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Abstract—Inspired by several delay-bounded mission-critical
applications, optimizing the end-to-end reliability of multi-hop
networks is an important problem subject to end-to-end delay
constraints on the packets. Towards that direction, Automatic
Repeat Request (ARQ) based strategies have been recently
proposed wherein the problem statement is to distribute a certain
total number of ARQs (that capture end-to-end delay) across the
nodes such that the end-to-end reliability is optimized. Although
such strategies provide a fine control to trade end-to-end delay
with end-to-end reliability, their performance degrades in slowly-
varying channel conditions. Pointing at this drawback, in this
work, we propose a Chase Combing Hybrid ARQ (CC-HARQ)
based multi-hop network addressing a similar problem statement
of how to distribute a certain total number of ARQs such that the
end-to-end reliability is optimized. Towards solving the problem,
first, we identify that the objective function of the optimiza-
tion problem is intractable due to the presence of Marcum-Q
functions in it. As a result, we propose an approximation on the
objective function and then prove a set of necessary and sufficient
conditions on the near-optimal ARQ distribution. Subsequently,
we propose a low-complexity algorithm to solve the problem
for any network size. We show that CC-HARQ based strategies
are particularly appealing in slow-fading channels wherein the
existing ARQ strategies fail.

Index Terms—Multi-hop networks, High-reliability, Bounded
delay, Chase Combining HARQ

I. INTRODUCTION

In the fifth generation (5G) wireless networks and beyond,

Internet-of-Things (IoTs), massive Machine-type communi-

cations (mMTC) etc., [1] are pitched to play a vital role

in deploying mission-critical applications. Examples include

reliable and timely delivery of status updates in vehicular

networks, facilitating real-time industrial automation tasks by

deploying massive low-power IoT devices in factory settings,

and so on. Be it vehicular networks or industrial IoT settings,

one of the main challenges is the problem of designing

signalling schemes over large-scale devices and understanding

their fundamental limits in achieving ultra-reliable communi-

cation with bounded delay constraints on the packets. Further-

more, generalizing these mission-critical problem statements

to multi-hop wireless network settings is also important owing

to its proven expansion in the coverage area [2], especially

when involving low-powered devices. Thus, in this work, we

address the challenges in envisioning delay-bounded mission-

critical applications over multi-hop wireless networks [3], [4].

Ongoing research in wireless multi-hop networks has al-

ready shown the challenges in achieving high end-to-end

reliability with bounded delay-constraint on the packets. [5],

[6] recently proposed a decode-and-forward (DF) based re-

laying strategy along with retransmission protocols at the

intermediate nodes. In such a scheme, reliability within a hop

was taken care of by the number of retransmissions allotted

to a given node, and the end-to-end delay on the packets

was dictated by the total number of ARQs allotted to all

the nodes in the multi-hop network. By using the information

on processing delays at each node, a certain total number of

retransmissions was estimated corresponding to the deadline

on the packets.

In order to understand the relation between the bounded

delay constraints and the total number of retransmissions, we

first explain the worst-case deadline approach of computing

the maximum number of retransmissions by assuming that the

delay overheads from ACK/NACK in the reverse channel are

sufficiently small compared to the payload. Suppose that the

processing time at each hop is τp seconds (which includes

packet encoding and decoding time), the delay incurred for

packet transmission at each hop is τd seconds (which includes

the propagation delay and the time-frame of the packet), and

the delay incurred because of NACK overhead is τNACK

(which is the time taken for the transmitter to receive the

NACK). Given the stochastic nature of the wireless channel at

each link, the total number of packet retransmissions before the

packet reaches the destination is a random variable, denoted by

n, and as a result, the end-to-end delay between the source and

the destination is upper bounded by n× (τp + τd + τNACK)
seconds. In particular, when τNACK << τp + τd, the end-

to-end delay can be approximated as n × (τp + τd) seconds.

Thus, when the packet size and the decoding protocol at each

node are established, and when the deadline on end-to-end

delay (denoted by τtotal) is known, we may impose an upper

bound on n, provided by qsum = ⌊ τtotal

τp+τd
⌋. The values of

τp and τd at each relay node are assumed to be identical

in order to obtain a relation between the end-to-end delay

τtotal and the total number of ARQs qsum. While identical

τd holds in practice as the packet length is the same at each

hop, the propagation delay is usually negligible. However, if

τp at each relay are not identical, then an upper bound on the

total number of ARQs can still be obtained by considering the

maximum of the processing delays offered by all the relays in

the chain. Overall, this approach implies that qsum captures

the maximum number of retransmissions that can be tolerated

over the multi-hop network in order to respect the deadline on

the delay.

http://arxiv.org/abs/2203.08381v2


Once qsum is obtained for a given bounded-delay constraint,

several questions were posed in [6] on how to distribute these

retransmissions across different nodes to maximize end-to-end

reliability. In particular, Type-1 Automatic Repeat Request

(ARQ) protocol was employed, wherein the receiver node

at each hop transmits an ACK or NACK depending on the

success in decoding. Subsequently, on every retransmission,

the receiver node discards the previous version of the packet

and only uses the latest packet to decode the information.

