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Abstract—We study the effect of anisotropic radiation on
wireless network complexity. To this end, we model a wireless
network as a random geometric graph where nodes have random
antenna orientations as well as random positions, and communi-
cation is affected by Rayleigh fading. Complexity is quantified by
computing the Shannon entropy of the underlying graph model.
We use this formalism to develop analytic scaling results that
describe how complexity can be controlled by varying key system
parameters such as the transmit power and the directivity of
transmissions in large-scale networks. Our results point to striking
contrasts between power scaling and directivity scaling in the large
connection range regime.

Index Terms—Graph entropy, random geometric graphs, direc-
tivity, network topology.

I. INTRODUCTION

In an age of shrinking cell sizes, growing connection den-
sities, machine-type applications and the Internet of Things,
network complexity is becoming a topic of increasing interest.
A fundamental understanding of complexity in this context
can help engineers to predict network performance, network
dynamics and devise management and transmission protocols
that are scalable to larger systems. Of course, complexity can
mean many things. In this contribution, we study network
complexity by focusing on the topology of a wireless net-
work. We begin from the perspective that node positions and
prevailing channel conditions are unknown a priori, which
inherently induces randomness in the network topology. Hence,
our focus in this paper is on characterizing the uncertainty
of this topology under certain assumptions on the underlying
statistical processes that model the node locations and fading
conditions. This uncertainty inherently relates to the complexity
of the network.

Topological uncertainty has been studied in a number of
scientific fields for many years through the mathematical for-
malism of graph entropy [1]. Fascinating correspondences have
been drawn between entropy maximising edge distributions and
quantum mechanical systems [2]. Many different notions of
graph entropy have been developed under the collective aim of
better understanding properties of complex networks [3]. Until
recently, however, research has been focused on non-spatial
networks, that is to say networks in which the likelihood of a
connection between two nodes existing is not a function of the

distance between them (e.g., Erdős-Rényi (ER) graphs). Yet,
it is increasingly becoming important to recognize the spatial
dependences in networks, and wireless systems exhibit perhaps
the most well understood spatial characteristics of engineered
systems today. About ten years ago, a couple of early studies of
network organization identified the importance of topological
uncertainty [4], [5], but the frameworks that were employed
in those investigations did not lend themselves to quantitative
analysis. Very recently, two analytic studies were published that
give the first accounts of the scaling properties of topological
uncertainty in wireless ad hoc networks [6], [7]. Apart from
these examples, this topic has been left relatively unexplored.

From a practical perspective, the availability of topology
information at each node is critical [8]. This information
provides a view of connectivity at a fundamental level, but
it can also be exploited in practice to choose modulation,
coding, and routing protocols [9], [10]. Indeed, in topology-
based routing protocols for mobile ad hoc networks, nodes
collect topology information to make routing decisions [11].

In this contribution, we extend the work reported in [6], [7]
to systems that employ directive transmissions. Our study is
motivated by the increasing focus on the use of millimeter wave
bands in future wireless systems [12]. We model a wireless
network as a random geometric graph (RGG) and quantify
the network complexity by studying the Shannon entropy of
the underlying graph model. In our network model, nodes
have random antenna orientations as well as random spatial
positions, and communication links are affected by Rayleigh
fading. We examine the behavior of the RGG entropy as the
number of nodes n in the network grows large while the
typical connection range and directivity vary monotonically
with n. Our analysis is conducted for two different antenna
radiation patterns: a cardioid and a sectorized pattern. The main
contributions of this paper are the development of four lemmas
that quantify various scaling conditions that must be met for
the network entropy to tend to a finite, positive limit. These
results help us to understand how system parameters such as
transmit power and antenna gain affect complexity in large-
scale networks.

The structure of the paper is as follows. In section II, we
explain the details of the network, the pairwise connection



model, and the antenna gain model considered in this work.
We quantify complexity for wireless networks in section III
by analyzing the Shannon entropy of RGGs considering two
different radiation patterns. In sections IV and V, we present
the aforementioned scaling lemmas. Finally, in section VI, we
present our conclusions.

Notation: We use E[·] to denote the expectation operator.
Given two nonnegative functions defined on some subset of
the real numbers, we say that f(x) = O(g(x)) if and only if
there exist constants x1, c1 > 0 such that f(x) ≤ c1g(x) for
all x > x1. Moreover, we say that f(x) = Ω(g(x)) if and only
if there exist constants x2, c2 > 0 such that f(x) ≥ c2g(x)
for all x > x2. The notation f(x) = o(g(x)) implies that
f(x)/g(x)→ 0 in the appropriate limit. The Wm(x) function
is the lower branch (−1/e ≤ x < 0 and Wm ≤ −1) of the
solution to x = W expW .

