
ar
X

iv
:1

70
9.

06
46

2v
3

 [
cs

.I
T

]
 7

 J
ul

 2
01

8
1

Uncoded Placement Optimization for Coded

Delivery

Sian Jin, Student Member, IEEE, Ying Cui, Member, IEEE,

Hui Liu, Fellow, IEEE, Giuseppe Caire, Fellow, IEEE

Abstract

We consider the classical coded caching problem as defined by Maddah-Ali and Niesen, where

a server with a library of N files of equal size is connected to K users via a shared error-free link.

Each user is equipped with a cache with capacity of M files. The goal is to design a static content

placement and delivery scheme such that the average load over the shared link is minimized. Existing

coded caching schemes fail to simultaneously achieve efficient content placement for non-uniform file

popularity and efficient content delivery in the presence of common requests, and hence may not achieve

desirable average load under a non-uniform, possibly very skewed, popularity distribution. In addition,

existing coded caching schemes usually require the splitting of a file into a large number of subfiles, i.e.,

high subpacketization level. To address the above two challenges, we first present a class of centralized

coded caching schemes consisting of a general content placement strategy specified by a file partition

parameter, enabling efficient and flexible content placement, and a specific content delivery strategy,

enabling load reduction by exploiting common requests of different users. For the proposed class of

schemes, we consider two cases for the optimization of the file partition parameter, depending on

whether a large subpacketization level is allowed or not. In the case of an unrestricted subpacketization

level, we formulate the coded caching optimization in order to minimize the average load under an

arbitrary file popularity. A direct formulation of the problem involves N2K variables. By imposing

some additional conditions, the problem is reduced to a linear program with N(K +1) variables under

an arbitrary file popularity and with K +1 variables under the uniform file popularity. We can recover

Yu et al.’s optimal scheme for the uniform file popularity as an optimal solution of our problem. When

a low subpacketization level is desired, we introduce a subpacketization level constraint involving the

ℓ0 norm for each file. Again, by imposing the same additional conditions, we can simplify the problem

to a difference of two convex functions (DC) problem with N(K + 1) variables that can be efficiently

solved.

S. Jin, Y. Cui and H. Liu are with Shanghai Jiao Tong University, China. G. Caire is with Technical University of Berlin,

Germany. This paper was presented in part at IEEE WiOpt 2018 [1].

November 9, 2018 DRAFT

http://arxiv.org/abs/1709.06462v3

2

Index Terms

Coded caching, coded multicasting, content distribution, optimization, subpacketization level, the

ℓ0-norm.

I. INTRODUCTION

The rapid proliferation of smart mobile devices has triggered an unprecedented growth of the

global mobile data traffic, with a predicted nearly seven-fold increase between 2016 and 2021 [2].

In order to support such dramatic growth of wireless data traffic, caching and multicasting have

been recently proposed as two promising approaches for massive content delivery in wireless

networks. Joint design of the two promising techniques is expected to achieve superior perfor-

mance for massive content delivery in wireless networks. In [3]–[5], the authors consider joint

design of traditional uncoded caching and multicasting, the gain of which mainly derives from

making content available locally and serving multiple requests of the same contents concurrently.

Recently, a new class of caching schemes for content placement in user caches, referred to as

coded caching [6], have received significant interest. In [6], Maddah-Ali and Niesen consider a

system with one server connected through a shared error-free link to K users. The server has a

database of N files (of F data units), and each user has an isolated cache memory containing

up to M files. They formulate a caching problem consisting of two phases, namely, a content

placement phase and a content delivery phase. The content placement is performed once, before

operating the network, and independently of the user requests. Then, the users place requests

in rounds, and at each round the server responds with a multicast message constructed by

coded multicast XOR operations that satisfies all user requests simultaneously. The goal of [6]

is to reduce the worst-case (over all possible requests) load of the shared link in the delivery

phase. In [7], we consider a different class of centralized coded caching schemes specified by

a general file partition parameter, and optimize the parameter to minimize the average (over

random requests) load within the class under an arbitrary file popularity. In [8], the parameter-

based coded caching design approach in [7] is generalized to minimize the average load in a

heterogeneous setting with nonuniform cache size and file size under an arbitrary file popularity.

In [9], Yu et al. propose a centralized coded caching scheme where the delivery strategy exploits

the chance of load reduction in common requests of different users and prove its information

theoretic optimality for the worst-case load and average load under the uniform file popularity.

3

Note that the delivery strategies in [6]–[8] do not capture the opportunity of load reduction in

common requests of different users, and the placement strategies in [6] and [9] allocate the same

fraction of memory to each file without reflecting popularity difference of files. Therefore, the

coded caching schemes in [6]–[9] may not achieve desirable average load under a non-uniform,

possibly very skewed, popularity distribution. At the moment, a general optimality result for

random requests with an arbitrary file popularity is not known.

Another limitation of [6]–[9] is the issue of high subpacketization level, i.e., the number of non-

overlapping subfiles for each file is large. In [10]–[12], the authors tackle the subpacketization

level issue for centralized coded caching. Specifically, in [10], Tang et al. connect coded caching

to resolvable combinatorial designs and propose a centralized coded caching scheme where the

subpacketization level is exponential with respect to (w.r.t.) the number of users but with a

smaller exponent constant than in the centralized coded caching scheme of [6] at the cost of a

marginal increase in the worst-case load. In [11], Shanmugam et al. connect coded caching to

Ruzsa-Szeméredi graphs and show the existence of a centralized coded caching scheme where the

subpacketization level grows linearly with the number of users. However, such scheme exists only

when the number of users is impractically large. In [12], the authors propose a centralized coded

caching scheme with low subpacketization level based on Pareto-optimal placement delivery

array (PDA). Note that the centralized coded caching schemes in [10]–[12] addressing the

subpacketization level issue are applicable only for certain system parameters (e.g., the number of

users, the number of files, cache size, etc.). Furthermore, the centralized coded caching schemes

in [10]–[12] are based on combinatorial designs and do not explicitly solve any optimization

problem under subpacketization level constraints.

In this paper, we would like to address the above challenges in the same centralized setting

as in [6]–[12], with the focus on minimizing the average load under an arbitrary file popularity

in two cases, namely, the case without considering the subpacketization level issue and the

case considering the subpacketization level issue. We present a class of coded caching schemes

consisting of a general content placement strategy specified by a file partition parameter, enabling

efficient and flexible content placement, and a specific content delivery strategy, enabling load

reduction by exploiting common requests of different users. Then, we focus on the average

load minimization irrespectively of the subpacketization level issue. In this case, we formulate

the coded caching optimization problem over the considered class of schemes to minimize the

4

average load under an arbitrary file popularity. The average load expression is not tractable

due to the complex delivery strategy. Therefore, we impose some additional conditions on the

parameter to simplify the average load expression under an arbitrary file popularity and the

uniform file popularity respectively, by connecting the file request event to the “balls into bins”

problem. Based on the simplified expressions, we transform the original optimization problem

with N2K variables into a linear program with N(K + 1) variables under an arbitrary file

popularity and a linear program with K + 1 variables under the uniform file popularity, which

are much easier to solve than the original problem. We also show that Yu et al.’s centralized

coded caching scheme corresponds to an optimal solution of our problem, thus implying that the

imposed conditions incur no loss of optimality for the uniform file popularity. Next, we focus

on the average load minimization considering the subpacketization level issue. In this case, we

first formulate the coded caching optimization problem over the considered class of schemes to

minimize the average load under an arbitrary file popularity subject to subpacketization level

constraints in terms of the ℓ0-norm of the file partition parameter. To the best of our knowledge,

this is the first work explicitly considering subpacketization level constraints in the optimization

of coded caching design. By imposing the same additional conditions as before and using the

exact difference of two convex functions (DC) reformulation method in [13], we convert the

original problem with N2K variables into a simplified DC problem with N(K + 1) variables.

Then, we use a DC algorithm to solve the simplified DC problem. Numerical results reveal that

the imposed conditions do not affect the optimality of the original problem under an arbitrary

file popularity in both cases. Furthermore, our numerical results demonstrate that the optimized

coded caching scheme without considering the subpacketization level constraints outperforms

those in [6], [7], [9] in terms of the average load, and the optimized coded caching scheme

considering the subpacketization level constraints outperforms those in [10] and [12] in terms

of both the average load and application region.

II. CENTRALIZED CODED CACHING

A. Problem Setting

As in [6]–[12], we consider a system with one server connected through a shared error-free

link to K ∈ N>0 users (see Fig. 1), where N>0 denotes the set of all positive integers. The server

has access to a library of N ∈ N>0 files, denoted by W1, . . . ,WN , each consisting of F ∈ N>0

5

server

shared link

K users

caches

…

…

…

N files

size M

file index n

file popularity

user 1 user 2 user K

…

Fig. 1: Problem setup for coded caching [7].

indivisible data units. Let N , {1, 2, . . . , N} and K , {1, 2, . . .K} denote the set of file indices

and the set of user indices, respectively. Each user has an isolated cache memory of MF data

units, for some real number M ∈ [0, N]. Let Zk denote the cache content for user k. The system

operates in two phases, i.e., a placement phase and a delivery phase [6]. In the placement phase,

each user is able to fill the content of its cache using the library of N files. In the delivery

phase, each user randomly and independently requests one file in N according to file popularity

distribution p , (pn)
N

n=1, where pn denotes the probability of a user requesting file Wn and
∑N

n=1 pn = 1. Without loss of generality, we assume p1 ≥ p2 ≥ . . . ≥ pN . Let Dk ∈ N denote

the index of the file requested by user k ∈ K, and let D , (D1, · · · , DK) ∈ NK denote the

requests of all the K users. The server replies to these K requests by sending messages over

the shared link, which are observed by all the K users. Each user should be able to recover its

requested file from the messages received over the shared link and its cache content. Our goal

is to minimize the average load of the shared link under an arbitrary file popularity.

