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Abstract—Quality of service (QoS) provisioning in next-
generation mobile communications systems entails a deep un-
derstanding of the delay performance. The delay in wireless
networks is strongly affected by the traffic arrival process and
the service process, which in turn depends on the medium
access protocol and the signal-to-interference-plus-noise ratio
(SINR) distribution. In this work, we characterize the conditional
distribution of the service process given the point process in
Poisson bipolar networks. We then provide an upper bound on
the delay violation probability combining tools from stochastic
network calculus and stochastic geometry. Furthermore, we ana-
lyze the delay performance under statistical queueing constraints
using the effective capacity formulation. The impact of QoS
requirements, network geometry and link distance on the delay
performance is identified. Our results provide useful insights
for guaranteeing stringent delay requirements in large wireless
networks.

Index Terms—Poisson bipolar networks, stochastic geometry,
stochastic network calculus, effective capacity, delay, QoS.

I. INTRODUCTION

Data traffic has been growing tremendously over the
last decade, fueled by the ubiquity of smart devices and
bandwidth-demanding applications. Current wireless networks
are confronted with an avalanche of heterogeneous traffic
with diverse requirements in terms of rate, reliability and
latency. Emerging mobile communication systems will not
only be designed to provide enhanced spectral efficiency and
coverage, but they should also meet the delay requirements
of new delay-sensitive applications, such as industrial control,
automated driving and healthcare. Different applications are
expected to have very diverse QoS requirements in terms of
throughput and delay. QoS provisioning is instrumental for
next-generation low latency networks; yet it is particularly
challenging mainly due to time-varying wireless channels and
spatio-temporal randomness in traffic arrivals and interfer-
ers locations. Ensuring deterministic (hard) QoS guarantees
would most likely result in extremely conservative perfor-
mance. As a result, providing statistical (soft) QoS guarantees,
in terms of effective bandwidth/capacity and bounds in queue
length and delay violation probability, stands as a powerful
approach to characterize delay QoS provisioning in wireless
networks [1]–[4].

There have been several attempts at quantifying delay in
wireless networks, and queueing theory has been instrumental
in providing exact backlog and delay characterization. How-
ever, queueing analysis is largely restricted to networks with
a single or few interacting queues with random arrivals and
typically provides the average delay rather than the worst-
case delay, which is of cardinal importance in mission-critical

applications. The delay in wireless networks is strongly af-
fected by the queueing process and the service process of the
packets. The latter is mainly governed by the access protocol
and the link quality, i.e., the received SINR. The SINR in turn
critically depends on the link distance and the network geom-
etry on which the path loss and the fading characteristics are
dependent upon. Although the locations of nodes in wireless
networks are traditionally modeled by regular grids, the spatial
node distribution in emerging networks (e.g. heterogeneous
cellular networks) is irregular. Stochastic geometry and point
process theory have recently proved to be powerful mathemat-
ical tools for analyzing and designing large wireless networks
with spatial randomness. These approaches have focused on
metrics such as coverage probability and spatial average rate,
and calculate spatial averages by considering a snapshot of
the network. Analyzing the delay in large spatial networks is
very challenging due to the correlation of interference [5]–
[7] and the large number of interacting queues. The local
delay, i.e., the random number of transmission attempts until
a packet is successfully transmitted to its target receiver, is
proposed in [8] and extended in [9]. Local delay assumes fully
backlogged nodes, thus it captures the transmission delay, but
not the queueing delay. Throughput maximization subject to
delay constraints in two-tier spatial networks is studied in [10].

In this paper, we investigate the delay performance of
large wireless networks in the presence of statistical QoS
constraints, which are imposed as limits on the delay violation
and buffer overflow probabilities. We start by characterizing
the distribution of the service process in Poisson bipolar
networks. The results are exploited in order to derive a bound
on the delay violation probability using tools from stochastic
network calculus [2], [11], [12] and the effective capacity.
For relevant results, we perform space-time scale separation
and consider static or low-mobility spatial networks. This
results in temporal interference correlation and the conditional
rate given the point process will vary from node to node.
Thus, both delay violation probability and effective capacity
are random variables whose statistics ought to be found.
Our analytical results show the effect of inter-node distances,
spatial randomness, and QoS constraints on the delay violation
and effective capacity performance of large spatial networks.