II. SYSTEM MODEL

A. Network Model

We consider a network of n nodes representing wireless
devices located randomly in a two-dimensional space K2 (with
volume V). Each node is equipped with a directional antenna
that is randomly oriented in the interval [0, 2π). The locations
of the nodes, r1, r2, . . . , rn, are independent and identically
distributed in V and are modelled as a binomial point process
(BPP). Although some of the results disclosed below can be
applied to general inhomogeneous processes, it will be assumed
the BPP is homogeneous throughout this paper.

We model a wireless network as an instance of a soft
undirected RGG [13]. The original hard RGG model, also
called the unit disk or hard connection model, captures the
distance dependence and randomness in the connectivity of
the nodes in a spatial network [14]. The soft RGG model is
employed here to enable statistical fading effects in the channel
to be accounted for. Any two nodes are directly connected
if they satisfy a specific pair connection criterion (outlined
below). The set of all possible graphs formed from every
combination of pairwise connections is denoted by G, where
|G| = 2n(n−1)/2.

B. Point-to-Point Connections

Two nodes, i and j, are directly connected with probability
p(ri,j) := pi,j , where ri,j = ‖ri−rj‖ is the Euclidean distance
between i and j. In our model, nodes have an orientation as
well as a position and their ability to communicate depends
on both of these factors. We define the connection probability
between transmitting node i and receiving node j as the
complement of the outage probability with respect to a mutual
information threshold I . For a single-input single-output (SISO)
transmission in a Rayleigh fading channel, this probability is
given by

pi,j = P(log2(1 + SNRi,j |hi,j |2) ≥ I) (1)

where SNRi,j denotes the average received signal-to-noise ratio
and hi,j is the channel transfer coefficient with E[|h|2] = 1.

Assuming identical lossless antennas, we can employ the Friis
transmission formula to obtain the relation

SNRi,j ∝ gT (φij)gR(φji)r
−η (2)

where gT and gR model the gains of the transmit and receive
antennas, respectively, r is the distance between nodes i and
j, and η is the path loss exponent (typically η ≥ 2). The argu-
ments of the gain functions φij and φji signify the orientations
of nodes i and j relative to each other. That is to say, these
angles encompass the individual antenna orientations in the
plane as well as the observation angles between the transmitter
and the receiver. For the remainder of the paper, we assume
gT = gR, and we enforce the normalization∫ 2π

0

g(φ) dφ = 2π. (3)

Based on the Rayleigh fading and Friis transmission models,
we see that the pair connection probability for nodes i and j
can be succinctly written as

pi,j = exp

(
−(r/ri)

η

g(φij)g(φji)

)
(4)

where ri is the typical isotropic connection range. In the case
of anisotropic radiation, the typical connection range r0 can be
defined as

r0 = ri (g(φij)g(φji))
1
η . (5)

Note that in the limit η →∞, the connectivity between nodes
is no longer probabilistic and we recover the popular hard
connection model where connections have a fixed range equal
to r0.

C. Antenna Gain Functions

The gain or directivity of an antenna is the ratio of the
radiation intensity in a given direction to the average of
the radiation intensity over all directions [15]. Quite often,
directivity and gain are used interchangeably. The difference
is that directivity neglects antenna losses. Since these losses in
most classes of antennas are usually quite small, the directivity
and antenna gain will be considered approximately equal in
this paper. Here, we examine some practical functions for g
that represent realistic propagation models.

1) Cardioid Pattern: The cardioid pattern is a good ap-
proximation to the wide-angle unidirectional radiation pattern
exhibited by a patch antenna in a plane [15]. The ε-cardioid
gain function is defined as

g(φ) = 1 + ε cosφ, 0 ≤ φ ≤ 2π (6)

where ε ∈ [0, 1] is a parameter that defines the degree of de-
formation with respect to the isotropic case (ε = 0). Radiation
patterns with different values of ε are shown in Fig. 1.



Fig. 1. Polar plot of the cardioid radiation pattern for different values of ε.

