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Abstract—We consider a multi-user two-ray ground reflec-
tion scenario with unknown distances between transmitter and
receivers. By using two frequencies per user in parallel, we
can mitigate possible destructive interference and ensure ultra-
reliability with only very limited knowledge at the transmitter. In
this work, we consider the problem of assigning two frequencies
to each receiver in a multi-user communication system such that
the average minimum receive power is maximized. In order to
solve this problem, we introduce a generalization of the quadratic
multiple knapsack problem to include heterogeneous profits and
develop an algorithm to solve it. Compared to random frequency
assignment, we report a gain of around 6 dB in numerical
simulations.

Index Terms—Ultra-reliable communications, Two-ray ground
reflection, Knapsack problems, mmWave, Worst-case design.

I. INTRODUCTION

Reliability is a major requirement for many modern ap-
plications of wireless communication systems [1], [2]. In
particular, this includes autonomous vehicles, e.g., self-driving
cars and unmanned aerial vehicles (UAVs). It is therefore of
great interest to develop techniques, which enable ultra-reliable
communications. This is especially important for scenarios
where only limited information, e.g., channel state information
(CSI), is available at the communication parties, e.g., due to
high mobility or in frequency-division duplex (FDD) systems.

Among others, it has been observed that negative dependency
between channel gains can significantly improve reliability [3]–
[5]. The basic idea is to establish diversity and ensure that
always one communication link is available, if the others
fail. In the following, we will use this idea to develop a
simple frequency diversity scheme that enables ultra-reliable
communications in two-ray ground reflection scenarios. In this
two-ray model, it is assumed that only one significant multipath
component exists in addition to a line-of-sight (LoS) connection.
The second component is typically caused by a single reflection
on a ground surface. This could occur in flat outdoor terrain [6],
on large concrete areas, e.g., airports [7], and for a UAV
flying above water [8], [9]. It has also been observed that
the two-ray model can be appropriate for vehicle-to-vehicle
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(V2V) communication scenarios [10], [11]. This includes high
frequency bands like millimeter wave (mmWave) [12]–[14].

In general, the curvature of the Earth’s surface needs to be
considered for long-distance outdoor settings and accurate
models like the curved-Earth model [8], [15], [16] exist.
However, when considering relatively short distances, the flat-
Earth model is a valid approximation [8], [16], which we adopt
throughout this work.

When varying the distance between transmitter and receiver,
the relative phase of the two received signal components
varies and they may interfere constructively or destructively.
A destructive interference causes a drop of receive power,
which in turn could cause an outage of the communication
link. In order to mitigate drops of the signal power on one
frequency, a second frequency can be used in parallel. The
use of multiple frequencies in parallel to create diversity
and improve the reliability in ground reflection scenarios has
already been proposed in [3] and [17]. In [18], it is analyzed
and experimentally verified that frequency diversity improves
the performance of distance measurements in outdoor ground
reflection scenarios. Instead of using multiple frequencies in
parallel, it was shown experimentally in [7] that using multiple
antennas and carefully choosing the spacing between them can
also improve the received power.

In practical communication systems, we are often given a
fixed set of available frequencies. If there exist multiple users
with unknown distances, the following questions immediately
arises: how should the frequencies be assigned to the users
in order to maximize the worst-case receive power? Such
an optimization problem of assigning discrete items to users
belongs to the broad class of knapsack problems [19].

In this work, we consider the problem of assigning each
user in a multi-user communication system two frequencies
such that the average worst-case receive power is maximized.
Our main contributions are summarized as follows.
• We analyze the worst-case received power for a two-

ray ground reflection model with unknown distance
between transmitter and receiver when employing only
a single frequency (Section III-A) and when employing
two frequencies in parallel (Section III-B).