II. SYSTEM MODEL

A. Network Model

We consider a communication network in which the lo-
cations of the (potential) transmitters are modeled as a ho-
mogeneous Poisson point process (PPP) Φ = {xi} ⊂ R2
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of intensity λ. Each transmitter has an associated receiver at
fixed distance r in a random direction (denoted by Rx for a
transmitter x). This model is commonly referred to as Poisson
bipolar network.

The small scale fading between two nodes is independent
and identically distributed (i.i.d.) across time and space (unless
otherwise stated) and is exponentially distributed (Rayleigh
fading). The transmit power at all nodes is fixed to 1. The
large-scale path loss function is denoted by `(x) : R2 →
[0,∞] and is assumed to be a non-increasing function of
‖x‖ and

∫
B(o,d)

`(x)dx < ∞, ∀d, where B(o, d) is the ball
of radius d centered around the origin o = (0, 0). In this
paper, we focus on a non-bounded model `(x) = ‖x‖−α,
α > 2. Time is divided into discrete slots of equal duration
and transmission attempts are synchronized. We focus on
the interference-limited case, but our analysis can be easily
extended including background noise.

The received signal-to-interference ratio (SIR) in time slot
t is given by

SIRRx,t =
htxRx`(r)∑

y∈Φt\{x} h
t
yRx

`(y −Rx)
(1)

where htxy is the small-scale fading coefficient between nodes
x and y in time slot t, and Φt ⊂ Φ is the set of active
interferers in time slot t. The interference at time slot t can
be alternatively written as

IRx,t =
∑

y∈Φ\{x}

htyRx`(y −Rx)1(y ∈ Φt) (2)

where 1(·) is the indicator function.
The success probability of a typical link is given by

P!o(SIRRo,t > ξ) = lim
δ→∞

∑
x∈Φ∩B(o,δ)

P(SIRRx,t > ξ | Φ)

λπpδ2
.

(3)
We focus on the typical link with a transmitter located at the
origin and we drop the time and node subindexes whenever
evident.

We denote Ps(ξ) , P(SIR > ξ | Φ) the success probability
given the point process (i.e., conditioned on the location of
interferers) and that the transmitter of interest is active, which
is taken over the fading and the random access scheme. The
conditional probability Ps(ξ) can be interpreted as the mark of
a virtual typical link placed at the origin, whose distribution is
given by P!o(Ps(ξ) > x), x ∈ [0, 1], where P!o is the reduced
Palm probability (for a PPP we have P!o = P) [13].

B. Traffic Model

We consider a system-theoretic stochastic model as in [14],
which involves a queueing system with stochastic arrival and
departure processes described by bivariate stochastic processes
A(τ, t) and D(τ, t), respectively. A fluid-flow traffic model is
adopted and the system starts with empty queues at t = 0.
The number of bits arriving at the queue at a discrete time
instant i is modeled by the arrival process ai. For successful
transmissions, the service process is equal to the instantaneous

capacity. In case of transmission errors, the service is con-
sidered to be zero as no data is removed from the queue.
The departure process di describes the number of bits that
arrive successfully at the destination and depends on both the
service process and the number of bits waiting in the queue.
Acknowledgments and feedback messages are assumed to be
instantaneous and error-free. To avoid data loss, data is stored
in a buffer or queue, in which it will remain for a random
time until the receiver indicates that data was successfully
decoded. At each time slot, node j ∈ Φ independently
transmits with probability pj . The steady-state probability pj ,
∀j ∈ Φ depends on the arrival process of j-th node, the
transmit probability of the other nodes pi, ∀i ∈ Φ, i 6= j,
and the channel of all nodes. A node remains idle when there
is no traffic arrival and the queue is empty due to the early
arrival and late departure assumption. The aforementioned two
events can be assumed independent under non-saturated or
light traffic conditions. Unless otherwise stated, we set pi = p,
∀i ∈ Φ \ {o}.

The cumulative arrival and departure processes for any 0 ≤
τ ≤ t, measured in bits of the flow during time interval [τ, t),
are defined as

A(τ, t) =

t−1∑
i=τ

ai, and D(τ, t) =

t−1∑
i=τ

di. (4)

For lossless first-in first-out (FIFO) queueing systems, the
delay W (t) at time t, i.e., the number of slots it takes for
an information bit arriving at time t to be received at the
destination, is defined as

W (t) = inf{u > 0 : A(0, t)/D(0, t+ u) ≤ 1}. (5)

and the delay violation probability is given by

Λ(w, t) = sup
t≥0

P [W (t) > w] .

