∗−j)) =

(π∗j−ε−θ) min{q∗j , rj(x∗)+rk(x∗)}
+ piκ(Qj −min{q∗j , rj(x∗) + rk(x∗)} − dj,h),

(44)

where ε is an extremely small positive number.
According to (7), we have piκ < π∗i−θ for a seller. Hence,

when ε→ 0, we have

Uj,1(rj((s, π
∗
j − ε, q∗j ),x∗−j)) > Uj,1(rj((s, π

∗
j , q
∗
j ),x∗−j)),

which contradicts with (8) in Definition 5.
The buyer’s case is similar to seller’s case, hence we omit

the proof here.

Next we prove that Lemma 4 also holds at the equilib-
rium.

Lemma 4. Any two users j and k who want to trade will propose
the same price, i.e.,

π∗j = π∗k, ∀j, k ∈ Ĩ. (45)

Proof. We prove the lemma by contradiction. We also start
with the sellers’ case by proving

π∗j = π∗k, ∀j, k ∈ {i : i ∈ I, a∗i = s}. (46)
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Assume that there exist j and k such that

a∗j = a∗k = s, π∗j < π∗k,

then we know that rj(x∗) = q∗j , and have

Uj,1(rj((s, π
∗
j , q
∗
j ),x∗−j)) = (π∗j−θ)q∗j + piκ(Qj−q∗j−dj,h)

and

Uj,1(rj((s, π
∗
j+ε, q

∗
j ),x∗−j))=(π∗j+ε−θ)q∗j+piκ(Qj−q∗j−dj,h).

Hence, we have

Uj,1(rj((s, π
∗
j + ε, q∗j ),x∗−j)) > Uj,1(rj((s, π

∗
j , q
∗
j ),x∗−j)),

which contradicts with (8) in Definition 5.
Similarly, we know that

π∗j = π∗k, ∀j, k ∈ {i : i ∈ I, a∗i = b}. (47)

Next, we prove that π∗j = π∗k, ∀j, k ∈ I , also by
contradiction. When π∗j < π∗k, a

∗
j = s, and a∗k = b, we

have

Uj,1(rj((s, π
∗
j + ε, q∗j ),x∗−j)) > Uj,1(rj((s, π

∗
j , q
∗
j ),x∗−j))

and

Uj,1(rk((b, π∗k + ε, q∗k),x∗−k)) > Uj,1(rk((b, π∗k, q
∗
k),x∗−k)),

which contradicts with (8) in Definition 5.

By Lemma 3, we know that all users can get their
proposed quantity fully transacted, which will only happen
when the total proposed buying quantity equals the total
proposed selling quantity. By (7), we know that the users
with type pi < (π̂(n, θ) − θ)/κ will trade as a seller, and
the users with type pi > π̂(n, θ)/κ will trade as a buyer.
By Lemma 4, we know that all the buyers and sellers will
propose the same price. Combining the above analysis, we
obtain the result in (9) and (10). �

APPENDIX D
PROOF OF THEOREM 1
First, by (7), (9), and (10), we can obtain the results in Table
2. Then we try to obtain π̂(n, θ) in Table 2. According to (10),
we know that the proportion of sellers is (π̂(n, θ)−θ)/κ and
the proportion of buyers is 1 − π̂(n, θ)/κ. Based on (7), we
know that every seller proposes a quantity of Qi − di,l and
every buyer proposes a quantity of di,h − Qi. Hence, the
total selling quantity

Qs =
∑

i∈{j:pj≤PL(π̂(n,θ))}

(Qi − di,l), (48)

and the total buying quantity

Qb =
∑

i∈{j:pj≥PH(π̂(n,θ))}

(di,h −Qi). (49)

Based on (9), we know that the total selling quantity equals
to the total buying quantity, i.e.,

Qs = Qb, (50)

which is equivalent to (13). �

APPENDIX E
PROOF OF PROPOSITION 2
First, for the users with oi = 1, according to (7) and (15), we
have Ui,1(ri((s, 0, 0),x−i)) > Ui,0 for all x−i. Hence, we
have

nBRi (n−i) = 1 (51)

for all users with oi = 1.
Next, for the users with oi = 0, according to Theorem 1, a

user i with pi ∈ [0, PL(π̂(n, θ))]∪ [PH(π̂(n), θ), 1] will trade
if he switches to the DTM operator. According to (7) and
(15), the corresponding utility Ui,1(ri(x

∗(1,n−i))) > Ui,0
only when22

pi<
(π̂(n, θ)−θ)(Q−Dl)− e

2 (Dh+Dl)

κ(Q−Dl)

or pi>
π̂(n, θ)(Dh−Q)+ e

2 (Dh+Dl)

κ(Dh−Q)
. (52)

For the other users with oi = 0, the utility Ui,0 is higher
than Ui,1(ri(x

∗(1,n−i))). Hence, by combining the two, we
can obtain the results in Proposition 2. �

APPENDIX F
PROOF OF LEMMA 2
First, according to the analysis in Theorem 1, all the sellers
and buyers will propose a same market price π̂(n∗(θ), θ)
satisfying (22). By substituting (19) and (20) into (18), we
can obtain (21).

Then, since the LHS of (22) is increasing in π̂(n∗(θ), θ)
and the RHS of (22) is decreasing in π̂(n∗(θ), θ), we can see
that there exists a unique solution for (22).

Next, if both the DTM users’ pi for i ∈ I1 and the non-
DTM users’ pi for i ∈ I\I1 follow independent uniform
distributions in the interval [0, 1], then equation (22) can be
rewritten as

α
π̂(n∗(θ), θ)− θ

κ
(Q−Dl)

+ (1−α)
(π̂(n∗(θ), θ)−θ)(Q−Dl)− 1

2e(Dh+Dl)

κ(Q−Dl)
(Q−Dl)

= α(1− π̂(n∗(θ), θ)

κ
)(Dh −Q)

+ (1−α)(1−
π̂(n∗(θ), θ)(Dh−Q)+ 1

2e(Dh+Dl)

κ(Dh −Q)
)(Dh−Q).

(53)

By solving (53), we obtain the results in (23). �

22. Since the total number of users I → ∞, we can approximate
π̂(n, θ) = π̂((n̂i,n−i), θ) ∀n̂i ∈ N for any n−i, i ∈ I.