2) Sectorized Pattern: Many practical antennas are designed
to exhibit sectorized intensity patterns. For example, antenna
arrays consisting of half-wave dipoles separated by half of a
wavelength in one direction radiate along a main lobe with
several small side lobes [15]. We can approximate the gain
function for a sectorized antenna in a very general manner by
defining

g(φ) =

{
νλ cosρ(λφ), −π

2λ ≤ φ ≤
π
2λ

0, otherwise
(7)

where λ ≥ 1 defines the directivity of the beam and ρ ∈ (0, 1)
signifies the degree of sectorization. The normalization constant
is

ν =
2
√
πΓ
(
1 + ρ

2

)
Γ
(

1+ρ
2

) . (8)

Sectorized antennas are used extensively to increase the
capacity of wireless systems as they are ideal for covering
specific areas over a prescribed angle. If ρ → 1, in (7) we
recover the gain function of an end-fire array, a very high di-
rectional antenna ideal for point-to-point communications [15].
To better understand the roles of parameters {ρ, λ}, in Fig. 2
we have plotted the gain function of a sectorized antenna for
different values of these parameters. A large λ produces a
highly directional gain function, and ρ ' 0 yields an isotropic
sectorized pattern with larger ρ giving a smoother function.
From these observations, we expect that λ will be the main
parameter affecting topological uncertainty in our network
model.

III. NETWORK COMPLEXITY (GRAPH ENTROPY)

Uncertainty is naturally quantified using the notion of en-
tropy. To understand the complexity of networks, a different
number of entropy measures have been introduced [16]–[19].
We quantify the complexity of a wireless network by quanti-
fying the Shannon entropy of the underlying RGG ensemble,

Fig. 2. Polar plot of the sectorized radiation pattern for different values of λ
and ρ.

which is defined as the logarithm of the number of typical
networks in the ensemble. The entropy of a graph G can be
written as

H(G) = E[− log2 P(G)] = −
∑
G∈G

P(G) log2 P(G). (9)

The following upper bound on H(G) was derived in [6]:

h(n) :=

(
n

2

)
H2(p) ≥ H(G) (10)

where

H2(p) = −p log2 p− (1− p) log2(1− p) (11)

is the binary entropy function and p is the average pairwise
connection probability. In [6], p was obtained by averaging
the pair connection function over the pair distance distribution.
Here, we must also average over the transmitter and receiver
orientations. This effectively manifests as an independent av-
eraging over the angles φij and φji:

p =

∫∫∫
pi,jfr(r)fij(φij)fji(φji) dr dφij dφji (12)

where fr, fij , and fji are the density functions in the respective
variables. This simple integral somewhat hides a subtlety that
is worthy of note. Averaging over the distribution fr inherently
accounts for pairwise rotational symmetry (i.e., orbital symme-
try). As a result, the dφij and dφji integrals act to average
over the transmitter and receiver orientations separately (i.e.,
spin averaging). Thus, (12) is a slight abuse of notation given
the original definitions of the gain function arguments stated in
section II-B, but mathematically it is entirely correct.

Expressions for the pair distance density fr exist for simple
bounding geometries and homogeneous node placement. The
interested reader is referred to [20] for further information.
For now, we refrain from defining a specific geometry, and in
fact most of the ensuing analysis will apply for fairly general
geometries. Regarding the orientation distributions, we assume
that the relative orientations are uniform in an interval. Hence,
the orientation density functions, which we assume to be equal
(i.e., fij = fji), are given by

fij(φ) =

{
1
∆ ,

−∆
2 ≤ φ ≤

∆
2

0, otherwise.
(13)

For the cardioid pattern, ∆ = 2π. For the sectorized pattern,
∆ = π/λ. Note that this implies the model considered for the
sectorized pattern is one where nodes perform beam steering
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Fig. 3. Entropy of an RGG with n = 5 nodes with isotropic radiation. Solid
lines: upper bound h(n). Dashed lines: numerical simulations for H(G).

to a coarse degree when attempting to communicate. That is,
nodes vaguely orient their transmissions toward each other, but
the exact orientation is still random. This is a very practical
model for, e.g., future millimeter wave networks.

A. Numerical Results

The standard case of isotropic radiation was studied in [6].
In that work, scaling laws were derived that link the typical
isotropic connection range ri and the number of nodes n to
the entropy bound h(n). The results of [6] are reproduced in
Fig. 3 for convenience and to provide a benchmark for the
anisotropic analysis detailed below.