• We formulate the problem of assigning frequencies to
users with unknown distances as a knapsack problem.
(Section IV)
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• In order to solve this problem, we introduce a novel
generalization of the standard quadratic multiple knap-
sack problem (QMKP) to support heterogeneous profits.
We then present an algorithm to find a solution to it.
(Section V)

• Finally, we demonstrate the effectiveness of our proposed
solution by numerical examples and report a gain of up
to 6 dB compared to a random frequency assignment.
(Section VI)

In [20], we analyze a similar two-ray model with two
frequencies in parallel. However, we only consider a single
user and focus on optimizing the frequency spacing instead of
assuming a fixed set of available frequencies.

NOTATION

An overview of the most commonly used variable notation
can be found in Table I.

Table I
NOTATION OF THE MOST COMMONLY USED VARIABLES AND SYSTEM

PARAMETERS

U = {1, 2, . . . ,K} Set of users
F = {f1, f2, . . . , fN} Set of available frequencies
P = {P1, P2, . . . , PK} Profit Pu for user u
A = {A1, . . . ,AK} Set Au of assigned frequencies to user u
du Distance between transmitter and receiver u

(on the ground) [m]
hTx Height of the transmitter [m]
hRx,u Height of receiver u [m]
`u Length of the LoS path to user u [m]
˜̀
u Total length of reflection path to user u [m]
c Speed of light = 299 792 458 m/s

ω = 2πf (Angular) frequency ([rad/s]) [Hz]
Pt Transmit power [W]
Pr Receive power (single frequency) [W]
Ps Received sum power (two frequencies) [W]
Ps Lower bound of the receive sum power [W]
dk Distance at which the k-th local minimum

of the receive power occurs [m]
∆ω = 2π∆f = ω2 − ω1 (Angular) frequency spacing ([rad/s]) [Hz]

In order to simplify the notation, we will omit variables
on which functions depend when their value is clear from the
context, e.g., we will write f(x) instead of f(x, y) when the
value of y is fixed.

Since the angular frequency ω = 2πf is a simple scaling of
the frequency f , we will treat them somewhat interchangeably.
Especially for calculations, it is more convenient to use ω, while
f is relevant for actual system design. We will therefore use
the frequency f for the numerical examples while expressing
all formulas in terms of the angular frequency ω.

The uniform distribution on the interval [a, b] is denoted as
unif[a, b].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-user communication system with K
single-antenna users at unknown distances du from the single-
antenna transmitter. For each user u, only a range of possible

Transmitter

Receiver u

du

dmin,u

dmax,u

Figure 1. Illustration of the considered scenario. Each user u is at an unknown
distance du from the transmitter within the known interval [dmin,u, dmax,u].

du

Transmitter

hTx

Receiver

hRx,u

ℓu

ℓ̃u

Figure 2. Geometrical model of the considered two-ray ground reflection
scenario. The transmitter is placed at height hTx above the ground. The
receiver u is located at height hRx,u at a (ground) distance du away from
the transmitter. The LoS path and reflection path have lengths `u and ˜̀

u,
respectively.

distances is known, i.e., it is known that du ∈ [dmin,u, dmax,u].
An illustration can be found in Fig. 1. It should be noted that
the intervals of the individual users may overlap or even be the
same. The transmitter is fixed at height hTx above the ground
while the users are located at heights hRx,u above the ground.

The scenario is considered to be in a flat terrain, e.g., UAVs
flying above a flat water surface. Based on this, the propagation
environment is approximated as a plane reflecting ground
surface and therefore modeled by the classical two-ray ground
reflection model [21, Chap. 4.6]. This geometrical model for a
single receiver is depicted in Fig. 2.

Based on the setup, it can be seen that the transmitted signal
is propagated via two separate paths to the receiver. On the
one hand, there exists a LoS propagation with path length `u.
On the other hand, the signal is also reflected by the ground,
which leads to the second component. The total length of the
second ray is ˜̀

u. Finally, these two components superimpose
at the receiver.