B. Centralized Coded Caching Scheme

In this part, we present a class of centralized coded caching schemes utilizing a general

uncoded placement strategy and a specific coded delivery strategy, which are specified by a

general file partition parameter, as summarized in Alg. 1. This uncoded placement strategy was

introduced in our previous work [7] and it is repeated here for completeness. For all n ∈ N , file

Wn is partitioned into 2K nonoverlapping subfiles Wn,S , S ⊆ K, i.e., Wn = {Wn,S : S ⊆ K} .

6

If the number of data units in a subfile is zero, then there is no need to consider this subfile.

Thus, 2K is the maximum number of non-overlapping subfiles of a file. We say subfile Wn,S

is of type s if |S| = s [7]. User k stores Wn,S , n ∈ N , k ∈ S,S ⊆ K in its cache, i.e.,

Zk = {Wn,S : n ∈ N , k ∈ S,S ⊆ K} . Let xn,S denote the size of subfile Wn,S , normalized by

the file size F . Denote xn , (xn,S)S⊆K. Let x , (xn)n∈N denote the file partition parameter,

which will be optimized to minimize the average load in Section III and Section IV. Thus, x

satisfies

0 ≤ xn,S ≤ 1, ∀S ⊆ K, n ∈ N , (1)

K∑

s=0

∑

S⊆K:|S|=s

xn,S = 1, ∀n ∈ N , (2)

N∑

n=1

K∑

s=1

∑

S⊆K:|S|=s,k∈S

xn,S ≤M, ∀k ∈ K, (3)

where (1) and (2) represent the file partition constraints and (3) represents the cache memory

constraint.

The coded delivery strategy is an extension of that in [9]. For all D ∈ NK , let D(D) denote

the set of distinct files in D. For all n ∈ D(D), the server arbitrarily selects user kn ∈ K such

that Dkn = n. Let K(D) , {kn : n ∈ D(D)} denote the set of representative users that request

|D(D)| different files. Each user k ∈ S requests subfile WDk,S\{k}, for all subset S ⊆ K. The

server broadcasts coded-multicast message ⊕k∈SWDk,S\{k}
1 for all subset S ⊆ K that satisfies

S ∩K(D) 6= ∅, and all subfiles in the coded-multicast message are zero-padded to the length of

the longest subfile. By Lemma 1 of [9], we can conclude that each user can decode the requested

file based on the received coded-multicast messages and the contents stored in its cache.

Remark 1 (Comparison with Existing Coded Caching Schemes): The uncoded placement strat-

egy in this paper is more general than that in [6], [9]–[12], and it can be optimized to minimize

the average load under an arbitrary file popularity (see Section III and Section IV) [7]. The

coded delivery strategy in this paper is more efficient than that in [6]–[8], [10]–[12], since it

avoids transmitting the redundant coded-multicast messages ⊕k∈SWDk,S\{k}, S ⊆ K \ K(D) in

the presence of common requests [9].

1Note that in [9], since all files are partitioned into subfiles of type t ∈ {0, 1, . . . ,K}, only coded-multicast messages

⊕k∈SWDk,S\{k} satisfying S ⊆ K, S ∩ K(D) 6= ∅ and |S| = t+ 1 are transimitted.

7

Algorithm 1 Parameter-based Centralized Coded Caching

placement strategy

1: for all k ∈ K do

2: Zk ← {Wn,S : n ∈ N , k ∈ S,S ⊆ K}

3: end for

delivery strategy

1: for s = K,K − 1, · · · , 1 do

2: for S ⊆ K : |S| = s,S ∩ K(D) 6= ∅ do

3: server sends ⊕k∈SWDk,S\{k}

4: end for

5: end for

C. Average Load

Let Ravg(K,N,M,x) denote the average load for serving the K users with cache size M

under a given file partition parameter x, where the average is taken over random requests D for

N files, according to an arbitrary file popularity distribution p. By Alg. 1, we have

Ravg(K,N,M,x) =
∑

d∈NK

(
K∏

k=1

pdk

)
∑

S⊆K:S∩K(D)6=∅

max
k∈S

xdk ,S\{k}, (4)

where d , (d1, . . . , dK) ∈ NK and max
k∈S

xdk,S\{k} is the length of the coded message⊕k∈SWdk,S\{k},

normalized by the file size F .

From (4), we can observe that the file partition parameter x fundamentally affects the average

load Ravg(K,N,M,x). In Section III, we would like to find an optimal file partition parameter

to minimize the average load in (4). The optimal file partition parameter may correspond to

high subpacketization level. In fact, if for some n, all the elements xn,S are non-zero, it means

that file Wn is divided into 2K subfiles, which is exponential with the number of users K.

For systems with even a moderate number of users and files of practical length, such partition

becomes quickly impossible. For example, for K = 50 and the size of each indivisible data unit

equal to 1 Byte, we need files with size larger than 1 Petabyte. To avoid high subpacketization

level, in Section IV, we would like to find an optimal file partition parameter to minimize the

average load in (4) under subpacketization level constraints.

8

III. AVERAGE LOAD MINIMIZATION WITHOUT SUBPACKETIZATION LEVEL CONSTRAINT

In this section, we consider the minimization of the average load without any restriction on

the subpacketization level.

A. Problem Formulation

We would like to minimize the average load under the file partition constraints in (1) and (2)

as well as the cache memory constraint in (3).

Problem 1 (Optimization for Arbitrary File Popularity):

R∗
avg(K,N,M) , min

x
Ravg(K,N,M,x)

s.t. (1), (2), (3),

where Ravg(K,N,M,x) is given by (4).

The objective function of Problem 1 is convex, as it is a positive weighted sum of convex

piecewise linear functions. In addition, the constraints of Problem 1 are linear. Hence, Problem 1

is a convex optimization problem. The number of variables in Problem 1 is N2K . Thus, the

complexity of Problem 1 is huge, especially when K and N are large. In Section III-B and

Section III-C, we shall focus on deriving simplified formulations for Problem 1 to facilitate

low-complexity optimal solutions under an arbitrary file popularity distribution and the uniform

file popularity distribution, respectively.

B. Optimization for Arbitrary File Popularity

First, we present two structural conditions on the file partition parameter x. These conditions

impose a restriction on the feasible region and enable a simplification of Problem 1. We cannot

prove that the resulting solution is optimal w.r.t. Problem 1 due to its complex objective function,

but we can numerically verify the optimality of the resulting solution.

Condition 1 (Symmetry w.r.t. Type): For all n ∈ N and s ∈ {0, 1, · · · , K}, the values of xn,S ,

S ⊆ {Ŝ ⊆ K : |Ŝ| = s} are the same.

Recall that all subfiles in one coded-multicast message are zero-padded to the length of the

longest subfile in the coded-multicast message, causing the “bit waste” effect [7]. Thus, imposing

9

Condition 1 can reduce the variance of the lengths of messages involved in the coded-multicast

XOR operations, hence addressing “bit waste” problem. By Condition 1, we can set

xn,S = yn,s, ∀S ⊆ K, n ∈ N , (5)

where s = |S| ∈ {0, 1, · · · , K}. Here, yn,s can be viewed as the size of each subfile of type s

in each file Wn, normalized by the file size F . Let yn , (yn,s)s∈{0,1,··· ,K} and y , (yn)n∈N .

Condition 2 (Monotonicity w.r.t. Popularity): For all n ∈ {1, 2, . . . , N−1} and s ∈ {1, 2, · · · , K},

when pn ≥ pn+1,

yn,s ≥ yn+1,s. (6)

Condition 2 indicates that, for all n ∈ {1, 2, . . . , N − 1} and s ∈ {1, 2, · · · , K}, when pn ≥

pn+1, the size of subfiles Wn,S , S ⊆ {Ŝ ⊆ K : |Ŝ| = s} is no smaller than that of subfiles

Wn+1,S , S ⊆ {Ŝ ⊆ K : |Ŝ| = s}. Intuitively, imposing Condition 2 can reduce the average

load, by dedicating more memory to a more popular file. Unlike in our previous work [7], due

to the complex objective function in (4), we cannot show that imposing Conditions 1 and 2

maintains the optimality of the solution w.r.t. the original Problem 1. Later, in Section V, we

provide numerical evidence suggesting that indeed Conditions 1 and 2 do not involve any loss

of optimality.

Next, we simplify Problem 1 under Conditions 1 and 2. First, we introduce some notations.

Consider the number of representative users |K(D)| = u. Let D̃u,〈1〉 ≤ D̃u,〈2〉 ≤ . . . ≤ D̃u,〈K−u〉

denote (Dk)k∈K\K(D) arranged in ascending order, so that D̃u,〈i〉 is the i-th smallest. Let P ′
i,u,n ,

Pr
[
D̃u,〈i〉 = n

]
, for all i = 1, . . . , K − u. Note that the file request event D̃u,〈i〉 = n can be

treated as the “balls into bins” problem, i.e., K balls are placed in an i.i.d. manner into N

bins, where bin n is selected with probability pn. Let Kn denote the number of users requesting

file n. Note that
∑N

n=1Kn = K and
∑N

n=1 1[Kn > 0] = u. Let An ,
∑n−1

n′=1 1[Kn′ > 0],

Bn,1 ,
∑n−1

n′=1Kn′ and Bn,2 ,
∑N

n′=n+1Kn′ . Let LAn,1 , {L ⊆ {1, 2, . . . , n− 1} : |L| = An}

and LAn,2 , {L ⊆ {n+ 1, n+ 2, . . . , N} : |L| = u− An − 1}. Let

ABn,1,L ,

{
(αn′)n′∈L ∈ N

|L|
>0 :

∑

n′∈L

αn′ = Bn,1

}
,

for all L ∈ LAn,1 and

ABn,2,L ,

{
(αn′)n′∈L ∈ N

|L|
>0 :

∑

n′∈L

αn′ = Bn,2

}
,

10

for all L ∈ LAn,2. Let N denote the set of all natural numbers. Define
(

K

m1,m2,K−m1−m2

)
,

K!
m1!m2!(K−m1−m2)!