We note that when these solutions are used in the scenario

where the devices are static and their surrounding does not

change over time, e.g., factory settings, Type-1 ARQs are

not applicable for two apparent reasons: Firstly, in Type-1

ARQ, the previous packet is discarded; therefore, it implies

the wastage of resources, and secondly, as the channel may

not vary with time, there is no benefit in discarding the

previous packets and then decoding the new packet that is

re-transmitted under the same channel conditions. In such

cases, advanced ARQ strategies, such as Type-2 ARQs [8]

is beneficial, wherein on every retransmission, the receiver

node combines the latest packet along with its previous copies

to decode the information. Although an optimization problem

on ARQ distribution has been studied in [5], [6] for Type-1

ARQs, there is no such effort on Type-2 ARQs to achieve high

reliability in delay-bounded scenarios. Among many variants

of Type-2 ARQs schemes that are often used in practical

systems, a popular scheme is Chase Combining Hybrid ARQ

(CC-HARQ), wherein each retransmission block is identical

to the original code block [7].

Motivated by the drawbacks of using Type-1 ARQs in

wireless networks with slowly varying channels, in this work,

we propose a CC-HARQ based DF strategy for achieving

high reliability under delay-bounded scenarios. In particu-

lar, we consider a multi-hop network dominated by slowly

varying wireless channels with arbitrary line-of-sight (LOS)

components. Along the similar lines of [5], we impose an

upper bound on the total number of ARQs required in the

network following the CC-HARQ strategy based on the end-

to-end delay requirements of the application. Subsequently, we

formulate an optimization problem of allocating the optimal

ARQ distribution to each intermediate link such that the

packets reach the destination with high reliability.1 Due to

the intractability of the objective function in the optimization

problem, first, we propose an approximation for the objective

function at a high signal-to-noise-ratio (SNR). After that,

we obtain the necessary and sufficient conditions on the

near-optimal ARQ distribution followed by a low-complexity

algorithm to solve the optimization problem. We show that

our CC-HARQ based framework outperforms the Type-1 ARQ

based strategy in [5] when channels are slowly varying.

In terms of novelty, this is the first CC-HARQ based strategy

1Although it appears that allocating qsum ARQs to the first node of
the network seems optimal, such an approach would require each node to
explicitly communicate the residual ARQs in the packet. This, in turn, leads
to additional communication-overhead in the packet, and such a provision
may not be allowed in certain applications.

that optimizes the reliability aspects of multi-hop networks

with bounded-delay constraints. Moreover, the analytical re-

sults of this work cannot be viewed as a straightforward

extension of prior works since the objective function used for

optimization is unique to the CC-HARQ strategy, which was

not dealt with bounded-delay applications hitherto.

For visibility purposes, this manuscript is also made avail-

able on arXiv [10] with the same title. Therefore, [10] should

not be treated as prior-art when evaluating the novelty of this

submission.

II. CC-HARQ BASED MULTI-HOP NETWORK MODEL

Consider a network with N hops, as shown in Fig. 1,

consisting of a source node (S), a set of N − 1 relays

R1, R2, . . . , RN−1 and a destination node (D). By aggregating

the information bits in the form of packets, we communicate

these packets from S to D by using the N − 1 intermediate

relays. We assume that the channel between any two succes-

sive nodes is characterized by Rician fading that varies slowly

over time. We model the complex baseband channel of the

k-th link, for 1 ≤ k ≤ N , as

hk =

√
ck
2
(1 + ι) +

√

(1− ck)

2
gk,

where ι =
√
−1, 0 ≤ ck ≤ 1 is the LOS component, 1 − ck

is the Non-LOS component, and gk is a Gaussian random

variable with distribution CN (0, 1). In this channel model,

ck is a deterministic quantity, which characterizes different

degrees of Rician fading channels, and also makes sure that

E[|hk|2] = 1 holds for any ck. At the extreme ends, it is well

known that ck = 0 gives us the Rayleigh fading channels and

ck = 1 provides the Gaussian channels.

By assuming that the intermediate relays are sufficiently far

apart from each other, throughout the paper, we use the vector

c = [c1, c2, . . . , cN ] to denote the LOS components of the N -

hop network. Let C ⊂ CL denote the channel code used at the

+ + + +

R1 R2 RN−1

DS c1 c2 cN

q1 q2 qNq3 qN−1

ACK/NACK

Re-transmissions
(CC-HARQ)

Fig. 1: Illustration of an N -hop network with a source node

(S), the relay nodes R1, . . . , RN−1 and the destination node

(D) follow the CC-HARQ protocol at each intermediate link.