From basic trigonometric considerations, the path lengths
can be calculated as

`2u = (hTx − hRx,u)2 + d2
u (1)

˜̀2
u = (hTx + hRx,u)2 + d2

u . (2)

When transmitting on a single frequency ω = 2πf , the
received power Pr of user u at distance du is given as [3,



Eq. (2)], [21, Chap. 4.6]

Pr(du, ω;hTx, hRx,u, Pt) =

Pt

( c

2ω

)2

 1

`2u
+

1
˜̀2
u

− 2

`u ˜̀
u

cos
[ω
c

(
˜̀
u − `u

)]
︸ ︷︷ ︸

∆φ

 (3)

with the additional notation from Table I1. For simplicity, we
assume a perfectly reflecting ground throughout this work.
However, all of the calculations can be adapted to include an
additional attenuation due to the absorption on the ground.

It is well-known that the two components can interfere
constructively or destructively at the receiver, depending on
the distance d. This leads to local minima in the receive power
at certain distances, which in turn can lead to outages in
the transmission. In order to mitigate these drops in receive
power, we propose to use a second frequency in parallel.
However, there exists a set F = {f1, . . . , fN} of N given
frequencies fi which can be assigned to the individual users.
This directly leads to the question about how the frequencies
should be assigned to the users such that the overall reliability
of the system is maximized. The exact problem formulation is
described in the following.

A. Problem Formulation

Throughout the following, we will consider a two-ray ground
reflection scenario where the height of the transmitter hTx, the
height of the receivers hRx,u are fixed and known to all parties.
In contrast, the distances between transmitter and receivers du
may vary and are unknown at the transmitter. Only the ranges
of possible distances are known, i.e., du ∈ [dmin,u, dmax,u].

Based on this knowledge, the transmitter needs to assign
distinct frequencies fi from a set F of given frequencies to
the users. In order to ensure a high reception quality at any
distance, the transmitter may employ up to two frequencies
in parallel for each user, such that we can compensate for
possible destructive interference of the two rays. This leads to
the following problem.

Problem Statement 1. Since the transmitter only knows the
range of du, i.e., that du ∈ [dmin,u, dmax,u], we try to assign
the frequencies such that the average worst-case receive power
of the system is maximized. This optimization problem can be
formulated as

max
A

|Au|≤2

K∑
u=1

min
du∈[dmin,u,dmax,u]

∑
fi∈Au

Pr

(
du, fi;hTx, hRx,u,

Pt
|Au|

)
,

(4)
where Au is the set of frequencies that are assigned to user u
and A = {A1, . . . ,AK} is the overall assignment. Since each
frequency may only be assigned to one user, we additionally
have that Ai ∩ Aj = ∅ for i 6= j. When using multiple
frequencies, the transmit power needs to be split up, which

1In order to simplify the notation, we will omit variables on which functions
depend when their value is clear from the context, e.g., we will write Pr(d)
instead of Pr(d, ω) when the value of ω is fixed.

leads to a transmit power Pt/|Au| for each individual frequency
of user u.

III. MINIMUM RECEIVE POWER

In order to solve (4), we first need to analyze the minimum
receive power for a given interval of distances [dmin, dmax].

In the following, we start with the case that only a single
frequency is used and later extend the results to two frequencies,
which are used in parallel.

Throughout this section, we focus on a single user u and
therefore omit the index u at the variables.

A. Single Frequency

As mentioned above, it is possible that the two rays
interfere destructively which causes a drop in the receive power.
Therefore, we first investigate the distances at which such drops
in receive power occur.

1) Destructive Interference: From (3), it can be seen that
we get a (local) minimum of the receive power when the direct
and reflected signals interfere destructively [22]. This occurs
whenever the phase difference ∆φ is a multiple of 2π, i.e.,

∆φ =
ω

c

(
˜̀− `

)
= 2πk, k ∈ N0 . (5)

It can easily be verified that ∆φ is a decreasing function in d
and it therefore follows that

∆φmax = lim
d→0

∆φ

=
2ωmin{hTx, hRx}

c

and
lim
d→∞

∆φ = 0 .

This shows that ∆φ decreases from a finite value ∆φmax to 0.
Hence, there always exists a finite number of multiples of 2π
with kmax = b∆φmax

2π c, i.e., there exist kmax local minima of the
receive power.