, where m1 ∈ N, m2 ∈ N and m1 +m2 ≤ K. By using results for the “balls

into bins” problem and considering Conditions 1 and 2, we have the following result.

Lemma 1 (Simplification of Problem 1 for Arbitrary File Popularity): Under Conditions 1 and 2,

Problem 1 can be converted into:

Problem 2 (Simplified Problem for Arbitrary File Popularity):

R̃∗
avg(K,N,M,y) , min

y
R̃avg(K,N,M,y)

s.t. yn,s ≥ yn+1,s, ∀n ∈ {1, 2, . . . , N − 1}, s ∈ {1, 2, · · · , K} (7)

0 ≤ yn,s ≤ 1, ∀s ∈ {0, 1, · · · , K}, n ∈ N , (8)

K∑

s=0

(
K

s

)
yn,s = 1, ∀n ∈ N , (9)

N∑

n=1

K∑

s=1

(
K − 1

s− 1

)
yn,s ≤ M, (10)

where

R̃avg(K,N,M,y) ,

K∑

s=1

(
K

s

) N∑

n=1

((
N∑

n′=n

pn′

)s

−

(
N∑

n′=n+1

pn′

)s)
yn,s−1

−

min{K,N}∑

u=1

K−u∑

s=1

(
K − u

s

)K−u∑

i=1

(
K − u− i

s− 1

) N∑

n=1

P ′
i,u,nyn,s−1, (11)

and P ′
i,u,n is given in (12)-(15) at the top of the next page.

Proof: Please refer to Appendix A.

Problem 2 is a linear program with N(K + 1) variables and can be solved by using linear

optimization techniques.

C. Optimization for Uniform File Popularity

In this part, we consider a special case, i.e., the uniform file popularity (pn = 1
N

, for all

n ∈ N). First, we present another structural condition on the file partition parameter.

Condition 3 (Symmetry w.r.t. File): For all n ∈ {1, 2, . . . , N − 1} and s ∈ {1, 2, · · · , K},

when pn = pn+1,

yn,s = yn+1,s. (16)

11

P ′
i,u,n =

∑

a∈{1,...,u−2}

∑

b1∈{a,...,i+a−1}

∑

b2∈{u−a−1,...,K−i−a−1}

(
K

b1,K − b1 − b2, b2

)
PK−b1−b2
n

×
∑

L1∈La,1

∑

(αn′)n′∈L1
∈Ab1,L1

b1!∏
n′∈L1

αn′ !

∏

n′∈L1

P
αn′

n′

∑

L2∈La,2

∑

(αn′)n′∈L2
∈Ab2,L2

b2!∏
n′∈L2

αn′ !

∏

n′∈L2

P
αn′

n′

+
∑

b2∈{u−1,...,K−2}

(
K

b2

)
PK−b2
n

∑

L2∈L0,2

∑

(αn′)n′∈L2
∈Ab2,L2

b2!∏
n′∈L2

αn′ !

∏

n′∈L2

P
αn′

n′

+
∑

b1∈{u−1,...,K−2}

(
K

b1

)
PK−b1
n

∑

L1∈Lu−1,1

∑

(αn′)n′∈L1
∈Ab1,L1

b1!∏
n′∈L1

αn′ !

∏

n′∈L1

P
αn′

n′ , u ≤ n, u+ n ≤ N + 1

(12)

P ′
i,u,n =

∑

a∈{u−1+n−N,...,u−2}

∑

b1∈{a,...,i+a−1}

∑

b2∈{u−a−1,...,K−i−a−1}

(
K

b1,K − b1 − b2, b2

)
PK−b1−b2
n

×
∑

L1∈La,1

∑

(αn′)n′∈L1
∈Ab1,L1

b1!∏
n′∈L1

αn′ !

∏

n′∈L1

P
αn′

n′

∑

L2∈La,2

∑

(αn′)n′∈L2
∈Ab2,L2

b2!∏
n′∈L2

αn′ !

∏

n′∈L2

P
αn′

n′

+
∑

b1∈{u−1,...,K−2}

(
K

b1

)
PK−b1
n

∑

L1∈Lu−1,1

∑

(αn′)n′∈L1
∈Ab1,L1

b1!∏
n′∈L1

αn′ !

∏

n′∈L1

P
αn′

n′ , u ≤ n, u+ n > N + 1

(13)

P ′
i,u,n =

∑

a∈{1,...,n−1}

∑

b1∈{a,...,i+a−1}

∑

b2∈{u−a−1,...,K−i−a−1}

(
K

b1,K − b1 − b2, b2

)
PK−b1−b2
n

×
∑

L1∈La,1

∑

(αn′)n′∈L1
∈Ab1,L1

b1!∏
n′∈L1

αn′ !

∏

n′∈L1

P
αn′

n′

∑

L2∈La,2

∑

(αn′)n′∈L2
∈Ab2,L2

b2!∏
n′∈L2

αn′ !

∏

n′∈L2

P
αn′

n′

+
∑

b2∈{u−1,...,K−2}

(
K

b2

)
PK−b2
n

∑

L2∈L0,2

∑

(αn′)n′∈L2
∈Ab2,L2

b2!∏
n′∈L2

αn′ !

∏

n′∈L2

P
αn′

n′ , u > n, u+ n ≤ N + 1

(14)

P ′
i,u,n =

∑

a∈{u−1+n−N,...,n−1}

∑

b1∈{a,...,i+a−1}

∑

b2∈{u−a−1,...,K−i−a−1}

(
K

b1,K − b1 − b2, b2

)
PK−b1−b2
n

×
∑

L1∈La,1

∑

(αn′)n′∈L1
∈Ab1,L1

b1!∏
n′∈L1

αn′ !

∏

n′∈L1

P
αn′

n′

×
∑

L2∈La,2

∑

(αn′)n′∈L2
∈Ab2,L2

b2!∏
n′∈L2

αn′ !

∏

n′∈L2

P
αn′

n′ , u > n, u+ n > N + 1 (15)

Condition 3 indicates that for all n ∈ {1, 2, . . . , N − 1} and s ∈ {1, 2, · · · , K}, when

12

pn = pn+1, the size of subfiles Wn,S , S ⊆ {Ŝ ⊆ K : |Ŝ| = s} is the same as that of

subfiles Wn+1,S , S ⊆ {Ŝ ⊆ K : |Ŝ| = s}. Condition 3 ensures zero variance of the lengths

of messages involved in the coded-multicast XOR operations, hence avoiding “bit waste” effect

and further increasing coded-multicasting opportunities for the uniform file popularity. Later, we

shall show that imposing this condition will not lose optimality of Problem 2 under the uniform

file popularity.

By Condition 3, we can set

yn,s = zs, ∀s ∈ {0, 1, · · · , K}, n ∈ N . (17)

Here, zs can be viewed as the size of each subfile of type s, normalized by the file size F . Let

z , (zs)s∈{0,1,··· ,K}.

Next, we simplify Problem 1 under Conditions 1 and 3. First, we introduce some notations.

Let P ′′
u , Pr [|K(D)| = u], for all u ∈ {1, 2, . . . ,min{K,N}}. Note that event |K(D)| = u

corresponds to the event in the “balls into bins” problem that there are u nonempty bins after

placing K balls uniformly at random into N bins. By using results for the “balls into bins”

problem in the uniform case [14] and considering Conditions 1 and 3, we have the following

result.

Lemma 2 (Simplification of Problem 1 for Uniform File Popularity): Under Conditions 1 and 3,

Problem 1 can be converted into:

Problem 3 (Simplified Problem for Uniform File Popularity):

R̂∗
avg(K,N,M) , min

z

K−1∑

s=0

(
K

s + 1

)
zs −

min{K,N}∑

u=1

P ′′
u

K−u−1∑

s=0

(
K − u

s+ 1

)
zs

s.t. 0 ≤ zs ≤ 1, s ∈ {0, 1, · · · , K}, (18)

K∑

s=0

(
K

s

)
zs = 1, (19)

K∑

s=0

(
K

s

)
szs ≤

KM

N
, (20)

where P ′′
u =




K

u





(Nu)u!
NK , and




K

u



 is the Stirling number of the second kind.

Proof: Please refer to Appendix B.

13

Problem 3 is a linear program with K + 1 variables and can be solved more efficiently than

Problem 1.

Finally, we discuss the relation between an optimal solution of Problem 3 and Yu et al.’s

centralized coded caching scheme [9].2 Using KKT conditions, we have

Lemma 3 (Optimal Solution to Problem 3): For cache size M ∈
{
0, N

K
, 2N

K
, . . . , N

}
, z∗ ,

(z∗s)s∈{0,1,··· ,K} is an optimal solution to Problem 3, where

z∗s =





1

(K
KM
N
)
, s = KM

N

0, s ∈ {0, 1, · · · , K} \ {KM
N
},

(21)

and the optimal value of Problem 3 is given by3

R̂∗
avg(K,N,M) =

K(1−M/N)

1 +KM/N
−

min{K,N}∑

u=1

P ′′
u

(
K − u
KM
N

+ 1

)/(K
KM
N

)
. (22)

Proof: Please refer to Appendix C.

Lemma 3 indicates that Yu et al.’s centralized coded caching scheme corresponds to an optimal

solution of Problem 3. In addition, the optimal average load R̂∗
avg(K,N,M) in (22) is equivalent

to that in [9]. Specifically, the first term in (22) corresponds to the worst-case load in [6] and the

second term in (22), which is given in explicit form as opposed to the implicit form containing an

expectation w.r.t. the random requests given in [9], indicates the load reduction due to the ability

of the delivery strategy to take advantage of common requests. Note that it has been shown that

Yu et al.’s centralized coded caching scheme is optimal among all uncoded placement and all

delivery under the uniform file popularity. Thus, for the uniform file popularity, Conditions 1

and 3 are actually optimal properties.