In Figs. 4 and 5, we begin to explore the effect that
anisotropic radiation has on entropy. Here, we plot the RGG
entropy H(G) and the entropy bound h(n) against the typical
isotropic connection range ri for different path loss exponents
η = 2, 3, 4,∞. We consider a network with n = 5 nodes
confined within a unit square in R2. To produce these figures,
p in (12) is obtained by averaging over all possible orientations
as well as the pair distance. These results offer some interesting
observations. The first point to note is that the bound is
relatively tight, particularly for soft connection functions (finite
path loss values). Furthermore, we see that the uncertainty in
the network topology decreases as ri → 0 and ri → ∞ .
Finally, the rate of decay of entropy is higher for an antenna
with a more directional beam (Fig. 5), compared to an antenna
with a more isotropic radiation pattern (Fig. 4).

B. A Note on Entropy Growth

Analytically, we can deduce from (10) that the bound grows
like O(n2) if all other system parameters are held constant. This
agrees with intuition since the addition of a node to the network
increases the number of fading links (by one less than the total
number of nodes), which will in turn increase the uncertainty
in the network topology. From a fundamental perspective,
unbounded network complexity may be undesirable. To lend
an operational interpretation for wireless networks, consider
the unchecked evolution of the Internet of Things, where mesh
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Fig. 4. Entropy of an RGG with n = 5 nodes and cardioid radiation patterns.
H(G) is expressed in bits. The directivity parameter is ε = 1. Solid lines:
upper bound h(n). Dashed lines: numerical simulations for H(G).
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Fig. 5. Entropy of an RGG with n = 5 nodes equipped with sectorized
antennas. H(G) is expressed in bits. The directivity parameter is λ = 5 and
the degree of sectorization is ρ = 0.5. Solid lines: upper bound h(n). Dashed
lines: numerical simulations for H(G).

topologies are employed for reliability and coverage purposes.
With node densities set to exceed one connection per square
meter in the not-too-distant future, it is easy to imagine the case
where complexity even on a local scale becomes unmanageable.
In this context, the entropy of the network ensemble would
define the number of bits needed to store the network topology
(or a portion thereof) or indeed to convey this information to
other nodes in the network. Without mitigating entropy growth
in such evolving networks, huge operational problems would
soon be encountered. This postulate motivates our investigation
of the scaling behavior of entropy with respect to system
properties such as the typical connection range and directivity.

IV. SMALL TYPICAL ISOTROPIC CONNECTION RANGE

The typical isotropic connection range ri depends on the
signal power, the transmission wavelength and the power of
the long-time average background noise at the receiver. For
instance, if we employ a simplified path loss model [21], it is



straightforward to show that ri ∝ P
1/η
T . Thus, ri is a crucial

engineering parameter that can be used to control network
entropy.

Our goal here is to develop scaling laws that link ri, the
directivity parameters {ε, λ}, and the number of nodes n to
the entropy bound h(n) as ri → 0. In this scenario entropy
tends to zero, which in the limit corresponds to the case of a
completely disconnected network. Hence, it is of fundamental
interest to ascertain the conditions under which such a scenario
would (or would not) occur.

To make progress, we must calculate p in (12), which is done
by first integrating over the pair distance r and subsequently the
angles φij and φji. As mentioned above, particular bounding
regions and BPP intensities give rise to specific expressions for
fr. However, if K2 is a compact, convex set and the nodes are
distributed homogeneously in this region, fr has the following
simple, general form for small r [6]:

fr(r) '
2πr

a

(
1− lr

πa

)
(14)

where a and l are the area and perimeter length of K2. Note that
for a domain with diameter D, we would perform the average
over the pair distance variable by integrating over the finite
interval [0, D]. However, the exponential decay of pi,j coupled
with the small ri assumption allows us to expand this interval to
[0,∞), which leads to a closed form result without significantly
sacrificing accuracy [6]. Finally, noting that fij = fji = 1/∆,
we average over the transmitter and receiver orientation angles
to obtain

p =
1

∆2

2πr2
i

aη
Γ

(
2

η

)(
S2/η[g]

)2
− 1

∆2

2lr3
i

a2η
Γ

(
3

η

)(
S3/η[g]

)2
(15)

where

Sy[g] =

∫ 2π

0

g(φ)y dφ. (16)

Below, we will exploit (15) and (16) to evaluate the entropy
bound (10). We will then derive two lemmas that give con-
ditions on ri and the directivity parameters {ε, λ} that must
be satisfied in order to ensure the graph is not completely
disconnected.

