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Abstract—Mobile edge computing (MEC) is a promising so-
lution for enhancing the user experience, minimizing content
delivery expenses, and reducing backhaul traffic. In this pa-
per, we propose a novel privacy-preserving decentralized game-
theoretic framework for resource crowdsourcing in MEC. Our
framework models the interactions between a content provider
(CP) and multiple mobile edge device users (MEDs) as a non-
cooperative game, in which MEDs offer idle storage resources for
content caching in exchange for rewards. We introduce efficient
decentralized gradient play algorithms for Nash equilibrium (NE)
computation by exchanging local information among neighboring
MEDs only, thus preventing attackers from learning users’ private
information. The key challenge in designing such algorithms is
that communication among MEDs is not fixed and is facilitated
by a sequence of undirected time-varying graphs. Our approach
achieves linear convergence to the NE without imposing any
assumptions on the values of parameters in the local objective
functions, such as requiring strong monotonicity to be stronger
than its dependence on other MEDs’ actions, which is commonly
required in existing literature when the graph is directed time-
varying. Extensive simulations demonstrate the effectiveness of
our approach in achieving efficient resource outsourcing decisions
while preserving the privacy of the edge devices.

Index Terms—Mobile edge caching, time-varying communica-
tion graph, decentralized algorithm, non-cooperative game.

I. INTRODUCTION

The rapid proliferation of data-intensive mobile devices and
the growing demand for high-quality services have resulted in
an unprecedented surge in mobile data traffic. This surge in
traffic has placed a significant burden on mobile networks,
which have been identified as the bottleneck of the mobile
Internet. Compounding this issue, multiple mobile edge devices
(MEDs) repeatedly downloading the same popular content can
result in a significant waste of backhaul resources and severe
network congestion, which ultimately impacts the quality of
service (QoS). Hence, there is an urgent need for innovative
solutions to alleviate the strain on the network.

Centralized systems typically store content on remote cloud
servers or content delivery networks (CDNs). When a user
requests content, the request is transmitted to a nearby base
station, which forwards it through the backhaul network to the
core network. The core network then retrieves the content from
the centralized servers or CDNs and sends it back through the
backhaul network to the base station for delivery to the user’s
device. However, this reliance on backhaul networks can cause
network congestion and slow delivery times, particularly during
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high-traffic periods. Edge caching has emerged as a promising
technology that can help alleviate these challenges.

The reduction in data storage cost has paved the way for edge
caching, a technology that proactively caches popular content
at the network edge during off-peak hours. As a result, requests
during peak hours can be served locally at the edge, rather than
traversing the mobile core and the internet to reach the original
servers. This approach can substantially reduce duplicate data
transmission, decrease backhaul capacity requirements, allevi-
ate congestion within the backbone network, and ultimately
improve the overall user experience [1, 2]. In addition to content
caching at MEC servers situated at base stations or edge data
centers, the idle resources of numerous MEDs can be utilized
for edge caching to reduce the upfront investment costs for
content providers (CPs) and network operators. Implementing
mobile edge caching requires active participation from many
MEDs who are willing to contribute their storage resources.
To address this challenge, we propose CrowdCache, a novel
crowdsourcing-based mobile edge caching and sharing service
that distributes the caching workload and reduces reliance on
centralized caching infrastructure.

Fig. 1: CrowdCache framework

Figure 1 depicts the architecture of CrowdCache, which is a
decentralized caching system that utilizes idle resources from
MEDs to cache popular content at the network edge. The
system consists of a CP and multiple MEDs. By crowdsourcing
idle resources from MEDs, the CP can virtually expand the total
edge caching capacity and drastically improve user experience.
In a given service area, popular content such as highly-rated
movies, viral videos, news updates, and weather forecasts are
often requested by numerous users. Therefore, rather than
accessing remote content servers, mobile users can retrieve a
portion of content directly from nearby MEDs that participate
in the CrowdCache system. Specifically, the CP can store and
deliver cached content on these participating MEDs to fulfill
requests from nearby users. We consider a CP that provides
public content. Thus, potential data privacy concerns related to
the cached content are not significant factors to consider.
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The economic incentives for MEDs to participate in content
sharing are pivotal to the success of the CrowdCache system.
MEDs and the CP are self-interested parties motivated to max-
imize their respective benefits. Proactive caching at the edge
can reduce operational expenses and improve service quality
for the CP. The CP can offer various incentives, including
monetary compensation, reduced data plan costs, or free access
to premium content to the contributing MEDs. However, there
is an inherent tradeoff between the reward scheme and the ben-
efits gained by caching content on MEDs. MEDs can monetize
their idle resources by contributing to the CrowdCache system.
MEDs may decide to participate in the CrowdCache system
based on the incentives offered, weighing the associated costs,
such as increased power consumption and reduced battery life.
To optimize their utilities, MEDs must determine the optimal
amount of storage to contribute to CrowdCache. Ultimately,
CrowdCache enhances the efficiency and effectiveness of avail-
able resources, resulting in an improved experience for all users.