III. SERVICE PROCESS CHARACTERIZATION

The instantaneous rate or capacity Ct of the channel at
time t can be expressed as a function of the instantaneous
SNR or SIR at this time. Assuming flat-fading, Gaussian
codebooks and ideal link adaptation, the instantaneous rate
can be expressed as

Ct = N log(1 + SIRt) (nats/s) (6)

where N is the number of transmitted symbols per time slot.
The symbol rate is usually related to the bandwidth W as
N = 2W (Shannon-Harltley theorem). In the remainder, we
assume N = 1 to simplify notation and we reincorporate this
parameter into the equations in the numerical results.

The service process (or cumulative capacity) through period
(τ, t] is defined as

S(τ, t) ,
t−1∑
i=τ

Ci, (7)

and is a random variable with cumulative distribution function
(cdf) FS(τ,t)(x) = P(S(τ, t) ≤ x), x > 0.



If Ci and Cj , i 6= j, are independent, then fS(τ,t) = fCτ+1
∗

. . .∗fCt , where ∗ denotes the convolution operation, i.e., (f ∗
g)(x) =

∫ +∞
−∞ f(x− y)g(y)dy. Hence,

FS(τ,t)(x) =

∫ x

−∞
fS(τ,t)(y)dy. (8)

An upper bound can be derived using Young’s inequality,
which states ‖f ∗ g‖r ≤ ‖f‖p‖g‖q for 1/p+ 1/q = 1/r + 1,
f ∈ Lp(Rd) and g ∈ Lq(Rd). When all marginal distributions
are identical (FCi ∼ FC ,∀i), the probability density function
(pdf) of the service process is given by the n-fold convolution
with n = t− τ , i.e., fS(τ,t) = f∗nC .

When the length of the period t − τ is large, FS(τ,t)(x)
converges to a normal distribution (Central Limit Theorem)

FS(τ,t)(x) ≈ Q
(
x− E[S(τ, t)]

σ2[S(τ, t)]

)
, (9)

with mean E[S(τ, t)] =
t∑

i=τ+1

E[Ci] and variance

σ2[S(τ, t)] =
t∑

i=τ+1

σ2[Ci], where Q(x) ,∫ x
−∞

1√
2π
e−y

2/2dy.

If Ci and Cj , i 6= j, are not independent, the exact
calculation of the service rate distribution seems to be highly
involved. For that, we resort to the Fréchet-Hoeffding bounds
on copulas [15], [16], which give that cdf of the cumulative
capacity satisfies

F lS(τ,t)(z) ≤ FS(τ,t)(z) ≤ FuS(τ,t)(z) (10)

where

FuS(τ,t)(z) , inf
t∑

i=τ+1
zi=z

[
t∑

i=τ+1

FCi(zi)

]
1

,

F lS(τ,t)(z) , sup
t∑

i=τ+1
zi=z

[
t∑

i=τ+1

FCi(zi)− (t− τ − 1)

]+

.

where [f ]+ = max(f, 0), [f ]1 = min(f, 1), and FCi(z) =
P(SIRi ≤ ez − 1) = FSIRi(e

z − 1) = 1− Ps(e
z − 1), z > 0.

A. Moment Generating Function

The service rate distribution can also be characterized via
the moment generating function (MGF) MS(τ,t)(θ), θ ∈ R,
which is given by

MS(τ,t)(θ) , E
[
eθS(τ,t)

]
=

∫ ∞
−∞

eθzdFS(τ,t)(z).

For the independent case, we have M
ind

S(τ,t)(θ) =∏t−1
i=τ MCi(θ) and for the i.i.d. case, we have M

iid

S(τ,t)(θ) =

(MCi(θ))
t−τ , where MS(τ,t)(θ) = MS(τ,t)(−θ).

The distribution of the service process can be calculated

using Gil-Pelaez theorem [17]

FS(τ,t)(z) =
1

2
− 1

π

∫ ∞
0

=[e−jtxMS(τ,t)(jt)]
dt

t

=
1

2πj

∫ c+j∞

c−j∞
elogMS(τ,t)(t)−tx dt

t

with c ∈ R>0 in the convergence strip of the cumulant
generating function logMS(τ,t)(t). The distribution can be
conveniently evaluated numerically using Lévy’s inversion
theorem [18].

B. Mellin transform

For calculating the delay violation probability using
stochastic network calculus, the service process is character-
ized in terms of its Mellin transform (MT).