IV. AVERAGE LOAD MINIMIZATION WITH SUBPACKETIZATION LEVEL CONSTRAINT

In this section, we minimize the average load by optimizing the file partition parameter under

the subpacketization level constraint for each file, which is given by

‖xn‖0 ≤ F̂ , n ∈ N , (23)

2Yu et al.’s centralized coded caching scheme focuses on cache size M ∈ {0, N
K
, 2N

K
, . . . , N}, so that KM

N
is an integer in

{0, 1, . . . ,K}. For general M ∈ [0, N], the worst-case load can be achieved by memory sharing.

3In this paper, we define
(
n

k

)
= 0 when k > n [9].

14

where ‖xn‖0 ,
∑

S∈K 1 [xn,S 6= 0] ∈ {1, 2, . . . , 2K} denotes the ℓ0-norm of the vector xn,

i.e., the total number of subfiles for file Wn, and F̂ ∈ {1, 2, . . . , 2K} represents the maximum

admissible subpacketization level for all files. To the best of our knowledge, this is the first work

explicitly considering the subpacketization level constraint in optimizing coded caching design.

A. Problem Formulation

In this part, we minimize the average load under the file partition constraints in (1) and (2),

the cache memory constraint in (3), and the subpacketization level constraint in (23).

Problem 4 (Optimization for Arbitrary File Popularity with Subpacketization Constraint):

R†
avg(K,N,M) , min

x
Ravg(K,N,M,x)

s.t. (1), (2), (3), (23),

where Ravg(K,N,M,x) is given by (4).

Compared with Problem 1, Problem 4 has an extra constraint, i.e., the subpacketization level

constraint in (23). There are two main challenges in solving Problem 4. First, Problem 4 is an

NP-Hard problem due to the combinatorial constraint in (23) involving the ℓ0-norm [13]. Second,

as in Problem 1, the number of variables in Problem 4 is N2K , which is huge, especially when

K and N are large.

B. Simplified Formulation

There are extensive research dealing with optimization problems involving the ℓ0-norm. Those

works can be divided into three main categories according to the way of treating the ℓ0-norm,

i.e., convex approximation, non-convex approximation, and non-convex exact reformulation [15].

For the category of convex approximation, one of the best known approaches is approximating

the ℓ0-norm with the ℓ1-norm [15]. If the original optimization problem is convex except the

constraint involving the ℓ0-norm, this convex approximation approach can transform the original

NP-Hard problem into a convex problem. However, it has been shown that an optimal solution

of the approximated convex problem is not always sparse (may not be a feasible solution of the

original problem) [16].4 For the category of non-convex approximation, a variety of sparsity-

4Given the constraint in (9), the ℓ1-norm of xn is equal to a constant, i.e., ‖xn‖1 =
∑2K

i=1 xi = 1. Thus, replacing ‖xn‖0

with ‖xn‖1 in (23) results in the constraint 1 ≤ F̂ , which always holds and cannot restrain xn.

15

inducing penalty functions, e.g., the ℓp pseudo-norm with 0 < p < 1 [17], exponential concave

function [18], and logarithmic function [19], have been proposed to approximate the ℓ0-norm. In

general, non-convex approximation can provide better sparsity than convex approximation, but

may still not provide a feasible solution of the original problem. Few works focus on non-convex

exact reformulation, which is proposed to guarantee the equivalence between the reformulated

problem and the original problem. Using exact penalty techniques, [15] and [20] show that the

reformulated problems with suitable parameters are equivalent to the original problems (share

the same feasible solutions with the original problems). However, the reformulated problems are

quite convoluted as they rely on several parameters [13]. In the recent work [13], the authors

propose an exact DC reformulation which is simpler than the reformulated problems proposed

in [15] and [20], and then obtain a stationary point of the DC problem using a DC algorithm.

In the following, we use the exact DC reformulation method in [13] in order to obtain a simple

equivalent formulation of the original problem.

We first simplify Problem 4 to facilitate a low-complexity solution. Let a[i] denote the element

whose value is the i-th largest among the m elements of the vector a, i.e., a[1] ≥ a[2] ≥ . . . ≥ a[m].

Let ‖a‖lgst,F̂ denote the largest-F̂ norm of the vector a, i.e., ‖a‖lgst,F̂ , |a[1]| + |a[2]| + . . . +

|a[F̂]| [21]. Using the method for obtaining Problem 2 and Theorem 1 of [13] for simplifying

the constraint in (23) under Conditions 1 and 2, we have the following result.

Lemma 4 (Simplification for Problem 4 for Arbitrary File Popularity): Under Conditions 1 and 2,

Problem 4 can be converted into:

Problem 5 (Simplified Problem for Arbitrary File Popularity):

R̃†
avg(K,N,M,y) , min

y
R̃avg(K,N,M,y)

s.t. (7), (8), (9), (10),

‖Uny‖lgst,F̂ ≥ 1, n ∈ N , (24)

where R̃avg(K,N,M,y) is given by (11),

Un , [0, · · · , 0, J︸︷︷︸
n-th block

, 0, · · · , 0] (25)

denotes the block matrix of the dimension 2K × (K + 1)N , with 2K × (K + 1) matrix J ,

(jm,l)m∈{1,...,2K},l∈{1,...,K+1} as its n-th block and 2K × (K + 1) zero matrices as other blocks,

16

and the element of row m and column l of J is

jm,l =




1,

∑l−1
i=1

(
K

i−1

)
< m ≤

∑l

i=1

(
K

i−1

)

0, otherwise

. (26)

Proof: Please refer to Appendix D.

The number of variables in Problem 5 is N(K + 1), which is much smaller than that of

Problem 4, i.e., N2K . In addition, compared with Problem 2, Problem 5 has an extra constraint

in (24), which has two advantages over the subpacketization level constraint in (23): (i) the

constraint in (24) is a DC constraint, making Problem 2 a DC problem, which can be solved by

a DC algorithm in polynomial time; (ii) a subgradient of ‖Uny‖lgst,F̂ can be efficiently computed,

making the DC algorithm an efficient one.

Thus, in the following, we solve Problem 5 by using a DC algorithm. The main idea of the

DC algorithm is to iteratively solve a sequence of convex problems, each of which is obtained

by linearizing the second term of the objective function of the DC problem. A subgradient of

the second term of the objective function is required in the linearization in each iteration. Thus,

to solve Problem 5, we first obtain a subgradient of ‖Uny‖lgst,F̂ by extending the closed-form

expression of a subgradient of ‖y‖lgst,F̂ given in [13].

Lemma 5 (Subgradient of ‖Uny‖lgst,F̂): gn(y) , (gn,i(y))i∈{1,2,...,N(K+1)} is a subgradient of

‖Uny‖lgst,F̂ , where

gn,(m−1)(K+1)+[i](y) =





(
K

[i]−1

)
, m = n, i ∈ {1, . . . , I − 1}

F̂ −
∑I−1

i=1

(
K

[i]−1

)
, m = n, i = I

0, otherwise

, (27)

[i] represents the index of i-th largest element in yn, and I satisfies
∑I−1

i=1

(
K

[i]−1

)
≤ F̂ and

∑I

i=1

(
K

[i]−1

)
> F̂ .

Proof: Please refer to Appendix E.

Then, based on the subgradient gn(y) given in Lemma 5, we can obtain a stationary point

of Problem 5 using the DC algorithm as summarized in Alg. 2 [22]. As in [15], to approach

a globally optimal solution of Problem 5, we obtain multiple stationary points of Problem 5

by performing the DC algorithm multiple times, each with a random initial feasible point of

Problem 5, and adopt the stationary point with the lowest average load among all the obtained

stationary points of Problem 5.

17

Algorithm 2 DC Algorithm for Solving Problem 5

1: Find an initial feasible point y(0) of Problem 5 and set t = 0

2: repeat

3: Set y(t+1) to be an optimal solution of the convex problem:

min
y

R̃avg(K,N,M,y)

s.t. (7), (8), (9), (10)

‖Uny
(t)‖

lgst,F̂
+ gn(y

(t))T (y − y(t)) ≥ 1, n ∈ N (28)

4: Set t = t+ 1

5: until R̃avg(K,N,M,y(t−1))− R̃avg(K,N,M,y(t)) ≤ δ

0 1 2 3 4
Cache Size M

0

0.5

1

1.5

2

2.5

A
ve
ra
ge

L
oa
d

Optimal value of Problem 3, γ = 0

Optimal value of Problem 1, γ = 0

Optimal value of Problem 2, γ = 1

Optimal value of Problem 1, γ = 1

(a) Case without considering the

subpacketization level issue.

0 0.5 1 1.5 2 2.5 3 3.5 4
Cache Size M

0

0.5

1

1.5

2

2.5

A
ve
ra
ge

L
oa
d

Optimal value of Problem 5, γ = 0
Optimal value of Problem 4, γ = 0
Optimal value of Problem 5, γ = 1
Optimal value of Problem 4, γ = 1

(b) Case considering the subpacketi-

zation level issue at F̂ = 5.

1 2 3 4 5 6 7 8
Maximum Admissible Subpacketization Level F̂

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
ve
ra
ge

L
oa
d

Optimal value of Problem 5, γ = 0
Optimal value of Problem 4, γ = 0
Optimal value of Problem 5, γ = 1
Optimal value of Problem 4, γ = 1

(c) Case considering the subpacketi-

zation level issue at M = 2.

Fig. 2: Verification of Conditions 1, 2 and 3 in both cases at K = 3 and N = 4.