In designing a decentralized system, considerations must go
beyond economics and incentive mechanism design as there
are other important aspects that need to be addressed. One of
the major concerns is privacy, which can be compromised in
centralized algorithms if the system lacks strong privacy pro-
tections such as data encryption, differential privacy, or secure
multi-party computation. In our setting, MEDs may not want
to reveal their utility functions and physical constraints (e.g.,
caching capacity) to the system since the system may exploit
this information to minimize the reward to the MEDs. Even in
a distributed system, the centralized coordinator (i.e., the CP
in our setting) collects data from all MEDs and rebroadcasts it
at every iteration, potentially allowing them to learn patterns
in the data and infer sensitive information that individual
MEDs may not want to reveal. Furthermore, some existing
frameworks require each MED to possess complete information
regarding the decisions of its rivals [3, 4]. However, this may
not be practical due to privacy concerns. For instance, the
existing body of work that utilizes the best-response approach
[1] necessitates knowledge of the local cost function, which
contains sensitive information about an MED’s state, resources,
constraints, and preferences. Sharing this information can also
reveal information about an MED’s strategies or decision-
making processes, which may be confidential or proprietary.
Given these challenges, there is a need to develop a decen-
tralized algorithm that relies on local information and limited
information exchange to ensure privacy and confidentiality.

Extensive research has been conducted on the development of
efficient distributed techniques for computing Nash-equilibrium
(NE) with partial information, mainly based on projected gra-
dient and consensus dynamics approaches. However, the early
works [5, 6] have predominantly employed static communica-
tion networks, which are impractical in MEC environments.
Due to changing network conditions, user mobility, dynamic
strategies are needed to ensure efficient and effective con-
tent delivery in the presence of time-varying network among
MEDs. Recent studies have addressed the NE computation
in communication networks with switching topologies in [7]

and references therein. A key challenge is the time-varying
nature of mixing matrices, [7] establishes explicit bounds for
the step-size and provides a condition for handling the loss
of monotonicity with weighted norms. However, this condition
requires the strong monotonicity of the local objective of each
MED to be sufficiently strong relative to its dependence on
other MED’ actions, as noted in the literature for directed
communication graphs. This limitation hinders the algorithm’s
direct application in the resource crowdsourcing problem un-
der consideration, as the local objective function’s coefficient
values may not always satisfy the additional assumption.

To address this limitation, this paper proposes a novel
decentralized NE-seeking algorithm for a mobile edge content-
sharing problem where MEDs can exchange information when
located within each other’s coverage areas. The communication
is two-way, even though the set of devices with which each
MED can communicate may change over time. The bidirec-
tional nature of communication in our proposed MEC environ-
ment enables us to consider an undirected and time-varying
communication network, which is a departure from the directed
and time-varying communication graphs considered in [7]. This
key difference, together with the use of Metropolis weights,
results in doubly-stochastic mixing matrices that enable con-
vergence analysis without the strong monotonicity assumption
under weighted norms, overcoming the technical limitations of
previous methods. Notably, the proposed algorithm achieves
linear convergence without additional assumptions on the local
objective function. The proposed algorithm offers a significant
contribution to the MEC environment by addressing a crucial
issue of dynamic network topology and high mobility MEDs.