Also, each intermediate link can be characterized by an LOS

component ck ∀k ∈ [N ].

source of rate R bits per channel use, i.e.,

R =
1

L
log(|C|).



Let x ∈ C denote a packet (which is a codeword in the code)

transmitted by the source node such that its average energy per

channel use is unity. When x is sent over the k-th link, for

1 ≤ k ≤ N , the corresponding baseband symbols gathered

at the receiver over L channel uses is yk = hkx + wk ∈
CL, where wk is the additive white Gaussian noise (AWGN)

at the receiver of the k-th link, distributed as CN (0, σ2IL).
We assume that hk is known at the receiver of the k-th link

owing to channel estimation; however, the transmitter of the

k-th link does not know hk. Since hk is sampled from an

underlying distribution and the realization remains constant

for L channel uses, the transmission rate R may not be less

than the instantaneous mutual information of the k-th link.

Therefore, in such cases, the corresponding relay node will

fail to correctly decode the packet. The probability of such an

event is well captured by

Pk = Pr
(

R > log2(1 + |hk|2γ)
)

= Fk

(
2R − 1

γ

)

, (1)

where γ = 1
σ2 is the average signal-to-noise-ratio (SNR) of

the k-th link, Fk(x) is the cumulative distribution function of

|hk|2, defined as

Fk

(
2R − 1

γ

)

= 1−Q1

(√

2ck
(1 − ck)

,

√

2(2R − 1)

γ(1− ck)

)

, (2)

such that Q1(·, ·) is the first-order Marcum-Q function [11] 2.

To support the transmission rate, we follow the CC-HARQ

strategy wherein a receiver node asks the transmitter node

for retransmission of the packet and combines the received

packet with the previous failed attempts to recover the in-

formation. To explain further, for a given N -hop network

model, a transmitter node gets an ACK or NACK from the

next node in the chain, indicating the success or failure of

the transmission, respectively. Upon receiving a NACK, the

transmitter retransmits the packet, and the receiver combines

the current packet with previously received copies of the

packet. Let qk be the maximum number of attempts given

to the transmitter of the k-th link to retransmit the packet

on demand. Consolidating the number of attempts given to

each link, the ARQ distribution of the multi-hop network is

represented by the vector q = [q1, q2, . . . , qN ]. Since we are

addressing bounded delay applications, we impose the sum

constraint
∑N

i=1 qi = qsum, for some qsum ∈ Z+, which

captures an upper bound on the end-to-end delay on the

packets.

Note that the packet does not reach the destination if an

intermediate node fails to deliver the packet to its next node

despite using the allotted number of attempts. Since the packet

can be dropped in any of the links, we use packet-drop-

2It is well known that the expression for Pk given in (1) captures the error
expression in asymptotic block-length regimes. However, it has been shown
in [9, Theorem 2] that (1) serves as a saddle-point approximation on the error-
probability expressions in non-asymptotic block lengths, especially when the
block-length K is in the order of a few hundreds.

probability (PDP) as our reliability metric of interest, given

by

pd = P1q1 +

N∑

k=2

Pkqk

(
k−1∏

j=1

(1− Pjqj )

)

, (3)

where Pkqk represents the outage event at k-th link after using

the qk attempts with the CC-HARQ protocol. In particular, we

have Pkqk = Pr
(

R > log2(1 + (
∑qk

j=1 |hkj |2)γ)
)

, where hkj

is the channel realization at the k-th link for the j-th attempt.

The expression on Pkqk is obtained due to the maximum ratio

combining technique. Under the scenario, when the channel

remains fixed over multiple attempts, we can rewrite the above

equation as Pr
(
R > log2(1 + |hk1|2qkγ)

)
which is equal to

Fk

(
2R−1
qkγ

)

. It can be observed that on every retransmission,

the packet gets added to its previous copies due to CC-HARQ

protocol, which results in an increased effective SNR of the

given link.

For the proposed CC-HARQ based multi-hop network, we

are interested in minimizing the PDP given in expression (3)

for a given sum constraint on the total number of ARQs given

by qsum ∈ Z+ such that
∑N

i=1 qi = qsum. Henceforth, we

formulate our optimization problem in Problem 1 as shown

below. Throughout this paper, we refer to the solution of

Problem 1, as the optimal ARQ distribution.

Problem 1: For a given c and γ = 1
σ2 , solve

q∗1 , q
∗
2 , . . . q

∗
N = arg min

q1,q2,...qN
pd

subject to qk ≥ 1, qk ∈ Z+ ∀k ∈ [N ],

N∑

i=1

qi = qsum.