The MT of a nonnegative random variable X is defined
as MX(s) , E

[
Xs−1

]
= M logX(s − 1) for any s ∈ C for

which the expectation exists. For the service process, we have

MS(τ,t)(s) , E[(S(τ, t))s−1] =

∫ ∞
−∞

zs−1dFS(τ,t)(z).

According to (9) and (10), the MT of the service process for
the independent and dependent case is given by, respectively

Mind
S(τ,t)(s) ≈

∫ ∞
−∞

zs−1dQ

(
z − E[S(τ, t)]

σ2[S(τ, t)]

)
,

Mdep,l
S(τ,t)(s) =

∫ ∞
−∞

zs−1dF lS(τ,t)(z) ≤M
dep
S(τ,t)(s)

≤
∫ ∞
−∞

zs−1dFuS(τ,t)(z) =Mdep,u
S(τ,t)(s)

where the upper and lower bounds hold for s < 1.

IV. DELAY PERFORMANCE IN STATIC NETWORKS

In this section, we analyze the QoS performance in terms of
delay violation probability and effective capacity. We consider
a static network, where the random locations of nodes do not
vary with time, and perform the analysis given the locations
of the nodes, i.e., conditioned on Φ. The conditional success
probability Ps(ξ) is a random variable that depends on the
spatial distribution, which implies that the conditional service
rate varies from node to node. This means that some nodes
have an arbitrarily small service rate and consequently an
arbitrarily large delay. Instead of deriving spatial averages for
the delay metrics, we aim at obtaining the spatial distribution
of the delay violation probability and of the effective capacity.
For that, we derive the conditional service rate and calculate
the delay metrics for each draw of points in the space. As
a result, the delay violation probability and the effective ca-
pacity are random variables and we are interested in deriving
their distribution.

A. Delay Violation Probability

In this section, we obtain an upper bound on the delay
violation probability using a statistical characterization of
the arrival and service processes in the exponential (or SIR)
domain [14]. First, we convert the cumulative processes in the



bit domain to the SIR domain (denoted by calligraphic letters)
through the exponential function, i.e.,

A(τ, t) = eA(τ,t), D(τ, t) = eD(τ,t), S(τ, t) = eS(τ,t).

An upper bound on the delay violation probability can be
computed by means of the Mellin transforms of A(τ, t) and
S(τ, t) [14]:

pv(w) = inf
s>0
{K(s,−w)} ≥ Λ(w) (11)

where K(s,−w) is the steady-state kernel, defined as

K(s,−w) = lim
t→∞

t∑
u=0

MA(1 + s, u, t)MS(1− s, u, t+ w).

(12)
For the arrival process, assuming that A(τ, t) has stationary

and independent increments, the MT becomes independent of
the time instance, i.e.,

MA(s, τ, t) = E

( t∏
i=τ+1

eai

)s−1


= E
[
ea(s−1)

]t−τ
=Mα(s)t−τ

where α = ea denotes the non-cumulative arrival process in
the SIR domain. Using Chang’s traffic characterization [2],
we consider the traffic class of (σ(s), ρ(s))-bounded arrivals,
whose MGF in the bit domain is bounded by

1

s
logE[esA(τ,t)] ≤ ρ(s) · (t− τ) + σ(s) (13)

for some s > 0. Restricting ourselves to the case where ρ is
independent of s and σ(s) = 0, we have

Mα(s) = eρ(s−1). (14)

For the service process, as said before, we consider a static
network and condition on Φ (random but static over time).
Therefore, the SIRs are conditionally independent and the
random variations come from independent block fading for
all active links. The MT of the (conditional) service process
is given by

MS(s, τ, t) = E

(t−1∏
i=τ

(1 + SIRi)

)s−1

| Φ


= E

[
(1 + SIR)s−1 | Φ

]t−τ
= (Mγ(s))

t−τ
.(15)

Plugging (14) and (15) into (12) and following [14], the
steady-state kernel can be finally rewritten as

K(s,−w) =
(Mγ(1− s))w

1−Mα(1 + s)Mγ(1− s)
, (16)

for any s > 0 under the stability conditionMα(1+s)Mγ(1−
s) < 1. The upper bound on the conditional delay violation
probability (11) is thus reduced to

pv(w) = inf
s>0

{
(Mγ(1− s))w

1−Mα(1 + s)Mγ(1− s)

}
. (17)

The above delay bound can be calculated using the follow-

ing result.