A. Cardioid Pattern
For a cardioid pattern, g is given by (6). Hence, we have

Sy[g] = π (1− ε)y 2F1

(
1

2
,−y; 1;− 2ε

1− ε

)
+ π (1 + ε)

y
2F1

(
1

2
,−y; 1;

2ε

1 + ε

)
(17)

where 2F1(a1, a2; b;x) is the Gauss hypergeometric function.
Combining (15) and (17) and considering the case when ri ' 0,
we can write the binary entropy as

H2(p) =
ur2
i

ln 2

(
2 ln

(
1

ri

)
+ 1− lnu

)
+O(r3

i ln ri) (18)

where

u =
Γ(2/η)

(
S2/η[g]

)2
2πaη

(19)

can be interpreted as the fractional area of a soft ε-cardioid.
Note that for any η > 2, S2/η[g] is monotonically decreasing in
ε and thus so is the entropy bound. Hence, for finite n, network
complexity can be controlled somewhat by varying directivity.

In the large n limit, we can exploit (18) to develop the
following lemma that elucidates the conditions under which
the entropy bound tends to a positive limit as ri → 0.

Lemma 1: As n → ∞, the entropy of a network of nodes
with cardioid radiation patterns in K2 can be bounded away
from zero only if

r2
i ln

(
1

ri

)
= Ω

(
1

n2

)
. (20)

The entropy bound will tend to a limit h(n) → bh > 0 as
n→∞ if

ri(n) = exp

(
1

2
Wm

(
− 2bh ln 2

n(n− 1)u

))
. (21)

Proof: See [6].
Lemma 1 provides interesting insight into the complexity

of networks with nodes that exhibit cardioid-like connection
ranges spatially. It not only describes the scaling behavior of
the typical isotropic connection range ri but also that of the
transmit power. Indeed, to achieve stability in entropy in limit
of large n, the transmit power must scale like

PT ∝ (n2 lnn)−
η
2 . (22)

Also note that the scaling result given above depends upon the
directivity parameter ε through u.

B. Sectorized Pattern

For a sectorized radiation pattern, the typical connection
range r0 is given by

r0 = r̃ cos
ρ
η (λφij) cos

ρ
η (λφji) (23)

where r̃ = ri(νλ)
2
η = maxφij ,φji{r0}. In this case, we have

Sy[g] =

√
πνyλy−1Γ

(
1+ρy

2

)
Γ
(
1 + ρy

2

) . (24)

Combining (15) and (24) and considering the case when r̃ ' 0,
we can write the binary entropy as

H2(p) =
ũr̃2

ln 2

(
2 ln

(
1

r̃

)
+ 1− ln(ũ)

)
+O(r̃3 ln r̃) (25)

where

ũ =
2Γ
(

1
2 + ρ

η

)2

Γ
(

2
η

)
aηΓ

(
1 + ρ

η

)2 (26)

such that ũν
4
η λ

4
η−2/4 is the fractional area of a soft sectorized

lobe.



Taking a similar approach as above, we wish to explore the
scaling properties of entropy when n → ∞ and r̃ → 0. In
contrast to the case of the cardioid, directivity is not limited
(theoretically) for the sectorized pattern. Indeed, λ can grow
without bound. However, we consider fixed λ < ∞ for this
analysis. Expanding (25) near r̃ = 0 leads to the following
result.

Lemma 2: As n → ∞, the entropy of a network of nodes
with sectorized radiation patterns in K2 can be bounded away
from zero only if

r̃2 ln
1

r̃
= Ω

(
1

n2

)
. (27)

The entropy bound will tend to a limit h(n) → bh > 0 as
n→∞ if

r̃(n) = exp

(
1

2
Wm

(
− 2bh ln 2

n(n− 1)ũ

))
. (28)

The form of this lemma is similar to previously reported
results by the authors. Nevertheless, it possesses an important
subtlety. Specifically, scaling of the product riλ2/η is required.
Hence, for very directive transmissions, the typical isotropic
connection range must satisfy ri = o(λ−2/η), or equivalently
PT = o(λ−2), which provides some understanding of how
directivity and connection range (power) can be traded off to
control network complexity.

V. LARGE TYPICAL ISOTROPIC CONNECTION RANGE

We now turn our attention to the case where the typical
isotropic connection range is large with respect to the domain
of the bounding region, i.e., ri � D. In this scenario, we can
expand the exponential in the integrand of (12) to obtain scaling
results.