III. ANALYSIS ON THE OPTIMAL ARQ DISTRIBUTION

USING CC-HARQ

The PDP expression in (3) is dependent on the Marcum-Q

function, and tackling the Marcum-Q function analytically is

challenging because it contains a modified Bessel function of

first kind [11]. Therefore, in this section, we first present an

approximation of the Marcum-Q function at a high SNR and

then use it to provide necessary and sufficient conditions on

the optimal ARQ distribution when using the approximations

of the Marcum-Q function.

A. Approximation on the Marcum-Q function

Theorem 1: For a given N -hop network and at high

SNR regime, we can approximate the Marcum-Q function as

Q1(ak, bk) ≈ Q̃1(ak, bk) , 1− b2k
2 e

−a2

k
2 for all k ∈ [N ].

Proof: In the context of the N -hop network discussed

in the previous section, the Marcum-Q function of first-order

associated with the k-th hop is given by

e−
a2

k
2 e−

b2
k
2

∞∑

i=0

(
a2k
2

)i( ∞∑

m=0

(
akbk
2

)2m
1

m!(m+ i)!

)

,



where ak =
√

2ck
(1−ck)

, bk =
√

2(2R−1)
γ(1−ck)

such that γ = 1
σ2 .

We highlight that ak depends on the LOS component and bk
is dependent on SNR. It can be observed that at high SNR,

bk is very small, and henceforth, we use the small values

of bk to derive the approximation. On expanding e−
b2
k
2 using

Taylor series, and neglecting the higher power terms, we can

approximate e
−b2

k
2 by (1 − b2k

2 ). Similarly, by expanding the

internal summation starting with index m, we can neglect

the higher power terms of bk and approximate the summation

terms as

∞∑

m=0

(
akbk
2

)2m
1

m!Γ(m+ i+ 1)
≈ 1

i!
+

1

(1 + i)!

(
a2k
2

)

b2k.

Therefore, we can rewrite Q1(ak, bk) as

Q1(ak, bk) ≈ e−
a2

k
2

(

1− b2k
2

) ∞∑

i=0

(
a2k
2

)i(
1

i!
+

1

(1 + i)!
(
a2k
4

)

b2k

)

.

Now, by using
∑∞

n=0 x
n/n! = ex and re-arranging the terms

in above equation, we can write

Q1(ak, bk) ≈ e−
a2

k
2

(

1− b2k
2

)[

e
a2

k
2 +

b2k
2

(
e

a2

k
2 − 1

)
]

.

On further solving the above equation and by neglecting the

higher power terms of bk, we obtain

Q1(ak, bk) ≈ Q̃1(ak, bk) , 1− b2k
2
e

−a2

k
2 . (4)

This completes the proof.
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Fig. 2: Comparison of original expression of Marcum Q-

function with its proposed approximation at different values

of SNR.

To validate the approximation given in (4) for different

values of SNR and the LOS components, we present the

simulation results in Fig. 2 where the original expression

of Marcum-Q function is compared with its approximated

expression given in (4). It can be observed from Fig. 2 that

the approximation on the Marcum-Q function almost coincides

with the original expression.

By using the approximation in (4), we can approximate (1)

as

P̃k = 1− Q̃1(ak, bk) ,
b2k
2
e

−a2

k
2 =

φ

(1− ck)
e

−a2

k
2 ,

where φ = 2R−1
γ , and P̃k denotes the approximation on Pk.

Similarly, for a given qk retransmissions, we can approximate

Pkqk as P̃kqk , given by

P̃kqk ,
φ

qk(1− ck)
e

−a2

k
2 . (5)

Finally, by using (5), we can write the approximate version of

(3) as

p̃d = P̃1q1 +

N∑

k=2

P̃kqk

(
k−1∏

j=1

(1− P̃jqj )

)

, (6)

where p̃d denotes the approximation on pd. Henceforth, using

the approximated expression on pd as above, we formulate an

optimization problem in Problem 2 as shown below. Through-

out this paper, we refer to the solution of Problem 2, as the

near-optimal ARQ distribution since the objective function in

Problem 2 is an approximation on the objective function in

Problem 1.

Problem 2: For a given c and a high SNR γ = 1
σ2 ,

solve

q∗1 , q
∗
2 , . . . q

∗
N = arg min

q1,q2,...qN
p̃d

subject to qk ≥ 1, qk ∈ Z+ ∀k,
N∑

i=1

qi = qsum.

B. Sufficient and Necessary Conditions on the Near-Optimal

ARQ Distribution in CC-HARQ Strategy

Before we obtain the necessary and sufficient conditions

on the optimal ARQ distribution, we show that a link with a

higher LOS component must not be given more ARQs than

the link with a lower LOS component.