Proposition 1. The MT of the service process in static
networks is given by MS(τ,t)(s) = (Mγ(s))t−τ where

Mγ(s) = 1 + (s− 1)

∫ ∞
0

Ps(y)(1 + y)s−2dy, for s < 1

where Ps(ξ) =
∏

x∈Φ\{o}

( p

1 + ξrα‖x−Ro‖−α
+ 1− p

)
.

Proof: See Appendix I.

The above semi-closed form expression requires numerical
integration. For easier numerical evaluation and in order to
gain insights, we provide the following upper bound on
Mγ(s), which in turn provides an upper bound on the
delay violation probability. Taking into account only the
interference from the nearest interfering transmitter xmin =
arg minx∈Φ\{o} ‖x−Ro‖, we have

Mu1
γ (s) ≤ 1 + (s− 1)

∫ ∞
0

(1 + y)s−2

1 + yrα‖xmin −Ro‖−α
dy

= 1 +
(s− 1)2F1 (2− s, 2− s; 1− s; 1− Z)

Zs−1(2− s)
(a)

≤ 1 + (s− 1)[(3− 2s)Z]−1/2 =Mu2
γ (s)

where 2F1(a, b; c;x) is the Gauss hypergeometric function,
Z = rα‖xmin − Ro‖−α and (a) follows applying Cauchy-
Schwarz inequality.

Calculating the the distribution of the (conditional) delay
violation probability P!o(pv(w) > x), x ∈ [0, 1] is complex.
The distribution of the upper bound based on nearest neighbor
can be calculated as follows. Since the delay violation prob-
ability pv(w) is a decreasing function (say g) of the random
variable ‖xmin‖, we have

P!o(pv(w) > x) ≤ P!o(puv(w) > x) = P!o(g(‖xmin‖) > x)

= P!o(‖xmin‖ > g−1(x)) = e−λπ(g−1(x))2 .

B. Effective Capacity

The effective capacity is defined as the maximum constant
arrival rate at a buffer that can be supported by the service
process while satisfying statistical QoS requirements specified
by the QoS exponent θ [3]. For time-varying arrival rates,
effective capacity specifies the effective bandwidth of the
arrival process that can be supported by the channel.

Let Q be the the stationary queue length, then θ is the decay
rate of the tail distribution of the queue length Q

lim
q→∞

logP(Q ≥ q)
q

= −θ (18)

and from Gärtner-Ellis Theorem the buffer violation proba-
bility for large qmax is approximated as P(Q ≥ qmax) ≈
e−θqmax . Therefore, larger θ corresponds to more strict QoS
constraints, while smaller θ implies looser constraints.

In block fading channels with coherence time T , the effec-



tive capacity simplifies to

R(θT ) , − 1

θT
logE

[
e−θTCt

]
= − 1

θT
logMγ(1− θT )

= − 1

θT
logE

[
(1 + SIRt)

−θT ]
Using that for a positive random variable X , E[X] =∫∞

0
P(X ≥ t)dt, we can have the following alternative

expression for Ψ(θT ) = E
[
(1 + SIRt)

−θT ]
Ψ(θT ) = 1−

∫ 1

0

Ps(t
− 1
θT − 1)dt.

The distribution of the effective capacity can be calculated
using Gil-Pelaez theorem, which involves numerical integra-
tion and does not provide much insight on the behavior of
the effective capacity. For that, we establish below bounds
on the distribution using classical concentration inequalities.
The simplest upper bound on the complementary cdf (ccdf)
follows from Markov’s inequality:

P!0(R(θT ) > x) ≤ E[R(θT )]

x
(19)

where the first moment can be upper bounded as follows:

E[R(θT )] = − 1

θT
E[log Ψ(θT )]

(a)

≤ −1

θ
logE[Ψ(θT )]

(b)
= − 1

θT
log

(
1−

∫ 1

0

E!o[Ps(t
− 1
θT − 1)]dt

)
(c)
= − 1

θT
log

(
1−

∫ 1

0

e−λIdt

)
= − 1

θT
log

(
1−

∫ 1

0

e−λπpr
2C(α)(t−

1
θT −1)2/αdt

)
= − 1

θT
log

(
1− θT

∫ ∞
0

e−λπpr
2C(α)y2/α

(1 + y)1+θT
dy

)

where I =

∫
R2

(
1− 1

1 + (t−
1
θT − 1)rα‖x−Ro‖−α

)
dx,

and C(α) = 2
αB(1 − 2/α, 2/α) with B(a, b) denoting the

beta function. Step (a) follows using Jensen’s inequality, (b) by
exchanging expectation and integration order (Fubini-Tonelli’s
Theorem), (c) from the probability generating functional of
the PPP. The first moment can be further bounded applying
Cauchy-Schwarz inequality in the integral inside the loga-
rithm.