Contributions. We are among the first to examine the
privacy-preserving decentralized mobile edge content caching
and sharing problem, formulated through non-cooperative
games while considering the high mobility of MEDs. NE offers
a stable resource allocation where no MED has any incentive
to change their strategy unilaterally, given the strategies of
the other MEDs. We propose fully decentralized algorithms
called DCrowdCache and DCrowdCache-m that utilize local
information exchange among MEDs to compute the NE while
preserving the privacy of MEDs. The algorithm converges over
time-varying undirected communication networks by having
each MED perform a gradient step to maximize their utility
while sharing information with local network neighbors. Sig-
nificantly, our approach within the MEC environment achieves
linear convergence to the NE without the imposition of any
assumptions on the local objective function. This stands out
from existing literature where the requirement for strong mono-
tonicity to be greater than its dependence on other MEDs’ ac-
tions is commonly enforced if the communication graph is one-
way and time-varying, to guarantee the strong monotonicity of
the game mapping under a weighted norm. This framework
has the potential to transform resource crowdsourcing in MEC
environments and benefit resource-constrained MEDs while
reducing energy consumption and carbon footprint.
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II. SYSTEM MODEL

We consider a framework for mobile edge content caching
and sharing via crowdsourcing, known as CrowdCache. This
framework comprises a cloud-based CP and a set of MEDs,
which may include mobile handheld devices (e.g., smartphones)
serving end-users. The CP is responsible for providing re-
quested content to MEDs via a remote cloud server, while
MEDs may request content from the CP and cache some of
it on their device storage. However, utilizing a cloud server
for content delivery may lead to network congestion and slow
content delivery especially during peak hours. To enhance
system efficiency, the CP may incentivize MEDs to share
content with each other in a decentralized manner.

Mobile edge devices (MEDs): Consider a set I of N MEDs
interested in content sharing, where each MED is indexed by i.
In this CrowdCache system, the hosting MED responsible for
content sharing also provides storage for cached content. To
facilitate resource allocation decisions, we introduce the vari-
able xi ≥ 0 to denote the storage a MED is willing to provide.
These decisions form a profile vector x = [x1, x2, . . . , xN ].
Each MED aims to maximize its own utility by determining
its resource allocation decision, taking into account costs and
rewards. Caching and sharing content incurs a cost, which
varies based on device type and depreciation. We model this
cost, similar to [8, 9], for MED i ∈ I, as follows:

ci(xi) = Qix
2
i + hixi, ∀i. (1)

Qi is the quadratic cost, and hi is the linear cost of MED i. This
quadratic cost function discourages excessive storage alloca-
tion. When an MED chooses to participate in the CrowdCache
system, it must reserve a specific storage space for caching
content, which results in a storage cost. The MED is also
responsible for content delivery, which can result in significant
bandwidth and power consumption, potentially leading to re-
duced performance and battery life for the contributing MEDs.

In addition to considering the benefits and costs associated
with content caching and sharing, mobile users must also take
into account physical limitations, such as the storage capacity of
their devices. Denoting the maximum storage capacity available
for cached content on MED i as Ci, we require:

0 ≤ xi ≤ Ci, ∀i. (2)

Content provider (CP): Within the CrowdCache frame-
work, the CP can leverage edge caching to provide the most
current content to users. When a user requests content, the
request is initially directed to the closest MED that has the
requested cached content stored. If the MED has the content
cached, it will respond to the requesting user with the content.
The CP can reduce its content delivery cost significantly by
encouraging content sharing among the MEDs. In return for
participating in content sharing, the platform provides a reward
(i.e., payment) to each MED that shares its cached content. The
CP’s objective is to provide content to users while improving
QoS. In this study, the pricing strategy adopted by the CP is that
of a price-maker, allowing for the adjustment of the reward for
MEDs based on market demand. To incentivize MEDs i ∈ I

to share cached content with others, the CP may offer higher
rewards. Conversely, the CP may reduce the unit price to ensure
efficient resource utilization in cases where the total outsourced
resources are high. The unit price can be adjusted based on the
total resources outsourced by all MEDs, thus maintaining a
balance between the platform’s revenue and the incentives for
the MEDs. The price for each unit of resource is captured by:

p(x) = P̄ − γ
∑
j∈I

xj , (3)

where P̄ denotes the maximum unit reward offered by the CP
(i.e., payment to the MEDs by sharing the cached content),
which can be obtained according to the historical data. Here, γ
is a weighting parameter, controlled by the CP, that measures
the negative effect of the other MED’s benefits by sharing
content. The CP can adjust the reward through parameter γ,
reflecting their attitude towards the market demand for shared
content. A lower value of γ can encourage more MEDs to
outsource their idle resources. Conversely, when more resources
are available, unit prices may decrease by increasing γ as
demand can be sufficiently fulfilled by existing participants.
The reward for MED i provided by the CP can be given by