Theorem 2: For a given LOS vector c and a high SNR

regime in a CC-HARQ based multi-hop network, the solution

to Problem 2 satisfies the property that whenever ci ≥ cj , we

have qi ≤ qj ∀ i, j ∈ [N ].
Proof: To highlight the location of ci and cj , we write

c as [c1, c2, . . . , ci, . . . , cj, . . . , cN−1, cN ] such that j > i.
Assume that cj > ci, and qi and qj denote the number

of ARQs allotted to the i-th and j-th link, respectively.

Furthermore, let us suppose that qi = qj = q and we have

one ARQ with us. Now, the problem is deciding whether to

allocate that additional ARQ to the i-th link or the j-link

that results in lower PDP. Towards solving this problem, we

consider an equivalent multi-hop network with LOS vector



c′ = [c1, c2, . . . , cN−1, . . . , cN , . . . , ci, cj ], wherein c′ is ob-

tained from c by swapping ci with cN−1 and cj with cN .

By using a similar approach given in [6, Theorem 1], we can

show that the PDP of the multi-hop networks with the LOS

vectors c and c′ are identical. Furthermore, the PDP of the

N -hop network with LOS vector c′, is written as

p̃d = P̃1q1 + P̃2q2(1 − P̃1q1) + . . .

+
(

P̃iqi + P̃jqj (1− P̃iqi )
) ∏

k∈[N ]\{i,j}

(1− P̃kqk ).

Note that P̃iqi and P̃jqj appear only in the last term of

the above expression. Since the question of allocating the

additional ARQ is dependent only on the expression P̃iqi +
P̃jqj (1− P̃iqi), we henceforth do not use the entire expression

for PDP. Additionally, since qi = qj = q, we obtain one of the

following expressions when allocating the additional ARQ,

A = P̃i(q+1) + P̃jq(1− P̃i(q+1)),

B = P̃iq + P̃j(q+1)(1− P̃iq).

Since ci < cj , we know that P̃iq > P̃jq for q = 1. To prove

the statement of the theorem, we use the approximation given

in (5) to show that A < B. Therefore, using (5), we write

A =
φe

−a2

i
2

(q + 1)(1− ci)
+

φe
−a2

j

2

q(1− cj)

(

1− φe
−a2

i
2

(q + 1)(1− ci)

)

,

B =
φe

−a2

i
2

q(1− ci)
+

φe
−a2

j
2

(q + 1)(1− cj)

(

1− φe
−a2

i
2

q(1− ci)

)

.

On solving the difference A−B, we get

φ

(
e−a2

j/2 − e−a2

i/2 + cje
−a2

i/2 − cie
−a2

j/2

(1− ci)(1− cj)

)(
1

q
− 1

q + 1

)

︸ ︷︷ ︸

.

In the above equation, note that the second product term in

the bracket is positive. Therefore, to prove that A − B < 0,

first, we show that e−a2

j/2−e−a2

i/2+cje
−a2

i/2−cie
−a2

j/2 ≤ 0
for any i, j ∈ [N ]. To proceed further, we start by assuming

that the above inequality is true, and by rewriting the above

equation, we get e−a2

j/2(1 − ci) ≤ e−a2

i/2(1 − cj) which

in turns equal to
(1− ci)

(1 − cj)
≤ e−a2

i/2

e−a2

j/2
. Now, by taking the

logarithm on both sides and on expanding both ai and aj , we

obtain the inequality log

(
1− ci
1− cj

)

≤ cj − ci
(1− ci)(1 − cj)

. Let

x =
1− ci
1− cj

, and therefore, x − 1 =
1− ci
1− cj

− 1 =
cj − ci
(1− cj)

.

Furthermore, by using x, we can rewrite the above inequality

as log x ≤ x− 1

(1− ci)
, where

1

1− ci
≥ 1 because ci ≤ 1.

Moreover, by using the standard inequality i.e. log x ≤ (x−1),

we can prove that the inequality log x ≤ x− 1

(1 − ci)
is true for

any i, j ∈ [N ]. Hence, this completes the proof that A−B < 0.

Henceforth, we use the set S = {q ∈ ZN
+ | ∑N

j=1 qj =
qsum & qj ≥ 1 ∀ j} to define the search space for the

optimal ARQ distribution. Furthermore, for a given q ∈ S,

its neighbors are defined as below.

Definition 1: The set of neighbors for a given q ∈ S is

defined as H(q) = {q̄ ∈ S | d(q, q̄) = 2}, where d(q, q̄)
denotes the Hamming distance between q and q̄.

In the following definition, we present a local minima of the

space S by evaluating the PDP of the CC-HARQ based multi-

hop network over the vectors in S.