V. NUMERICAL RESULTS

In the simulation, we assume that the file popularity follows Zipf distribution, i.e., pn =

n−γ
∑

n∈N n−γ for all n ∈ N , where γ is the Zipf exponent. Fig. 2 (a) shows the optimal values of

Problems 1, 2 and 3, verifying that Conditions 1, 2 and 3 are optimal conditions in the case

without considering the subpacketization level issue. Fig. 2 (b) and Fig. 2 (c) show the optimal

values of Problems 4 and 5, verifying that Conditions 1 and 2 are optimal conditions in the case

considering the subpacketization level issue.

Fig. 3 compares the average load of our optimized parameter-based scheme, the average

loads of Maddah-Ali–Niesen’s centralized scheme [6], Jin et al.’s centralized scheme [7], Yu

18

0 2.5 5 7.5 10
Cache Size M

0

1

2

3

4

A
ve
ra
ge

L
oa
d

Optimized parameter-based without subpack. level constr.

Jin et al.’s centralized

Yu et al.’s centralized

Maddah-Ali–Niesen’s centralized

Genie-aided bound [2]

Converse bound [21]

Fig. 3: Average load versus M in the case without considering the subpacketization level issue at

K = 4, N = 10 and γ = 1.5. Note that Maddah-Ali–Niesen’s and Yu et al.’s centralized coded

caching schemes mainly focus on the cache size M ∈
{
0, N

K
, 2N

K
, . . . , N

}
. For other M ∈ [0, N],

the average loads of Maddah-Ali–Niesen’s and Yu et al.’s centralized coded caching schemes

are achieved by memory sharing [6], [9].

et al.’s centralized scheme [9], the genie-aided converse bound in [7] and the conserve bound

in [23], all without considering the subpacketization level issue. From Fig. 3, we can see that the

optimized parameter-based scheme outperforms the three baseline schemes. The gain over Jin et

al.’s optimized centralized coded caching scheme follows by using an extended version of the

improved delivery strategy of Yu et al., that takes advantage of common requests (which occur

with positive probability in the case of random requests). The gain over Yu et al.’s centralized

coded caching scheme is due to exploiting the explicit knowledge of the file popularity in

the optimization of content placement.5 In addition, the optimized average load is close to the

converse bounds, implying that the optimal value obtained by solving Problem 2 is close to

optimal.

Fig. 4 compares the average load of our optimized parameter-based scheme considering the

subpacketization level constraint, the average loads of Tang et al.’s scheme [10] and Pareto-

optimal PDA [12] both considering the subpacketization level issue. From Fig. 4, we see that the

5It has been proved in [7] that the optimized parameter-based scheme in [7] outperforms Maddah-Ali–Niesen’s centralized

coded caching scheme [6].

19

0 2 4 6 8 10
Cache Size M

0

0.5

1

1.5

2

2.5

3

3.5

4

A
ve
ra
ge

L
oa
d

Optimized parameter-based under subpack. level constr.

Optimized parameter-based without subpack. level constr.

Tang et al.’s centralized

Pareto-optimal PDA

(a) Average load versus M at K =

4, N = 10, F̂ = 4 and γ = 1.

0 10 20 30 40 50 60 70
Maximum Admissible Subpacketization Level F̂

0.7

0.8

0.9

1

1.1

1.2

1.3

A
ve
ra
ge

L
oa
d

Optimized parameter-based under subpack. level constr.

Optimized parameter-based without subpack. level constr.

Tang et al.’s centralized

Pareto-optimal PDA

(b) Average load versus F̂ at K =

6, N = 5, M = 2.5, and γ = 1.4.

0 10 20 30 40 50 60 70
Maximum Admissible Subpacketization Level F̂

1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve
ra
ge

L
oa
d

Optimized parameter-based under subpack. level constr.

Optimized parameter-based without subpack. level constr.

(c) Average load versus F̂ at K =

6, N = 10, M = 4, and γ = 0.5.

Fig. 4: Average load versus M and F̂ in the case considering the subpacketization level issue. To obtain the average

load of our optimized parameter-based scheme under the subpacketization level constraint, we solve Problem 5 by

performing Alg. 2 with δ = 0.0001 100 times each with a random initial feasible point and adopt the locally optimal

solution with the lowest average load among all the obtained locally optimal solutions of Problem 5 that are also

feasible solutions of Problem 5.

average load of our optimized parameter-based scheme without considering the subpacketization

level constraint serves as a lower bound of the proposed one considering the subpacketization

level constraint. Note that in Fig. 4 (a), for the considered K,N, F̂ , Tang et al.’s scheme is

applicable only at M ∈ {0, 2.5, 5, 7.5, 10} and Pareto-optimal PDA is applicable only at M ∈

{2.5, 5, 7.5, 10}; in Fig. 4 (b), for the considered K,N,M , Tang et al.’s scheme is applicable

only at F̂ = 4 and Pareto-optimal PDA is applicable only at F̂ ∈ {4, 20}; in Fig. 4 (c), for the

considered K,N,M , Tang et al.’s scheme and Pareto-optimal PDA are not applicable at any F̂ .

In addition, from Fig. 4, we can see that our optimized parameter-based scheme outperforms

Tang et al.’s scheme and Pareto-optimal PDA in terms of both the average load and application

region. From Fig. 4, we can see that our optimized parameter-based scheme considering the

subpacketization level constraint can achieve significantly lower subpacketization level than the

one without considering the subpacketization level constraint, at the cost of a small increase

of the average load. This means that sacrificing a small average load gain can achieve a huge

subpacketization level reduction under the considered setting.

20

VI. CONCLUSION

In this paper, we first presented a class of centralized coded caching schemes consisting of a

general content placement strategy specified by a file partition parameter, enabling efficient and

flexible content placement, and a specific content delivery strategy, enabling load reduction by

exploiting common requests of different users. Then we considered two cases: the case without

considering the subpacketization level issue and the case considering the subpacketization level

issue. In the first case, we formulated the coded caching optimization problem over the considered

class of schemes to minimize the average load under an arbitrary file popularity. Imposing some

conditions on the file partition parameter, we transformed the original optimization problem

with N2K variables into a linear program with N(K + 1) variables under an arbitrary file

popularity and a linear program with K + 1 variables under the uniform file popularity. In

the second case, we formulated the coded caching optimization problem over the considered

class of schemes to minimize the average load under an arbitrary file popularity subject to

subpacketization level constraints involving the ℓ0-norm. Imposing the same conditions and using

the exact DC reformulation method, we converted the original problem with N2K variables into

a simplified DC problem with N(K+1) variables, which is solved using DC algorithm. Finally,

numerical results verify the optimality of the imposed conditions and demonstrate the advantages

of the optimized scheme over existing schemes in both cases.

APPENDIX A: PROOF OF LEMMA 1

By (5), it can be easily shown that the constraints in (1), (2) and (3) of Problem 1 can be

converted into (8), (9) and (10). Now, we show that the objective function of Problem 1 in (4)

can be converted into the objective function of Problem 2 in (11). First, by (5), we have

Ravg(K,N,M,x)
(a)
=
∑

d∈NK

(
K∏

k=1

pdk

)
K∑

s=1


 ∑

S⊆K:|S|=s

max
k∈S

ydk,s−1 −
∑

S⊆K\K(d):|S|=s

max
k∈S

ydk,s−1




(b)
=

K∑

s=1

(
K

s

) N∑

n=1

((
N∑

n′=n

pn′

)s

−

(
N∑

n′=n+1

pn′

)s)
yn,s−1 −

∑

d∈NK

(
K∏

k=1

pdk

)
K∑

s=1

∑

S⊆K\K(d):|S|=s

max
k∈S

ydk,s−1,

(29)

21

where (a) is due to (5), and (b) is due to Lemma 3 in [7]. Then, by using the same simplification

method in the proof of Proposition 1 in [8], we further simplify the second term in (29) into:

∑

d∈NK

(
K∏

k=1

pdk

)
K−|K(d)|∑

s=1

K−|K(d)|∑

i=1

(
K − |K(d)| − i

s− 1

)
ydki ,s−1

=

min{K,N}∑

u=1

∑

d∈Du

(
K∏

k=1

pdk

)
K−u∑

s=1

K−u−s+1∑

i=1

(
K − u− i

s− 1

)
ydki ,s−1

=

min{K,N}∑

u=1

K−u∑

s=1

K−u−s+1∑

i=1

(
K − u− i

s− 1

) ∑

d∈Du

(
K∏

k=1

pdk

)
ydki ,s−1

=

min{K,N}∑

u=1

K−u∑

s=1

K−u−s+1∑

i=1

(
K − u− i

s− 1

) N∑

n=1

P ′
i,u,nyn,s−1,

where dki denotes the i-th most popular file in (Dk)k∈K\K(d), and Du ,

{
d ∈ NK :

∑N

n=1 1[dn > 0] = u
}
.

It remains to derive P ′
i,u,n by connecting the event D̃u,〈i〉 = n to the “balls into bins” problem.