The distance dk at which the k-th minimum occurs, is given
by solving (5) as

d2
k(ω) =

(
(cπk)2 − (ωhRx)2

) (
(cπk)2 − (ωhTx)2

)
(ωcπk)2

(6)

with k = 1, . . . , kmax.

Example 1. An illustration of ∆φ can be found in Fig. 3. The
parameters are set to ω/c = 10 (f = 477 MHz), hTx = 10 m,
and hRx = 1.5 m. Additionally, we indicate the distances dk.
Since kmax = 4, there exist four dk at which a local minimum
occurs. For the selected parameters, they are evaluated to
d1 = 46.7 m, d2 = 21.6 m, d3 = 12.3 m, and d4 = 6.5 m. The
corresponding received power from (3) is shown in Fig. 4. It
can be seen that a minimum occurs at d = dk, with the lowest
peak being at the smallest k, i.e., k = 1, which corresponds to
the highest distance of all dk. For comparison, we additionally
show the received power for f2 = 2.4 GHz in Fig. 4.
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Figure 3. Relative phase shift ∆φ from (5) for ω/c = 10, hTx = 10 m,
and hRx = 1.5 m. Additionally the distances dk , k = 1, . . . , 4, from (6) are
indicated. (Example 1)

2) Worst-Case Receive Power: When d is anywhere in the
interval [dmin, dmax], the lowest peak is at the smallest k such
that dk is still in [dmin, dmax]. However, in order to determine
the global minimum of the receive power in [dmin, dmax], the
boundary points dmin and dmax need to be taken into account.
This leads to the following result of the minimal receive power
when only a single frequency is used.

Theorem 1 (Minimal Receive Power (Single Frequency)).
Consider the described two-ray ground reflection model with a
single frequency ω = 2πf . The distance d between transmitter
and receiver is in the interval [dmin, dmax]. The minimal receive
power is then given as

min
d∈[dmin,dmax]

Pr(d) =

min

{
Pr(dmin), Pr(dmax), Pr

(
max

dk∈[dmin,dmax]
dk

)}
. (7)

Example 2 (Single Frequency Worst-Case Receive Power). For
a numerical example, we take the parameters that are used in
Example 1 and additionally compare it to a higher frequency
scenario. In particular, we fix hTx = 10 m, hRx = 1.5 m, and
Pt = 1. The receiver is assumed to be randomly located at
a distance between dmin = 30 m and dmax = 100 m from the
transmitter.

For the lower frequency ω1 = 10c, i.e., f1 = 477 MHz,
we get Pr(dmin, ω1) = −50 dB, Pr(dmax, ω1) = −60 dB, and
Pr(d1(ω1), ω1) = −97 dB with d1(ω1) = 46.7 m. Based
on (7) from Theorem 1, we determine that the worst-case
receive power is equal to −97 dB.

In contrast, for a higher frequency f2 = 2.4 GHz, there
are multiple local minima at locations dk, which lie in the
interval [dmin, dmax]. According to (7), we need to determine
the maximum of all dk ∈ [dmin, dmax]. For the considered
parameters, this is calculated to d3(ω2) = 79.4 m with
Pr(d3(ω2), ω2) = −125 dB. The received powers at the
boundary points are evaluated to Pr(dmin, ω2) = −64 dB and
Pr(dmax, ω2) = −75 dB. Hence, the worst-case receive power
when using only frequency f2 is −125 dB.
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Figure 4. Received power Pr(d) from (3) when using a single frequency
f with system parameters hTx = 10 m, hRx = 1.5 m, and Pt = 1 for
f = f1 = 477 MHz and f = f2 = 2.4 GHz. Additionally, the distances
d1(ω1) = 46.7 m and d2(ω1) = 21.6 m from (6) are indicated. (Examples 1
and 2)

B. Two Frequencies

Since the drops in receive power due to destructive interfer-
ence of the two rays cannot be avoided when a single frequency
is used, we will now employ a second frequency to mitigate
these minima. As described in Problem Statement 1, we aim
to optimize the frequency assignment such that the minimum
receive power is maximized.