Ri(xi, x−i) = p(x)xi, ∀i. (4)

Overall, the reward function is a function of xi as well as
other MEDs (i.e., x−i) in the set I, which penalizes MEDs
for increasing the sum of xi of all MEDs i ∈ I. This reward
function emphasizes the marginal benefit that the reward of
user i is diminishing as the others intensify the engagement on
content sharing. Specifically, if MED i decides to be completely
inactive by setting xi = 0, then she will receive no reward in
(4). On the other hand, MED i will receive a positive intrinsic
reward even if all other MEDs are inactive.

Subsequently, we proceed to formulate the utility function
that each MED i strives to maximize, which can be repre-
sented as the discrepancy between the received reward and the
associated computing cost, as follows:

Ui(xi, x−i) = Pi(xi, x−i)− ci(xi), ∀i. (5)

III. GAME THEORETIC MODEL AND NE ANALYSIS

Game theory offers a systematic approach to comprehending
decision-making in scenarios where multiple decision-makers
aim to optimize their individual, but interconnected, objectives.
In this section, we adopt a game-theoretic framework to model
the crowdsourcing mobile edge content caching and sharing
problem as a non-cooperative game, and we utilize the concept
of NE to characterize the corresponding solution. We investi-
gate the existence and uniqueness of the NE. The uniqueness
of the NE strategy profile enables the platform to accurately
predict user behavior in the system, facilitating the selection of
the optimal values of P̄ and γ for optimal profit.

Consider the non-cooperative game between N MEDs where
each MED seeks to minimize their local objective function,
without coordinating with other MEDs. Denote the game by
Γ = (I, {Ji}, {Xi}) where Xi = [0, Ci] ⊆ R represents the
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action set and Ji(·) represents the local objective function, for
each MED i ∈ I, given as follows:

Ji(xi, x−i) = −Ui(xi, x−i)

= Qix
2
i + hixi −

(
P̄ − γ

∑
j∈I

xj

)
xi, ∀i. (6)

Each function Ji(xi, x−i) depends on xi and x−i, where
xi ∈ Xi is the action of the MED i, indicating the amount
of idle resources they will offer, and x−i∈X−i=X1 × · · · ×
Xi−1 ×Xi+1×· · ·×XN denotes the joint action of all MEDs
except MED i. Denote by x=(x1, . . . , xN ) the strategy profile
consisting of all MEDs’ actions and by X = X1 × · · · ×XN

the MEDs’ joint action set. We observe the following:

Lemma 1. The game Γ is convex. Namely, for all i ∈ I, the
set Xi is nonempty, convex and closed, the function Ji(xi, x−i)
is convex in xi over Xi and continuously differentiable in xi
for each fixed x−i. Moreover, the partial derivatives of Ji with
respect to xi, Jxi

(xi, x−i), are continuous functions in x.

In order to identify stable and desirable solutions for the
non-cooperative game Γ under consideration, we employ the
concept of NE which refers to a joint action where no MED
has an incentive to change their strategy unilaterally. The stable
NE strategy set for the game Γ is defined as follows:

Definition 1. A solution to the game Γ is a NE x∗ ∈ X =
X1 × · · · ×XN if for every MED i ∈ I, we have:

Ji(x
∗
i , x
∗
−i) ≤ Ji(xi, x∗−i), ∀xi ∈ Xi, (7)

where ∇iJi(xi, x−i) = ∇xi
Ji(xi, x−i) for all i ∈ I.