Definition 2: To be a local minima of S, an ARQ dis-

tribution q∗ ∈ S must satisfy the condition pd(q
∗) ≤

pd(q), for every q ∈ H(q∗), such that pd(q
∗) and pd(q)

represent the PDP evaluated at the distributions q∗ and q,

respectively.

Using the above definition, we derive a set of necessary and

sufficient conditions on the local minima in the following

theorem.

Theorem 3: For a given N -hop network with LOS vector

c, the ARQ distribution q∗ = [q∗1 , q
∗
2 , . . . , q

∗
N ] is said to be a

local minima if and only if q∗i and q∗j for i 6= j satisfy the

following bounds

q∗2j Ki − q∗j (Ki +KjKi)− C1 ≤ 0, (7)

q∗2j Ki + q∗j (Ki −KjKi)− C2 ≥ 0, (8)

where C1 = −KjKi+q∗2i Kj+q∗i (Kj−KjKi), C2 = KjKi+
q∗2i Kj − q∗i (Kj +KjKi) with Kt for t ∈ {i, j} given by

Kt =
φ

1− ct
e

( −ct
1− ct

)

. (9)

Proof: According to Definition 1, it can be observed

that a neighbor of q∗ in the search space S differs in two

positions with respect to q∗. Let these neighbors are of

the form q̂+ = [q∗1 , q
∗
2 , . . . , q

∗
i + 1, . . . , q∗j − 1, . . . , q∗N ] and

q̂− = [q∗1 , q
∗
2 , . . . , q

∗
i − 1, . . . , q∗j + 1, . . . , q∗N ] that differs

in two positions at i and j provided q∗i − 1 ≥ 1 and

q∗j − 1 ≥ 1. Because of the type of search space and the

expression of PDP, we invoke the results from [6, Theorem

1] that the PDP remains identical after swapping intermediate

links. Therefore, instead of considering the multi-hop network

with LOS vector c = [c1, c2, . . . , ci, . . . , cj , . . . , cN−1, cN ],
we consider its permuted version with the LOS vector

c = [c1, c2, . . . , cN−1, . . . , cN , . . . , ci, cj ], wherein the i-
th link is swapped with (N − 1)-th link, and the j-

th link is swapped with N -th link. Consequently, the lo-

cal minima and its two neighbors are respectively of the

form q∗ = [q∗1 , q
∗
2 , . . . , q

∗
N−1, . . . , q

∗
N , . . . , q∗i , q

∗
j ], q̂+ =

[q∗1 , q
∗
2 , . . . , q

∗
N−1, . . . , q

∗
N , . . . , q∗i + 1, q∗j − 1] and q̂− =

[q∗1 , q
∗
2 , . . . , q

∗
N−1, . . . , q

∗
N , . . . , q∗i − 1, q∗j + 1]. By using the

definition of local minima, we have the inequalities

p̃d(q
∗) ≤ p̃d(q̂+), and p̃d(q

∗) ≤ p̃d(q̂−), (10)

where p̃d(q
∗), p̃d(q̂+) and p̃d(q̂−) represent the PDP evalu-

ated at the distributions q∗, q̂+, and q̂−, respectively. Because

of the fact that q̂+ and q̂− differ only in the last two positions



and the structure of the PDP, it is possible to demonstrate that

the inequalities in (10) are equivalent to

P̃iq∗
i
+ P̃jq∗

j

(

1− P̃iq∗
i

)

≤ P̃i(q∗
i
+1) + P̃j(q∗

j
−1)(1 −

P̃i(q∗
i
+1)), (11)

P̃iq∗
i
+ P̃jq∗

j

(

1− P̃iq∗
j

)

≤ P̃i(q∗
i
−1) + P̃j(q∗

j
+1)(1 −

P̃i(q∗
i
−1)), (12)

respectively. First, let us proceed with (11) to derive a neces-

sary and sufficient conditions on q∗i and q∗j . On expanding P̃iq

and P̃jq , and by using the approximation on outage probability

given in (5), the inequality in (11) can be rewritten as

Ki

q∗i
+

Kj

q∗j

(

1− Ki

q∗i

)

≤ Ki

q∗i + 1
+

Kj

q∗j − 1

(

1− Ki

q∗i + 1

)

,

where Ki and Kj can be obtained from (9). On solving the

above equation, we obtain

Ki

q∗i
− Ki

q∗i + 1
+

Kj

q∗j
− Kj

q∗j − 1
≤ KiKj

q∗i q
∗
j

− KiKj

(q∗i + 1)(q∗j − 1)
.

After further modifications, we can rewrite the above equation

as

q∗2j Ki − q∗j (Ki +KiKj) ≤ −KiKj + q∗2i Kj + q∗i

(Kj −KiKj). (13)

In the above equation, we can replace (−KiKj + q∗2i Kj +
q∗i (Kj −KiKj)) by C1, and by rearranging the terms, we get

(7). This completes the proof for the first necessary condition.