The received power at distance d is given as the sum power
Ps = Pr(d, ω1) + Pr(d, ω2). For a fair comparison with the
single frequency case, we assume that the total transmit power
Pt remains the same. Thus, only half of the transmit power is
used for the individual frequencies. This leads to the expression
for the total received power in (8) at the top of the next page.

Since we are particularly interested in improving the worst-
case performance, we will consider a lower bound on Ps in
the following.

Lemma 1 (Lower Bound on the Sum Power for Two Frequen-
cies). For the described two-ray ground reflection system using
two frequencies ω1, ω2 in parallel, the received sum power Ps,
is lower bounded by Ps from (9) at the top of the next page,
where ∆ω = ω2 − ω1 denotes the frequency spacing.

Proof. The proof can be found in Appendix A.

Based on this lower bound and Theorem 1, we can immedi-
ately state the worst-case receive power in [dmin, dmax] when
the two frequencies ω1 and ω2 are used in parallel.

Theorem 2 (Minimal Receive Power (Two Frequencies)).
Consider the described two-ray ground reflection model with
two frequency ω1 = 2πf1 and ω2 = 2πf2. The distance d
between transmitter and receiver is in the interval [dmin, dmax].



Ps =
Pt
2

( c
2

)2

( 1

ω2
1

+
1

ω2
2

)(
1

`2
+

1
˜̀2

)
− 2

`˜̀

cos
(
ω1

c (˜̀− `)
)

ω2
1

+
cos
(
ω2

c (˜̀− `)
)

ω2
2

 (8)

Ps(d,∆ω;ω1, hTx, hRx, Pt) =
Pt
2

( c
2

)2

( 1

ω2
1

+
1

ω2
2

)(
1

`2
+

1
˜̀2

)
− 2

`˜̀

√√√√( 1
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1

)2

+

(
1

ω2
2

)2

+
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(
∆ω
c (˜̀− `)
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ω2
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2
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 (9)
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Figure 5. Received power for two parallel frequencies with f1 = 2.4 GHz,
∆f = 250 MHz, hTx = 10 m, and hRx = 1.5 m. Both the actual value Ps

from (8) and the lower bound Ps from (9) are shown. (Example 3)

The minimal receive power is then given as

min
d∈[dmin,dmax]

Ps(d,∆ω) = min

{
Ps(dmin,∆ω),

Ps(dmax,∆ω), Ps

(
max

dk∈[dmin,dmax]
dk(∆ω)

)}
. (10)

Example 3 (Sum Power Lower Bound). As an example, we
show the received (sum) power from (8) and the lower bound
from (9) for f1 = 2.4 GHz, ∆f = 250 MHz, hTx = 10 m,
and hRx = 1.5 m in Fig. 5. It can clearly be seen that the
lower bound is the lower envelope of the actual received power.
Similar to the case that only a single frequency is used, the
received power varies with the distance d and shows both
minima and maxima. While the actual received power Ps
oscillates at a high frequency over the distance d, the (spatial)
frequency of the lower bound Ps is determined by the difference
in frequencies ∆f = ∆ω/(2π).

The drops in receive power occur at locations dk(∆ω) which
are calculated according to (6) to d1 = 22.9 m and d2 = 7.5 m.
For the distance interval with dmin = 30 m and dmax = 100 m,
the minimum receive power is determined by Theorem 2 to
mind∈[dmin,dmax] Ps = −82.9 dB. Recall from Example 2 that
this value is around −125 dB when only a single frequency
f = 2.4 GHz is used. This shows that employing a second
frequency can significantly improve the worst-case receive
power.

IV. FREQUENCY ASSIGNMENT AS KNAPSACK PROBLEM

Since we are now able to calculate the worst-case receive
power for user u with given distance interval [dmin,u, dmax,u]
and frequencies f1 and f2, we now want to reformulate the
original problem from Problem Statement 1 in order to solve
it.