For any MED i, Lemma 1 states that the action set Xi is
closed and convex, and the cost function Ji(xi, x−i) is convex
and differentiable in xi for every x−i ∈ X−i. Given these
conditions, a NE x∗ ∈ X of the game can alternatively be
characterized using the first-order optimality conditions. That
is, x∗ ∈ X is a NE of the game if and only if, for all i ∈ I:

〈∇iJi(x∗i , x∗−i), xi − x∗i 〉 ≥ 0, ∀xi ∈ Xi.

Using the Euclidean projection property, for an arbitrary scalar
α > 0, the preceding relation is equivalent to [10]:

x∗i = ΠXi
[x∗i − α∇iJi(x∗i , x∗−i)], ∀i ∈ I. (8)

We define the game mapping as follows:

Definition 2. The game mapping F (x):X→RN is defined as

F (x) , [∇1J1(x1, x−1), . . . ,∇NJN (xN , x−N )]
T
. (9)

Lemma 2. The game mapping is strongly monotone on X
with the constant µ = 2 mini∈I Qi + 2γ > 0. Moreover, each
function Ji(xi, x−i), i ∈ I, is strongly convex on R for every
x−i ∈ RN−1 with the constant µ.

As a result of Lemma 2, we now demonstrate the existence
and uniqueness of the NE for the game Γ. For this purpose, we
recall the results connecting NE and solutions of VIs [10].

Definition 3. For a set K ⊆ Rd and a mapping g : K → Rd,
the variational inequality (VI) problem V I(K, g) is to deter-
mine a vector q∗ ∈ K such that

〈g(q∗), q − q∗〉 ≥ 0, for all q ∈ K.

The set of solutions to V I(K, g) is denoted by SOL(K, g).

The theorem below is a well-known result that establishes
the connection between NE in games and solutions of a VI.

Theorem 1 (Proposition 1.4.2 of [10]). Consider a networked
Nash game Γ. Suppose that the action sets of the MEDs {Xi}
are closed and convex, the cost functions {Ji} are continuously
differentiable and convex in xi for every fixed x−i from X−i.
A vector x∗ ∈X is a NE for the game Γ if and only if x∗ ∈
SOL(X,F ), where F is the game mapping defined by (9).

The next result holds for VIs with strong monotone mappings.

Theorem 2 (Proposition 2.3.3 of [10]). Given the V I(K, g),
suppose that K is a closed, convex set and the mapping g
is continuous and strongly monotone. Then, the solution set
SOL(Q, g) is nonempty and is a singleton.

Taking into account Lemma 1, Lemma 2, Theorem 1 and
Theorem 2, we obtain the following results.

Theorem 3. Consider the game Γ = (I, {Ji}, {Xi}). There
exists a unique NE in Γ. Moreover, the NE is the solution of
V I(X,F ), where F is the game mapping defined in (9).

Theorem 3 guarantees the existence and uniqueness of NE in
the game Γ = (I, {Ji}, {Xi}). However, the formulation of the
NE based on the VI V I(X,F ) does not consider the distributed
nature of the proposed problem. We present the Lipschitz
continuity of the gradient of local objective function Ji for
all i ∈ I. This property is crucial to ensure the convergence of
the distributed algorithm to the NE, as demonstrated in [7].

Lemma 3. Consider the game Γ = (I, {Ji}, {Xi}), we have:
(a) The mapping ∇iJi(·, x−i) is Lipschitz continuous on R

for every x−i ∈ RN−1 with a uniform constant L1 =
2(maxi∈I Qi + γ) > 0, for all i ∈ I.

(b) The mapping ∇iJi(xi, ·) is Lipschitz continuous on RN−1
for every xi ∈ R with a uniform constant L2 =
γ
√
N − 1 > 0, for all i ∈ I.