Note that the event that K balls are placed in an i.i.d. manner into N bins where each of the K

balls is placed into bin n′ (the bin with index n′) with probability pn′ corresponds to the event that

each user randomly and independently requests file n′ ∈ N with probability pn′ (represented

by random variable Dk, k ∈ K). Let Eu denote the event that there are exactly u nonempty

bins, which corresponds to the event that there are u representative users, i.e., |K(D)| = u. Let

E1,{1,2,...,n−1}
b1,a,u

denote the event that b1 balls fall into a different bins with indices smaller than

or equal to n− 1, which corresponds to the event that there are b1 users requesting a different

files with file indices smaller than or equal to n− 1. Let E2,{n+1,n+2,...,N}
b2,u−a−1,u denote the event that

b2 balls fall into u − a − 1 different bins with indices larger than or equal to n + 1, which

corresponds to the event that there are b2 users requesting u − a − 1 different files with file

indices larger than or equal to n + 1. Let E3,{n}b3,1,u
denote the event that b3 balls fall into bin n,

which corresponds to the event that there are b3 users requesting file n. Let Θa(u, n) denote the

range of a in E1,{1,2,...,n−1}
b1,a,u

and E2,{n+1,n+2,...,N}
b2,u−a−1,u and let Θb(n, u, a) denote the range of (b1, b2, b3)

22

in E1,{1,2,...,n−1}
b1,a,u

, E2,{n+1,n+2,...,N}
b2,u−a−1,u and E3,{n}b3,1,u

for a given a, where

Θa(u, n) =





{0, 1, . . . , u− 1}, u ≤ n, u+ n ≤ N + 1

{u− 1 + n−N, . . . , u− 1}, u ≤ n, u+ n > N + 1

{0, . . . , n− 1}, u > n, u+ n ≤ N + 1

{u− 1 + n−N, . . . , n− 1}, u > n, u+ n > N + 1

, (30)

and

Θb(n, u, a) =





{(b1, b2, b3) : b1 ∈ {a, . . . ,K}, b2 ∈ {u− a− 1, . . . ,K}, b1 + b2 + b3 = K}, a ∈ {1, . . . , u− 2} ∩Θa(u, n)

{(b1, b2, b3) : b1 = 0, b2 ∈ {u− 1, . . . ,K}, b1 + b2 + b3 = K}, a ∈ {0} ∩Θa(u, n)

{(b1, b2, b3) : b1 ∈ {u− 1, . . . ,K}, b2 = 0, b1 + b2 + b3 = K}, a ∈ {u− 1} ∩Θa(u, n).

(31)

We know that

Eu =
⋃

a∈Θa(u,n)

⋃

(b1,b2,b3)∈Θb(a)

(
E1,{1,2,...,n−1}
b1,a,u

∩ E2,{n+1,n+2,...,N}
b2,u−a−1,u ∩ E3,{n}b3,1,u

)
. (32)

Then, remove one ball from each of the |K(D)| nonempty bins and consider the remaining

balls, which corresponds to consider the requests in (Dk)k∈K\K(D). Let ξ
1,{1,2,...,n−1}
i−1 denote the

event that there are at most i− 1 balls placed in the bins with indices smaller than or equal to

n − 1 and let ξ
2,{1,2,...,n}
i denote the event that there are at least i balls placed in the bins with

indices smaller than or equal to n. Note that ξ
1,{1,2,...,n−1}
i−1 ∩ ξ

2,{1,2,...,n}
i ∩ Eu is equivalent to the

event D̃u,〈i〉 = n, implying that P ′
i,u,n = Pr

[
D̃u,〈i〉 = n

]
= Pr

[
ξ
1,{1,2,...,n−1}
i−1 ∩ ξ

2,{1,2,...,n}
i ∩ Eu

]
.

Similar to (32), ξ
1,{1,2,...,n−1}
i−1 ∩ ξ

2,{1,2,...,n}
i ∩ Eu can be represented as

ξ
1,{1,2,...,n−1}
i−1 ∩ ξ

2,{1,2,...,n}
i ∩ Eu

=
⋃

a∈Θa(u,n)

⋃

(b1,b2,b3)∈Θ̃b(i,u,n,a)

(
E1,{1,2,...,n−1}
b1,a,u

∩ E2,{n+1,n+2,...,N}
b2,u−a−1,u ∩ E3,{n}b3,1,u

)
, (33)

where Θ̃b(i, u, n, a) denotes the range of (b1, b2, b3). In the following, we determine Θ̃b(i, u, n, a):

• For any a ∈ {1, . . . , u− 2} ∩Θa(u, n), by E1,{1,2,...,n−1}
b1,a,u

and ξ
1,{1,2,...,n−1}
i−1 , we have

b1 ≤ i+ a− 1; (34)

by E2,{n+1,n+2,...,N}
b2,u−a−1,u and ξ

2,{1,2,...,n}
i , we have

b2 ≤ K − i− a− 1. (35)

23

By (34), (35) and (31), for all a ∈ {1, . . . , u− 2} ∩Θa(u, n), we have

Θ̃b(i, u, n, a)

= {(b1, b2, b3) : b1 ∈ {a, . . . , i+ a− 1}, b2 ∈ {u− a− 1, . . . , K − i− a− 1}, b1 + b2 + b3 = K} .

(36)

• For a ∈ {0} ∩Θa(u, n), by E1,{1,2,...,n−1}
b1,a,u

and ξ
1,{1,2,...,n−1}
i−1 , we have

i = 1, b1 = 0, (37)

implying that E1,{1,2,...,n−1}
b1,a,u

does not happen; by E2,{n+1,n+2,...,N}
b2,u−a−1,u and ξ

2,{1,2,...,n}
i , we have

b2 ≤ K − i− a− 1. (38)

By (37), (38) and (31), for all a ∈ {0} ∩Θa(u, n), we have

Θ̃b(i, u, n, a) = {(b1, b2, b3) : b1 = 0, b2 ∈ {u− 1, . . . , K − a− 2}, b1 + b2 + b3 = K} .

(39)

• For a ∈ {u− 1} ∩Θa(u, n), by E1,{1,2,...,n−1}
b1,a,u

and ξ
1,{1,2,...,n−1}
i−1 , we have

i = K − u, b2 = 0, (40)

implying that E2,{n+1,n+2,...,N}
b2,u−a−1,u does not happen; by E2,{n+1,n+2,...,N}

b2,u−a−1,u and ξ
2,{1,2,...,n}
i , we have

b1 ≤ a+ i− 1. (41)

By (40), (41) and (31), for all a ∈ {u− 1} ∩Θa(u, n), we have

Θ̃b(i, u, n, a) = {(b1, b2, b3) : b1 ∈ {u− 1, . . . , K − u+ a− 1}, b2 = 0, b1 + b2 + b3 = K} .

(42)

By (33), (36), (39) and (42), we have

ξ
1,{1,2,...,n−1}
i−1 ∩ ξ

2,{1,2,...,n}
i ∩ Eu

=

(
⋃

a∈{1,...,u−2}∩Θa(u,n)

⋃

(b1,b2,b3)∈Θ̃b(i,u,n,a)

(
E1,{1,2,...,n−1}
b1,a,u

∩ E2,{n+1,n+2,...,N}
b2,u−a−1,u ∩ E3,{n}K−b1−b2,1,u

))

⋃

 ⋃

a∈{0}∩Θa(u,n)

⋃

(b1,b2,b3)∈Θ̃b(i,u,n,a)

(
E2,{n+1,n+2,...,N}
b2,u−a−1,u ∩ E3,{n}K−b2,1,u

)



24

⋃

 ⋃

a∈{u−1}∩Θa(u,n)

⋃

(b1,b2,b3)∈Θ̃b(i,u,n,a)

(
E1,{1,2,...,n−1}
b1,a,u

∩ E3,{n}K−b1,1,u

)

 . (43)

Based on (43), we have

P ′
i,u,n =

∑

a∈{1,...,u−2}∩Θa(u,n)

∑

b1∈{a,...,i+a−1}

∑

b2∈{u−a−1,...,K−i−a−1}

(
K

b1, K − b1 − b2, b2

)

× Pr
[
E1,{1,2,...,n−1}
b1,a,u

∩ E2,{n+1,n+2,...,N}
b2,u−a−1,u ∩ E3,{n}K−b1−b2,1,u

]

+
∑

a∈{0}∩Θa(u,n)

∑

b2∈{u−1,...,K−a−2}

(
K

b2

)
Pr
[
E2,{n+1,n+2,...,N}
b2,u−a−1,u ∩ E3,{n}K−b2,1,u

]

+
∑

a∈{u−1}∩Θa(u,n)

∑

b1∈{u−1,...,K−u+a−1}

(
K

b1

)
Pr
[
E1,{1,2,...,n−1}
b1,a,u

∩ E3,{n}K−b1,1,u

]
, (44)

where
(

K

b1,K−b1−b2,b2

)
is the total number of partitions of K balls into three parts with the numbers

of balls b1, b2 and K − b1 − b2,
(
K

b2

)
is the total number of partitions of K balls into two

parts with the numbers of balls b2 and K − b2, and
(
K

b1

)
is the total number of partitions of

K balls into two parts with the numbers of balls b1 and K − b1. To calculate (44), we first

calculate Pr
[
E1,{1,2,...,n−1}
b1,a,u

∩ E2,{n+1,n+2,...,N}
b2,u−a−1,u ∩ E3,{n}K−b1−b2,1,u

]
for all a ∈ {1, . . . , u−2}∩Θa(u, n),

b1 ∈ {a, a+ 1, . . . , i+ a− 1} and b2 ∈ {u− a− 1, u− a, . . . , K − i− a− 1}. By using results

from “balls into bins” problem, we have

Pr
[
E1,{1,2,...,n−1}
b1,a,u

∩ E2,{n+1,n+2,...,N}
b2,u−a−1,u ∩ E3,{n}K−b1−b2,1,u

]

=Pr
[
E1,{1,2,...,n−1}
b1,a,u

]
Pr
[
E2,{n+1,n+2,...,N}
b2,u−a−1,u

∣∣E1,{1,2,...,n−1}
b1,a,u

]

× Pr
[
E3,{n}K−b1−b2,1,u

∣∣E1,{1,2,...,n−1}
b1,a,u

∩ E2,{n+1,n+2,...,N}
b2,u−a−1,u

]
, (45)

where Pr
[
E1,{1,2,...,n−1}
b1,a,u

]
=
∑

L1∈La,1

∑
(αn′)n′∈L1

∈Ab1,L1

b1!∏
n′∈L1

αn′ !

∏
n′∈L1

P
αn′

n′ ,

Pr
[
E2,{n+1,n+2,...,N}
b2,u−a−1,u

∣∣E1,{1,2,...,n−1}
b1,a,u

]
=

∑

L2∈La,2

∑

(αn′)n′∈L2
∈Ab2,L2

b2!∏
n′∈L2

αn′!