The second necessary condition for (12) can be proved along

the similar lines of the above proof to obtain (8). It can be

observed that the two conditions of this theorem are also

sufficient because the bounds are obtained by rearranging the

terms in the condition on local minima.

IV. LOW-COMPLEXITY LIST-DECODING ALGORITHM

Using Theorem 3, we are ready to synthesize a low-

complexity algorithm to solve Problem 2.

Proposition 1: If the ARQ distribution q is chosen such that
q∗j
q∗i

=

√
Kj

Ki
, for i 6= j, then q is a local minima of the search

space at a high SNR.

Proof: At a high SNR, φ is very small, and therefore, the

product KiKj is negligible. Therefore, we can rewrite (7) and

(8) as

q∗2j Ki − q∗jKi ≤ q∗2i Kj + q∗iKj ,

q∗2j Ki + q∗jKi ≥ q∗2i Kj − q∗iKj ,

respectively. On rearranging the above equations, we get

q∗2j Ki − q∗2i Kj ≤ q∗jKi + q∗iKj,

q∗2j Ki − q∗2i Kj ≥ −q∗jKi − q∗iKj ,

respectively. Now, by equating q∗jKi+ q∗iKj = ǫi,j , the above

equations become

q∗2j Ki − q∗2i Kj ≤ ǫi,j, (14)

q∗2j Ki − q∗2i Kj ≥ −ǫi,j, (15)

where ǫi,j is a positive number dependent on Ki,Kj, q
∗
i , q

∗
j .

If we choose q∗i and q∗j such that q∗2j Ki − q∗2i Kj = 0, for

i 6= j, then it ensures that the inequalities in (14) and (15) are

trivially satisfied. Thus, choosing

q∗j
q∗i

=

√

Kj

Ki
, (16)

for every pair i, j ∈ [N ] such that i 6= j, satisfies the sufficient

conditions given in (14) and (15) at high SNR values. This

completes the proof.

Based on the results in Proposition 1, we formulate Problem

3, as given below, as a means of solving Problem 2 at a high

SNR.

Problem 3: For a given {K1,K2, . . . ,KN} and qsum,

find q∗1 , q
∗
2 , . . . q

∗
N such that

q∗j
q∗i

=

√

Kj

Ki
, ∀ i, j ∈ [N ] where i 6= j,

q∗i ≥ 1, q∗i ∈ Z+, ∀i, ∑N
i=1 q

∗
i = qsum.

However, from Problem 3, it is observed that a solution is not

guaranteed because the ratio

√
Kj

Ki
, which is computed based

on the LOS components and the SNR, need not be in Q. There-

fore, we first propose a method to solve Problem 3 without the

integer constraints, i.e., to find an ARQ distribution q ∈ RN .

This type of problem can be solved by using the system of

linear equations of the form Rq = s to obtain qreal = R−1s,
where q = [q1, q2, . . . , qN ]T , s = [0, 0, . . . , 0, qsum]T and

R ∈ RN×N such that R(j, j) = 1 for 1 ≤ j ≤ N ,

R(N, j) = 1, for 1 ≤ j ≤ N , R(j, j + 1) = −rj,j+1, for

rj,j+1 ,

√

Kj+1

Kj
and 1 ≤ j ≤ N − 1, and the rest of the

entries of R are zeros. Subsequently, using the solution qreal

in RN , we propose to obtain a solution in the true search space

S by generating a list as given in Algorithm 1 [5]. Finally, once

the list is generated, the ARQ distribution that minimizes the

PDP would be the solution of the proposed algorithm.

Algorithm 1 List Creation Based Algorithm

Input: R, s, qsum, c = [c1, c2, . . . , cN ]
Output: L ⊂ S - List of ARQ distributions in search space

S.

1: Compute qreal = R−1s, q̃ = ⌈qreal⌉.

2: for i = 1 : N do

3: if q̃i = 0 then

4: q̃i = q̃i + 1
5: end if

6: end for

7: Compute E =
(
∑N

i=1 q̃i

)

− qsum

8: L = {q ∈ S | d(q, q̃) = E, qj ≯ qi for ci < cj}.
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Fig. 3: Illustration on the average delay on packets and deadline violation parameter (η) for several values of τNACK =
{0.05, 0.2, 0.8} microseconds while implementing CC-HARQ strategy.
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Fig. 4: Comparison of list size between exhaustive search

and the proposed low-complexity algorithm with and without

Theorem 2 .