A lower bound on the ccdf of the effective capacity can
be found using the Paley-Zygmund or the reverse Markov
inequality, which however involves the calculation of the
mean and the variance of R(θT ). Using the upper bound on
the Mellin transform based on the nearest interferer, we can
establish the following lower bound on the ccdf:

P!0(R(θT ) > x) = P!0(Mγ(1− θT ) < e−xθT )

≥ P!0(Mu2
γ (1− θT ) < e−xθT )

= P!0
(
Z−1/2 < ζ

)
= 1− e−λπr

2ζ
4
α

where ζ = e−xθT−1
θT (1+2θT )−1/2 .

V. NUMERICAL RESULTS

In this section, we validate the above analysis and provide
numerical evaluation of the delay performance. The duration
of a slot is set to T = 1 ms and the blocklength is N = 100.
For the Poisson bipolar network we have a density of λ = 1
node/km2 and pathloss exponent α = 3.5.

We start by validating the upper bound on the delay viola-
tion probability with Monte Carlo simulations. In Figure 1, we
compare the delay violation probability and its bound for link
distance r = 0.3 km. We corroborate that the analytical bound
follow the trend of the simulated curve, having a difference
of about 1− 2 ms (equivalent to one to two slots).
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Figure 1. Delay violation probability and associated bound as a function of
the target delay for ρ = 32 kbps and ρ = 64 kbps.

In Figure 2, we compare the distribution of the delay
violation probability and that of the analytical bound for
ρ = 64 kbps r = 0.2 km. We observe that the analytical
bound becomes tighter for ω increasing.
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Figure 2. Distribution of delay violation probability for ω = 1ms and ω =
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Finally, in Figure 3, we plot the delay violation probability
and its analytical bound as a function of the inter-node
distance r for two different values of ω. As expected, the more
stringent the delay constraint is, the closer the transmitter and
its intended receiver should be. Alternatively, for fixed link
distance, tighter delay constraints can be guaranteed for lower
density of interferers λ.
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Figure 3. Delay violation probability and associated bound as a function of
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VI. CONCLUSIONS

We have investigated the delay performance of large wire-
less networks in the presence of statistical QoS constraints.
We have characterized the distribution of the conditional delay
violation probability and effective capacity in Poisson bipolar
networks. Our results provide useful insight into providing
delay guarantees in random spatial networks. From a broader
perspective, this paper is a first attempt to combine stochastic
network calculus with stochastic geometry as a means to quan-
tify the delay in wireless networks with spatial randomness.

ACKNOWLEDGMENT

The work of N. Pappas was supported in part by the Center
for Industrial Information Technology (CENIIT).

APPENDIX I
PROOF OF PROPOSITION 1

We start by deriving the conditional success probability
Ps(ξ), i.e., the probability that a transmission will be suc-
cessful by exceeding ξ conditioned upon Φ [19].

Ps(ξ) = P(SIRt > ξ | Φ)

= P
(
htoRor

−α > ξIRo,t | Φ
)

(a)
= E (exp (−ξrαIRo,t) | Φ)

=E
(

exp
(
−

∑
x∈Φ\{o}

ξrαhtxRo‖x−Ro‖
−α1(x ∈ Φt)

)
| Φ
)

=
∏

x∈Φ\{o}

E
(
exp

(
−ξrαhtxRo‖x−Ro‖

−α1(x ∈ Φt)
)
| Φ
)

(b)
=

∏
x∈Φ\{o}

( p

1 + ξrα‖x−Ro‖−α
+ 1− p

)
.

where (a) and (b) follows because the fading coefficients are
i.i.d. random variables with exponential distribution of unit
mean.

Therefore, using integration by parts, we have

Mγ(s) =

∫ ∞
0

(1 + y)s−1dP(SIR < y | Φ)

= −(s− 1)

∫ ∞
0

(1 + y)s−2P(SIR < y | Φ)dy

= 1 + (s− 1)

∫ ∞
0

(1 + y)s−2Ps(y)dy.
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