∏

n′∈L2

P
αn′

n′ ,

Pr
[
E3,{n}K−b1−b2,1,u

∣∣E1,{1,2,...,n−1}
b1,a,u

∩ E2,{n+1,n+2,...,N}
b2,u−a−1,u

]
= PK−b1−b2

n . Next, we calculate

Pr
[
E2,{n+1,n+2,...,N}
b2,u−a−1,u , E3,{n}K−b2,1,u

]

for all a ∈ {0} ∩Θa(u, n), b1 = 0, and b2 ∈ {u− 1, . . . , K − a− i− 1}. By using results from

“balls into bins” problem, we have

Pr
[
E2,{n+1,n+2,...,N}
b2,u−a−1,u ∩ E3,{n}K−b2,1,u

]
= Pr

[
E2,{n+1,n+2,...,N}
b2,u−a−1,u

]
Pr
[
E3,{n}K−b2,1,u

∣∣E2,{n+1,n+2,...,N}
b2,u−a−1,u

]
, (46)

25

where Pr
[
E2,{n+1,n+2,...,N}
b2,u−a−1,u

]
=
∑

L2∈L0,2

∑
(αn′)n′∈L2

∈Ab2,L2

b2!∏
n′∈L2

αn′ !

∏
n′∈L2

P
αn′

n′ , and

Pr
[
E3,{n}K−b2,1,u

∣∣E2,{n+1,n+2,...,N}
b2,u−a−1,u

]
= PK−b2

n .

Finally, we calculate Pr
[
E1,{1,2,...,n−1}
b1,a,u

∩ E3,{n}K−b1,1,u

]
for all a ∈ {u − 1} ∩ Θa(u, n), b2 = 0 and

b1 ∈ {u− 1, . . . , a+ i− 1}. By using results from “balls into bins” problem, we have

Pr
[
E1,{1,2,...,n−1}
b1,a,u

∩ E3,{n}K−b1,1,u

]
= Pr

[
E1,{1,2,...,n−1}
b1,a,u

]
Pr
[
E3,{n}K−b1,1,u

∣∣E1,{1,2,...,n−1}
b1,a,u

]
, (47)

where Pr
[
E3,{n}K−b1,1,u

∣∣E1,{1,2,...,n−1}
b1,a,u

]
= PK−b1

n ,

Pr
[
E1,{1,2,...,n−1}
b1,a,u

]
=

∑

L1∈Lu−1,1

∑

(αn′)n′∈L1
∈Ab1,L1

b1!∏
n′∈L1

αn′ !

∏

n′∈L1

P
αn′

n′ .

Substituting (45), (46) and (47) into (44), we can obtain P ′
i,u,n given in (12)-(15). Therefore, we

complete the proof of Lemma 1.

APPENDIX B: PROOF OF LEMMA 2

By (5) and (17), it can be easily shown that the constraints in (1), (2) and (3) of Problem 1 can

be converted into (18), (19) and (20). Now, we show that the objective function of Problem 1

in (4) can be converted into the objective function of Problem 3. By (5) and (17), we have

Ravg(K,N,M,x)
(a)
=
∑

d∈NK

(
K∏

k=1

pdk

)
K∑

s=1

∑

S⊆K:|S|=s

zs−1 −
∑

d∈NK

(
K∏

k=1

pdk

)
K∑

s=1

∑

S⊆K\K(d):|S|=s

zs−1

=

K∑

s=1

(
K

s

)
zs−1 −

min{K,N}∑

u=1

Pr [|K(D)| = u]

K∑

s=1

(
K − u

s

)
zs−1 (48)

where (a) is due to (5) and (17). Therefore, we complete the proof of Lemma 2.

APPENDIX C: PROOF OF LEMMA 3

The Lagrangian of Problem 3 is given by L(z,η, θ, ν) =
∑K−1

s=0

(
K

s+1

)
zs +

∑K

s=0 ηs (−zs) −∑min{K,N}
u=1 P ′′

u

∑K−u−1
s=0

(
K−u

s+1

)
zs+θ

(∑K

s=0

(
K

s

)
szs −

KM
N

)
+ν
(
1−

∑K

s=0

(
K

s

)
zs

)
, where ηs ≥ 0

is the Lagrange multiplier associated with (18), ν is the Lagrange multiplier associated with (19),

θ is the Lagrange multiplier associated with (20) and η , (ηs)s∈{0,1,...,K}. Thus, we have

∂L

∂zs
(z,η, θ, ν) =

(
K

s+ 1

)
−

min{K,N}∑

u=1

P ′′
u

(
K − u

s+ 1

)
− ηs + θs

(
K

s

)
− ν

(
K

s

)
. (49)

26

Since Problem 3 is a linear programming, z∗ is an optimal solution of Problem 3 if z∗, η∗, ν∗, θ∗

satisfy KKT conditions, i.e., (i) primal constraints: (18), (19), (20), (ii) dual constraints: (a) θ ≥ 0

and (b) ηs ≥ 0 for all s ∈ {0, 1, . . . , K}, (iii) complementary slackness: (a) ηs (−zs) = 0 for

all s ∈ {0, 1, . . . , K} and (b) θ
(∑K

s=0

(
K

s

)
szs −

KM
N

)
= 0, and (iv) ∂L

∂zs
(z,η, θ, ν) = 0 for all

s ∈ {0, 1, . . . , K}. In the following, we obtain z∗, η∗, ν∗, and θ∗ by considering three cases.

Case 1: When M = 0, it can be easily verified that z∗ given in (21), any ν∗ =
∑min{K,N}

u=1 P ′′
uu,

η∗s =
∑min{K,N}

u=1 P ′′
u

(
−u
(
K

s

)
−
(
K−u

s+1

)
+
(

K

s+1

))
+ θ∗s

(
K

s

)
,

θ∗ ∈


max



 max

s∈{1,2,...,K}





min{K,N}∑

u=1

P ′′
u

u
(
K

s

)
+
(
K−u

s+1

)
−
(

K

s+1

)

s
(
K

s

)



 , 0



 ,+∞


 ,

satisfy the KKT conditions in (i)-(iv). Thus, we know that when M = 0, z∗ given in (21) is an

optimal solution of Problem 3.

Case 2: When M = N , it can be easily verified that z∗ given in (21), any ν∗ = Kθ∗, θ∗ ∈[
0,mins∈{0,1,...,K−1}

{∑min{K,N}
u=1 P ′′

u

u(Ks)+(
K−u
s+1)−(

K
s+1)

s(Ks)

}]
, η∗s =

(
K

s+1

)
−
∑min{K,N}

u=1 P ′′
u

(
K−u

s+1

)
+

θ∗(s − K)
(
K

s

)
satisfy the KKT conditions in (i)-(iv). Thus, we know that when M = N , z∗

given in (21) is an optimal solution of Problem 3.

Case 3: When any M ∈
{

N
K
, 2N

K
, . . . , (K−1)N

K

}
, we prove that z∗ given in (21) is an optimal

solution of Problem 3 by proving that z∗ given in (21),

θ∗ = −

min{K,N}∑

u=1

P ′′
u

K∑

k=K−u+1

g′k

(
KM

N

)
, (50)

ν∗ =

min{K,N}∑

u=1

P ′′
u

K∑

k=K−u+1

(
gk

(
KM

N

)
− g′k

(
KM

N

)
KM

N

)
, (51)

η∗s =

(
K

s

)min{K,N}∑

u=1

P ′′
u

K∑

k=K−u+1

(
gk(s)−

(
gk

(
KM

N

)
+ g′k

(
KM

N

)(
s−

KM

N

)))
,

s ∈ {0, 1, . . . , K}, (52)

satisfy the KKT conditions in (i)-(iv), where

gk(s) ,





hk(s) ,
∏K−k

i=0 (K−s−i)
∏K−k

j=0 (K−j)
, s ∈ [0, k)

0, s ∈ [k,K]

, k ∈ {K − u+ 1, . . . , K}. (53)

27

In the following, we show that z∗ in (21), θ∗ in (50), ν∗ in (51), and η
∗ in (52) satisfy KKT

conditions (i), (ii), (iii), and (iv), respectively.

• Prove that z∗ satisfies (i). By substituting z∗ into the primal constraints in (18), (19) and

(20), we can easily verify that z∗ satisfies (i). Thus, we complete proving that z∗ satisfies

(i).

• Prove that θ∗ satisfies (ii.a) and η
∗ satisfies (ii.b). First, we show that θ∗ satisfies (ii.a) by

proving g′k
(
KM
N

)
≤ 0. Since

g′k (s) =





h′
k(s) = −

∏K−k
i=0 (K−s−i)
∏K−k

j=0 (K−j)

∑K−k

i=0
1

K−s−i
, s ∈ (0, k)

0, s ∈ [k,K)

, (54)

we have g′k (s) ≤ 0 for any s ∈ (0, K). Since M ∈
{

N
K
, 2N

K
, . . . , (K−1)N

K

}
, we have

KM
N
∈ {1, 2, . . . , K − 1}. Therefore, we have g′k

(
KM
N

)
≤ 0. Thus, we complete proving

that θ∗ satisfies (ii.a). Next, we show that η∗ satisfies (ii.b) by proving

gk(s)−

(
gk

(
KM

N

)
+ g′k

(
KM

N

)(
s−

KM

N

))
≥ 0. (55)

Consider the following four cases.

1) When s ∈ [0, k) and KM
N
∈ (0, k), (55) is equivalent to

hk(s) ≥ hk

(
KM

N

)
+ h′

k

(
KM

N

)(
s−

KM

N

)
. (56)

Since for any convex set X and any two points x, y ∈ X , f(y) ≥ f(x)+f ′(x)(y−x) if and

only if f(x) is convex [24], we prove (56) by proving that hk(s) is convex over s ∈ [0, k).