V. SIMULATION RESULTS

In the first part of this section, we present simulation

results on the delay profiles of the packets under the CC-

HARQ protocol. We show that when the ACK/NACK delay

overheads are sufficiently small as compared to the payload,

there is a high probability with which the packets arrive at the

destination within the given deadline. To obtain the results,

first, we take qsum = ⌊ τtotal

τp+τd
⌋, by assuming τNACK = 0 and

τp+τd = 1 microsecond where τtotal, τNACK , τp and τd (with

µs unit) are defined in Section I. Then, we consider non-zero

values of τNACK = {0.05, 0.2, 0.8}µs during the packet flow,

and present the results for the following metrics: (i) the number

of packets that did not reach the destination due to lack of

ARQs present at the intermediate nodes (defined by Pdrop), (ii)

the number of packets that reach the destination after the given

deadline (defined by Pdeadline), and (iii) the average delay on

the packets. The plots are as shown in Fig. 3 for a given N and

a LOS vector c with different qsum and various SNR values. It

can be observed that when τNACK is very small, specifically at

values τNACK = {0.05, 0.2} microseconds, the average delay

is sufficiently lower than the qsum (the deadline). Also, the

deadline violation parameter η =
Pdrop+Pdeadline

Pdrop
is nearly or

equal (in the case of τNACK = 0.05µs) to one. However,

when τNACK = 0.8µs, the average delay slightly moves

towards the deadline and also, η exceeds one, showing the

deadline violation of the packets.

In the rest of this section, we present the simulation

results to validate our theoretical analysis and to showcase

the benefits of using the CC-HARQ protocol over a non-

HARQ based multi-hop model [6]. On the one hand, the

computational complexity for solving Problem 1 and Problem

2 using an exhaustive search is
(
qsum−1
N−1

)
. On the other hand,

the computational complexity of our method is determined

by the complexity of computing the inverse of a matrix and

that of Algorithm 1. Furthermore, while the complexity for

computing the inverse is O(N3), the number of computations

for generating the list is bounded by
(
N
E

)
, where E is the

leftover number of ARQs after the ceiling operation. To

demonstrate the benefits of using our low-complexity method,

we plot the curves for the list size of an exhaustive search

and the proposed algorithm in Fig. 4 for several values of

qsum with N = 4 and N = 5. Specifically, we plot the

list size both with and without incorporating the results of

Theorem 2. When using Theorem 2, by subtracting one ARQ

from all possible
(
N
E

)
positions from q̃, we discard those ARQ

distributions which follow the rule qi > qj whenever ci > cj .

As a result, we see that the list size shortens after incorporating

the rule of Theorem 2 for N = 5. Furthermore, based on

the simulation results, we observe that the ARQ distribution,

which minimizes the PDP from the list L matches the result

of exhaustive search, thereby confirming that our list contains

the optimal ARQ distribution. Although, we used high SNR

results of Proposition 1 to synthesize the list-decoding method,

we observe that the size of the list reduces significantly at low

and medium-range of SNR values.

Finally, to showcase the benefits of using CC-HARQ in a

multi-hop network, we plot the minimum PDP against several
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Fig. 5: PDP comparison between (i) an exhaustive search using original PDP expression in CC-HARQ strategy, (ii) an exhaustive

search using approximated PDP expression in CC-HARQ strategy, (iii) the proposed low-complexity algorithm, (iv) uniform

ARQ distribution in CC-HARQ based strategy, and (v) ARQ distribution in non-HARQ strategy [6].

values of qsum in Fig. 5 by using (i) an exhaustive search on

pd (as given in (3)), (ii) an exhaustive search on p̃d (as given in

(6)), (iii) the proposed low-complexity algorithm, (iv) uniform

ARQ distribution in CC-HARQ based strategy, and (v) non-

HARQ strategy. There are mainly two observations from the

simulation results in Fig. 5: (a) the PDP improves in the case of

optimal ARQ distribution (with the exhaustive search on both

pd and p̃d) over uniform ARQ distribution and non-hybrid

based ARQ distribution, and (b) our proposed approximation

p̃d produces reasonably accurate results.

VI. DISCUSSION

In this work, we have presented a novel CC-HARQ frame-

work to achieve high reliability with bounded-delay constraints

in a slow-fading multi-hop network. In particular, by using the

CC-HARQ protocol at the intermediate relay, we have posed

the problem of distributing a given number of ARQs such that

the PDP is minimized. We have shown that the problem is

non-tractable because the underlying PDP expression contains

the Marcum-Q function. Towards solving the problem, (i)

we have provided a novel approximation on the Marcum-

Q function in the high SNR regime and have subsequently

used the approximation by formulating a similar optimization

problem, (ii) we have derived a set of necessary and sufficient

conditions on the near-optimal ARQ distribution by using the

approximated version of the optimization problem, and finally,

(iii) we have proposed a low-complexity list-based algorithm

to solve the optimization problem that yields near-optimal

ARQ distribution. We have validated our approximation and

the efficacy of our algorithm through extensive simulation

results.
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