The general problem of assigning items to multiple bins
(or knapsacks) is referred to as a multiple knapsack problem
(MKP) [19]. Each item i has a weight wi and each knapsack u
has a weight capacity cu. When item i is placed in any
knapsack, it yields the profit pi. In the QMKP, there additionally
exist joint profits pij for placing items i and j in the same
knapsack.

This basic setup closely resembles our considered problem
of assigning frequencies to users. In particular, we have the
following correspondences. The items to be assigned are the
N available frequencies fi, i = 1, . . . , N . The knapsacks,
which receive the items, correspond to the individual users
U = {1, 2, . . . ,K}. Since we limit the number of frequencies
that can be assigned to each user to two, we set the weight
capacity cu of each user to cu = 2 and the weight of each
frequency to wi = 1. The profit pi of assigning frequency fi
to a user corresponds to the minimum receive power from (7).
When adding a second frequency fj , the overall profit pi +
pj + pij should equal the minimum receive power from (10).
However, it needs to be emphasized that these profits are
different for each user u, since the parameters [dmin,u, dmax,u]
and hRx,u may vary between users. We therefore have the
heterogeneous profits

pu,i = min
d∈[dmin,u,dmax,u]

Pr(d, fi) (11)

pu,ij = min
d∈[dmin,u,dmax,u]

Ps(d, fi, fj)− pu,i − pu,j . (12)

Since this is different compared to the standard definition of
the QMKP, we generalize it to include heterogeneous profits
in the following.

V. QUADRATIC MULTIPLE KNAPSACK PROBLEM WITH
HETEROGENEOUS PROFITS

For the standard QMKP with homogeneous profits, there are
multiple (heuristic) algorithms available to find a solution [23]–
[27]. However, since the standard formulation does not include
heterogeneous profits, these algorithms do not support it. While
generalizations to the QMKP exist, e.g., considering groups
of items [28], [29], they are not directly applicable to our
considered problem.



Therefore, we introduce a novel generalization as quadratic
multiple knapsack problem with heterogeneous profits (QMKP-
HP) in the following.

Problem Statement 2 (Quadratic Multiple Knapsack Prob-
lem with Heterogeneous Profits (QMKP-HP)). Let F =
{1, 2, . . . , N} be a set of items (or objects) and U =
{1, 2, . . . ,K} be a set of knapsacks. Each item i ∈ F has
weight wi and can be assigned to at most one knapsack u ∈ U .
Each knapsack has a weight capacity cu. If item i is assigned to
knapsack u, it yields the profit pu,i. Additionally, each pair of
items i, j ∈ F , i 6= j, has a joint profit pu,ij , if both items are
assigned to the same knapsack u. The set Au ⊂ F describes
the allocation of items to knapsack u.

The objective of the QMKP-HP is to find allocations A =
{A1, . . . ,AK} such that the overall profit is maximized,

max
∑
u∈U

( ∑
i∈Au

pu,i +
∑
j∈Au
j 6=i

pu,ij

)
(13a)

s. t.
∑
i∈Au

wi ≤ cu ∀u ∈ U (13b)

K∑
u=1

aiu ≤ 1 ∀ 1 ≤ i ≤ N (13c)

where aiu = 1 if item i is assigned to user u, i.e., if i ∈ Au,
and aiu = 0 otherwise.

Remark 1. When the profits Pu of the individual knapsacks
are all the same, i.e., P1 = P2 = · · · = PK , the QMKP-HP
reduces to the standard QMKP.

In the following, we develop a greedy algorithm to solve
Problem (13). The algorithm is inspired by the constructive
procedure from [24] for the classical QMKP, cf. [24, Alg. 1].

As an essential guideline in the algorithm, we use the
common notion of value density [24], [27]. This quantity
describes the value of adding a particular item i to a knapsack u
if it already has items S assigned to it, i.e.,

vdu(i,S) =
1

wi

pu,i +
∑
j∈S
i 6=j

pu,ij

 . (14)

For a more convenient notation, we define its matrix form as

vd(S) =


vd1(1,S) vd2(1,S) · · · vdK(1,S)
vd1(2,S) vd2(2,S) · · · vdK(2,S)

...
...