Since h′′
k(s) = hk(s)

((∑K−k

i=0
1

K−s−i

)2
−
∑K−k

i=0
1

(K−s−i)2

)
≥ 0 for all s ∈ [0, k), by

second-order condition for convexity [24], we know that hk(s) is convex over s ∈ [0, k).

2) When s ∈ [0, k) and KM
N
∈ [k,K), (55) is equivalent to hk(s) ≥ 0, which holds for all

s ∈ [0, k).

3) When s ∈ [k,K] and KM
N
∈ (0, k), (55) is equivalent to

∑K−k

i=0

s−KM
N

K−KM
N

−i
≥ 1, which

always holds since
∑K−k

i=0

s−KM
N

K−KM
N

−i
≥
∑K−k

i=0

k−KM
N

K−KM
N

−i
= 1 +

∑K−k−1
i=0

k−KM
N

K−KM
N

−i
≥ 1.

4) When s ∈ [k,K] and KM
N
∈ [k,K), (55) is equivalent to 0 ≥ 0, which always holds.

Thus, we complete proving that η∗ satisfies (ii.b).

• Prove that z∗,η∗ satisfies (iii.a) and z∗, θ∗ satisfies (iii.b). First, we show that z∗,η∗ satisfies

(iii.a). Since η∗KM
N

= 0 and z∗s = 0 for all s ∈ {0, 1, . . . , K} \
{

KM
N

}
, we know that

28

η∗s (−zs) = 0 for all s ∈ {0, 1, . . . , K}. Thus, we complete proving that z∗,η∗ satis-

fies (iii.a). Next, we show that z∗, θ∗ satisfies (iii.b). Since
∑K

s=0

(
K

s

)
sz∗s = KM

N
, we have

θ∗
(∑K

s=0

(
K

s

)
sz∗s −

KM
N

)
= 0. Thus, we complete proving that z∗, θ∗ satisfies (iii.b).

• Prove that z∗,η∗, ν∗ and θ∗ satisfies (iv). For any s ∈ {0, 1, . . . , K}, we have

∂L

∂zs
(z∗,η∗, θ∗, ν∗) =

min{K,N}∑

u=1

P ′′
u

((
K

s+ 1

)
−

(
K − u

s+ 1

)
−

K∑

k=K−u+1

gk(s)

(
K

s

))
.

By Pascal’s identity, i.e.,
(
k+1
t

)
=
(
k

t

)
+
(

k

t−1

)
, we have

(
K

s+1

)
−
(
K−u

s+1

)
=
∑K

k=K−u+1

(
k−1
s

)
.

Furthermore, for any s ∈ {0, 1, . . . , K}, we have gk(s) =
(k−1

s)
(Ks)

. Therefore, for any s ∈

{0, 1, . . . , K}, we have ∂L
∂zs

(z∗,η∗, θ∗, ν∗) = 0. Thus, we complete proving that z∗,η∗, ν∗

and θ∗ satisfies (iv).

Combining the above three cases, we know that z∗, η∗, θ∗ and ν∗ satisfy the KKT conditions

in (i)-(iv). Therefore, we complete the proof of Lemma 3.

APPENDIX D: PROOF OF LEMMA 4

Under Conditions 1 and 2, for the simplified problem, the average load, the file partition

constraints, and the cache memory constraint are the same as those of Problem 2. It remains to

transform the subpacketization level constraint in (23) in terms of the vector x to (24) in terms

of the vector y. First, by Theorem 1 of [13], the subpacketization level constraint in (23) is

equivalent to

‖xn‖lgst,F̂ ≥ ‖xn‖1, n ∈ N . (57)

By the file partition constraint in (2), we have

‖xn‖1 =
K∑

s=0

∑

S∈{Ŝ⊆K:|Ŝ|=s}

xn,S = 1, n ∈ N . (58)

By (57) and (58), we have

‖xn‖lgst,F̂ ≥ 1, n ∈ N . (59)

Next, under Condition 1, it is clear that xn = Uny, n ∈ N . Thus, by (59), we can obtain (24).

Therefore, we complete the proof of Lemma 4.

29

APPENDIX E: PROOF OF LEMMA 5

Let v be an L-dimensional vector. Denote fm(v) , (fm,v
j)j∈{1,2,...,L}, where

fm,v

[j] =




1, j ∈ {1, . . . , m}

0, otherwise

, m ∈ {1, 2, . . . , L}, (60)

and [j] represents the index of the j-th largest element in v. By [13], we know that g(y) =

UT
n f

F̂ (Uny) is a subgradient of ‖Uny‖lgst,F̂ . In the following, we first calculate f F̂ (Uny). Let

yn,s[i] denote the i-th largest element in yn, where s[i] , [i] − 1. Since Uny is equivalent to xn

under Condition 1, the
(∑i−1

i′=1

(
K

s[i]

)
+ 1
)

-th to the
(∑i

i′=1

(
K

s[i]

))
-th largest elements in Uny all

equal to yn,s[i]. Thus, the set of the indices of the F̂ -th largest element in Uny is

ΩF̂ ,Uny =
⋃

i∈{1,...,I−1}





s[i]−1∑

s′=0

(
K

s′

)
+ 1, . . . ,

s[i]∑

s′=0

(
K

s′

)


⋃




s[I]−1∑

s′=0

(
K

s′

)
+ 1, . . . ,

s[I]−1∑

s′=0

(
K

s′

)
+ F̂ −

I−1∑

i=1

(
K

s[i]

)
 . (61)

Thus, we have f F̂ (Uny) , (f F̂ ,Uny
j)j∈{1,2,...,2K}, where

f F̂ ,Wny
j =




1, j ∈ ΩF̂ ,Uny

0, otherwise

. (62)

Next, we calculate UT
n . Let UT

n , (um,h)m∈{1,2,...,(K+1)N},h∈{1,2,...,2K}, and lm , (m−1) mod (K+

1). From the definition of Un, we know that for any m ∈ {1, 2, . . . , N(K + 1)},

um,h =




1, m = n, h ∈

{∑lm−1
l=0

(
K

l

)
+ 1, . . . ,

∑lm
l=0

(
K

l

)}

0, otherwise

. (63)

By (61), (62) and (63), we can obtain gn(y) = UT
n f

F̂ (Uny), indicating (27). Therefore, we

complete the proof of Lemma 5.

REFERENCES

[1] S. Jin, Y. Cui, H. Liu, and G. Caire, “Uncoded placement optimization for coded delivery,” in IEEE WiOpt, May 2018,

pp. 1–8.

[2] Cisco, “Cisco visual networking index: Global mobile data traffic forecast update, 2016 - 2021,” March 2017.

30

[3] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Multicast-aware caching for small cell networks,” in IEEE WCNC,

April 2014, pp. 2300–2305.

[4] Y. Cui, D. Jiang, and Y. Wu, “Analysis and optimization of caching and multicasting in large-scale cache-enabled wireless

networks,” IEEE Trans. Wireless Commun., vol. 15, no. 7, pp. 5101–5112, July 2016.

[5] Y. Cui and D. Jiang, “Analysis and optimization of caching and multicasting in large-scale cache-enabled heterogeneous

wireless networks,” IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 250–264, Jan 2017.

[6] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867,

May 2014.

[7] S. Jin, Y. Cui, H. Liu, and G. Caire, “Structural properties of uncoded placement optimization for coded delivery,” CoRR,

vol. abs/1707.07146, 2017.

[8] A. M. Daniel and W. Yu, “Optimization of heterogeneous coded caching,” CoRR, vol. abs/1708.04322, 2017.

[9] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory tradeoff for caching with uncoded prefetching,”

IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 1281–1296, Feb 2018.

[10] L. Tang and A. Ramamoorthy, “Coded caching with low subpacketization levels,” in IEEE Globecom Workshops, Dec.

2016, pp. 1–6.

[11] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with linear subpacketization is possible using ruzsa-

szeméredi graphs,” in IEEE ISIT, Jun. 2017, pp. 1237–1241.

[12] M. Cheng, Q. Yan, X. Tang, and J. Jiang, “Coded caching schemes with low rate and subpacketizations,” CoRR, vol.

abs/1708.06650, 2017.

[13] J.-y. Gotoh, A. Takeda, and K. Tono, “Dc formulations and algorithms for sparse optimization problems,” Math

Programming, pp. 1–36, 2017.

[14] P. Flajolet and R. Sedgewick, Analytic combinatorics, 2009.

[15] H. A. Le Thi, T. P. Dinh, H. M. Le, and X. T. Vo, “Dc approximation approaches for sparse optimization,” European

Journal of Operational Research, vol. 244, no. 1, pp. 26–46, 2015.

[16] S. Shalev-Shwartz, N. Srebro, and T. Zhang, “Trading accuracy for sparsity in optimization problems with sparsity

constraints,” SIAM Journal on Optimization, vol. 20, no. 6, pp. 2807–2832, 2010.

[17] W. Fu, “Penalized regressions: The bridge versus the lasso,” Journal of Computational and Graphical Statistics, pp.

397–416, 1998.

[18] P. S. Bradley and O. L. Mangasarian, “Feature selection via concave minimization and support vector machines.” in ICML,

vol. 98, 1998.

[19] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the zero norm with linear models and kernel methods,” J.

Mach. Learn. Res., vol. 3, pp. 1439–1461, Mar. 2003.

[20] T. Pham Dinh and H. A. Le Thi, “Recent advances in dc programming and dca,” in Trans on Computational Intelligence,

2014, pp. 1–37.

[21] I. CVX Research, “CVX: Matlab software for disciplined convex programming, version 2.0,” http://cvxr.com/cvx, Aug.

2012.

[22] T. Lipp and S. Boyd, “Variations and extension of the convex–concave procedure,” Optimization and Engineering, vol. 17,

no. 2, pp. 263–287, 2016.

[23] C. Wang, S. H. Lim, and M. Gastpar, “A new converse bound for coded caching,” CoRR, vol. abs/1601.05690, 2016.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.