A. Cardioid Pattern

First, let us focus on the cardioid pattern. Performing the
required integral (i.e., (12)) yields

p = 1− µη
rηi (1− ε2)

+O

(
1

r2η
i

)
(29)

where µm = E[rm]. Using this result to calculate the binary
entropy and extracting the leading term for ri →∞ leads to

H2(p) =
ηµη ln ri

rηi (1− ε2) ln 2
+O

(
1

rηi

)
. (30)

This analysis uncovers the following scaling result.
Lemma 3: As n → ∞, the entropy of a network of nodes

with cardioid radiation patterns in K2 is bounded only if

rηi
ln ri

= Ω(n2). (31)

The entropy bound will tend to a limit h(n) → bh > 0 as
n→∞ if

ri(n) = exp

(
−1

η
Wm

(
−2(1− ε2)bh ln 2

µηn(n− 1)

))
. (32)

This lemma provides a concrete quantitative expression that
we can study to observe the divergent behavior of entropy in
the large ri and n limits. The Wm function diverges (in the
negative direction) as the argument tends to zero from the left.
Hence, if the radiation pattern contains a null (ε = 1), we
see that ri must be infinite for any finite n. Intuitively, we
can reconcile this behavior by recognizing that the null in the
beam pattern will always give rise to uncertainty in pairwise
interactions, regardless of the transmit power. Practically, this
means systems that employ such radiation patterns will yield
high network complexity for large transmit powers.

B. Sectorized Pattern

We conclude with the large connectivity analysis for sector-
ized patterns. For large ri, the average pair connection function
evaluates to

p = 1−
µηΓ

(
1−ρ

2

)2
rηi πν

2λ2Γ
(
1− ρ

2

)2 +O

(
1

r2η
i

)
. (33)

The entropy can be expanded in ri to give

H2(p) =
ηµηΓ

(
1−ρ

2

)2
ln ri

rηi πν
2λ2Γ

(
1− ρ

2

)2
ln 2

+O

(
1

rηi

)
(34)

which leads to thefollowing lemma.
Lemma 4: As n → ∞, the entropy of a network of nodes

with sectorized radiation patterns in K2 is bounded only if

rηi
ln ri

= Ω(n2). (35)

The entropy bound will tend to a limit h(n) → bh > 0 as
n→∞ if

ri(n) = exp

(
−1

η
Wm

(
−

2πλ2ν2Γ
(
1− ρ

2

)2
bh ln 2

µηΓ
(

1−ρ
2

)2
n(n− 1)

))
.

(36)

Lemma 4 provides an analogous result to Lemma 3 for the
sectorized pattern. Note that the result hold for fixed λ. We can
easily perform a similar analysis to obtain scaling results in the
directivity parameter, as summarized below.

Lemma 5: As n → ∞, the entropy of a network of nodes
with sectorized radiation patterns in K2 is bounded only if

λ = Ω(n). (37)

The entropy bound will tend to a limit h(n) → bh > 0 as
n→∞ if

λ(n) = c
1
2n (38)

where

c =
ηµηΓ

(
1−ρ

2

)2
ln ri

2πrηi ν
2Γ
(
1− ρ

2

)2
bh ln 2

. (39)

Interestingly, we see from this result that directivity scaling
is only dependent upon the prevailing path loss conditions (i.e.,
the exponent η) through the prefactor c. This is in contrast to the



scaling law of Lemma 4, where dependence was exponential.
With a little effort, we can deduce that in order to control
network complexity in the large connection range regime, we
would either need to scale the transmit power of each node like
O(n2 lnn) or instead scale the directivity factor λ like O(n).
This is the first concrete (and rather curious) conclusion that
highlights the importance of directivity in random networks.

VI. CONCLUSIONS

In this paper, we studied wireless network complexity by
modeling a network as an RGG where each node has a random
antenna orientation as well as a random position. We analyzed
small and large typical isotropic connection range regimes for
two different antenna radiation patterns and presented analytic
scaling results that shed light on how network complexity can
be controlled as the number of nodes in the network grows
large. These results quantified scaling laws in the connection
range, which is inherently linked to system parameters such
as transmit power and frequency, as well as the directivity
of transmissions. Although this work was largely from a
theoretical perspective, it hints at an interesting juxtaposition
of complexity and connectivity, since controlling the former
may adversely affect the latter. It is the authors’ hope that this
work will inspire others to contribute to this developing field
in wireless network research.
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