. . .
...

vd1(N,S) vd2(N,S) · · · vdK(N,S)

 .

(15)
After an initialization, the main idea of the proposed

Algorithm 1 at the bottom of the next page is the following.
We start with the combination of item i and knapsack u which
yields the largest value density. If there is still room for item i in
knapsack u, i.e., if wi ≤ cu, we add the item to the knapsack.
If there is no room for it, we proceed with the next best
combination of item and knapsack, until we can assign an item

to a knapsack. After an item has been assigned, it is removed
from the list of unassigned items and the value densities for the
remaining ones are updated. These steps are repeated until there
are no more items to assign or all remaining items’ weights
exceed the remaining capacities of all knapsacks.

Remark 2. Algorithm 1 can also be used to complete a partial
solution A(0). We simply need to take A(0) into account while
initializing the set of unassigned items. If no initial assignments
exist, we set A(0) = ∅.

VI. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of our
proposed solution to Problem Statement 1 by numerical
examples. The source code to reproduce all of the following
results can be found at [30]. All simulations are run in Python
on an off-the-shelf laptop computer with Intel i7-8565 CPU.

We compare different problem sizes with varying numbers of
users K and frequencies N . For each setup, we uniformly select
N frequencies in the interval 2.4 GHzto2.5 GHz. The height
of the transmitter is fixed to hTx = 10 m. We then randomly
generate K user parameters with hRx,u ∼ unif[1, 3]m, dmin,u ∼
unif[20, 40]m, and (dmax,u − dmin,u) ∼ unif[10, 100]m. While
we assume N ≥ 2K in our examples, this is not necessary.
However, in the case of N < 2K, not every user gets two
frequencies assigned.

Table II shows the performance of the proposed QMKP-HP
approach for different problem sizes. The reported run times
for Algorithm 1 are averages over 100 trials with minimum and
maximum in parentheses. The last two columns indicate the
achieved average worst-case receive powers, i.e., the objective
of (4) divided by the number of users K. For comparison, we
additionally evaluated the performance for a random frequency
assignment and three round-robin (RR) schemes. The first
one (RR-simple) starts by assigning user 1 f1, user 2 f2 and
continues for each user. In a second round, each user gets
assigned a second frequency, i.e., at the end, user u is assigned
fu and fu+N . The second RR scheme (RR-block) is similar
to the first one but assigns two frequencies to each user at
once, i.e., user u gets frequencies f2u−1 and f2u. As a final
comparison, we add a RR scheme that takes the user profits
Pu into account (RR-profits). With this, the users take turns
selecting the frequency that yields the highest profit for them.

From the results in Table II, it can clearly be seen that
the proposed algorithm consistently improves the average
worst-case receive power by 5 dB to 6 dB over a random
frequency assignment. Additionally, it can be run in feasible
times on standard hardware, even for larger problem sizes of
100 frequency blocks and 45 users.

In comparison to the RR schemes, the proposed QMKP-
HP approach also shows gains in performance. The worst
performance is found for RR-block, since each user is assigned
neighboring frequencies, which does not effectively leverage
the benefit of using two frequencies in parallel. The RR-
simple scheme improves this in general. However, depending
on the number of available frequencies and users, the assigned



Table II
MINIMUM RECEIVE POWER COMPARISON FOR THE FREQUENCY ASSIGNMENT PROBLEM (AVERAGED OVER 100 TRIALS)

K N Time Alg. 1 [s] Alg. 1 [dB] Random [dB] RR-Simple [dB] RR-Block [dB] RR-Profits [dB]

3 10 0.0093 (0.0089–0.0117) −82.14 −86.87 −90.00 −99.40 −83.17
3 100 0.8694 (0.7691–0.9412) −81.36 −87.23 −108.73 −113.03 −81.11

10 100 2.9911 (2.5636–3.3221) −81.17 −87.21 −99.44 −112.60 −81.61
20 50 1.4986 (1.2925–1.6559) −81.37 −87.25 −87.38 −110.41 −83.84
20 100 6.1032 (5.1878–6.4554) −81.13 −87.58 −93.47 −112.71 −82.21
45 100 14.4117 (11.9171–14.7878) −81.69 −87.56 −86.62 −112.70 −84.51

frequencies can still be very close together. In contrast, the
profit-aware RR algorithm achieves results close to the QMKP-
HP approach. However, there is still a gap of up to 2.8 dB,
which is maximal in the case where N is close to 2K. In
these scenarios it can happen in the RR scheme that users take
frequencies before others, which would have yielded higher
benefits for the overall system.

VII. CONCLUSION

In this work, we have considered the problem of assigning
frequencies to users in a two-ray ground reflection scenario
with unknown distances between transmitter and receivers.

We have investigated the receive power in such systems and
showed that using two frequencies in parallel can significantly
improve the worst-case receive power over using only a
single frequency. In order to solve the optimization problem
of assigning up to two frequencies to users for worst-case
design, we introduced a generalization of the QMKP with
heterogeneous profits together with an algorithm to solve it.

Finally, we have illustrated the effectiveness of our approach
by numerical examples.

While only two parallel frequencies are considered in this
work, it could be extended to multiple frequencies in future
work. This is a promising research direction to further improve
the reliability of the described communication systems with
limited knowledge at the transmitter.

APPENDIX A
PROOF OF LEMMA 1

The lower bound on Ps from (8) is calculated as the (lower)
envelope of the function, which is given as the absolute value
of its analytic function [31]. However, we are only interested in
bounding the oscillating part of Ps given by the cosine terms
as

s =
cos
(
ω1

c (˜̀− `)
)

ω2
1

+
cos
(
ω2

c (˜̀− `)
)

ω2
2

.

The analytic function of s is given as s+jŝ, where ŝ = H{s} is
the Hilbert transform H of s. The envelope of s is then given as

Algorithm 1 Constructive procedure for solving the QMKP-HP from Problem Statement 2

1: Input: Items F , Users U , Profits P , Initial Assignments A(0)

2: Output: Final Assignments A
3: procedure CONSTRUCTIVEPROCEDURE(F , U , P , A(0))
4: Initialize unassigned items S = F \⋃uA(0)

u // If there is no initial assignment, we have S = F
5: Initialize assignments Au = A(0)

u , ∀u ∈ U // If there is no initial assignment, we have Au = ∅
6: Calculate initial value densities V = vd(S) // According to (15)
7: repeat
8: V̄ = SORTDESCENDING(V ) // Sort V in descending order and store it in V̄ , i.e., maxViu = V̄1 ≥ V̄2 ≥ . . .
9: Initialize counter j = 1

10: repeat
11: V̄j = Viu
12: if wi ≤ cu then // There is enough space in knapsack u
13: Au = Au ∪ {i} // Assign element i to user u
14: S = S \ {i} // Remove element i from set of unassigned items S
15: cu = cu − wi // Adjust the remaining capacity cu of knapsack u
16: else
17: j = j + 1 // Increase counter and proceed with value next in size
18: end if
19: until (An item is assigned to a user or j = |V̄ |)
20: Viu = vdu(i,Au), ∀u ∈ U , i ∈ S // Update value densities for the remaining items
21: until (S = ∅ or cu < wi, ∀u ∈ U , i ∈ S) // All items are assigned or no more space in knapsacks
22: return A = {A1, . . . ,AK}
23: end procedure



|s+ jŝ|. With the correspondence H{cos(ωt)} = sin(ωt) [32],
we obtain the analytic signal

s+ jŝ =
cos (ω1t)

ω2
1

+
cos (ω2t)

ω2
2

+ j

(
sin (ω1t)

ω2
1

+
sin (ω2t)

ω2
2

)
where we use the shorthand t =

˜̀−`
c . The absolute value can

then be calculated as

|s+ jŝ|2 =
1

ω4
1

+
1

ω4
2

+
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ω2
1ω

2
2

.

Applying the definitions of t and ∆ω = ω2−ω1 and substituting
the envelope of s into (8), we obtain (9).
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