IV. PRIVACY-PRESERVING DECENTRALIZED ALGORITHM

We begin this section by highlighting the significance of
a fully distributed algorithm that ensures the privacy of the
information of MEDs participating in a system. When MEDs
have unrestricted access to the actions of others in the system, it
is possible to compute an NE point using an iterative algorithm
[10]. In particular, starting with some initial point xi0 ∈ Xi,
each MED i updates its decision at time k as follows:

xik+1 = ΠXi
[xik − α∇iJi(xik, x−ik )]. (10)

While this algorithm converges to a NE of the game Γ,
it requires every MED to have access to all other MEDs’
decisions at all times, which can be impractical in real-world
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systems. Existing approaches also assume full information
about competitors’ cost functions, which may not be feasible. In
the crowdsourcing mobile edge content caching problem under
consideration, MEDs may not have access to all the information
about other MEDs, or collecting such information may raise
privacy concerns. In the following, we propose to employ a
privacy-preserving decentralized algorithm to compute the NE,
allowing MEDs to learn it in a decentralized manner, even with
partial information exchange.

Consider the crowdsourcing mobile edge content caching and
sharing problem presented in Section II, situated in a partial-
information environment with privacy-concerned MEDs. In this
scenario, each mobile MED’s local objective function Ji is
private and is not shared with other MEDs or the platform.
Moreover, each MED only possesses partial information about
their opponents’ actions through local communications. All
traffic remains within the local network and is not routed
through a centralized cloud. As a result, there is no centralized
communication system between MEDs, and the information
exchange occurs solely between neighboring devices.

MEDs can communicate only locally, with a local subset of
neighboring MEDs, through D2D communication technologies,
such as WiFi-Direct1, LTE-Direct2 and the interactions over
time are constrained by a sequence of time-varying com-
munication graphs. Specifically, when MEDs interact at time
k, their interactions are constrained by an undirected graph
Gk = (I,Ek). The set of nodes is the MED set I, and Ek
is the set of undirected links. An unordered link (i, j) indicates
that MED i can receive information from MED j, and vice
versa. Given a graph Gk = (I,Ek), we define the neighbor set
for every MED i, as follows:

Nik = {j ∈ I | (i, j) ∈ Ek} ∪ {i}.

Remark 1. The sets of neighbors Nik always include MED
i, indicating that MED i has knowledge of its own decision.
Consequently, every node i ∈ I has a self-loop in each graph
Gk = (I,Ek), for all k ≥ 0.

We assume the following regarding the communication graph:

Assumption 1. The time-varying undirected graph sequence
{Gk} is B-connected. Specifically, there exists an integer B ≥
1 such that the graph with edge set EBk =

⋃(k+1)B−1
i=kB Ei is

connected for every k ≥ 0.

Assumption 1 ensures that after B-rounds of communication,
there exists a path between any pair of MEDs in the system.
This assumption guarantees that no MED is isolated from
the rest of the system, which is essential for the efficient
information exchange and operation of the system as well as
the convergence of the algorithm in distributed systems. This
assumption is easily satisfied as long as MEDs are within the
coverage area of cellular or Wi-Fi networks. In practice, the
crowdsourcing-based market relies heavily on the connectivity
of MEDs to the Internet. In order for MEDs to participate

1https://www.wi-fi.org/discover-wi-fi/wi-fi-direct, Access March 2023
2https://www.qualcomm.com/research/5g/4g, Access March 2023

Algorithm 1: DCrowdCache
MEDs are instructed to use step-size α.
Every MED i ∈ I initializes with arbitrary initial vectors
zi,−i0 ∈ RN−1 and xi0 ∈ R.
for k = 0, 1, . . . , every MED i ∈ I does the following:

Receives zjk and |Njk| from neighbors j ∈ Nik;
Sends zik and |Nik| to neighbors j ∈ Nik;
Calculates the weights using Metropolis weights

[Wk]ij=


1/(1+max{|Nik|, |Njk|}, if j∈Nik\{i},

0, if j 6∈Nik,

1−
∑
`∈Nik

[Wk]il, if j = i;

Updates estimates zi,−ik+1 and the action xik+1 by

zi,−ik+1 =

N∑
j=1

[Wk]ijz
j,−i
k ,

xik+1 =ΠXi

[
N∑
j=1

[Wk]ij [z
j
k]i − α∇iJi

(
N∑
j=1

[Wk]ijz
j
k

)]
;

end for

in crowdsourcing-based content-sharing tasks, they must be
connected to a network that allows them to communicate with
the CP and other MEDs in the network.

Given the constraints on MEDs’ access to others’ actions
in game Γ, we propose a fully-decentralized algorithm that re-
spects the information access as dictated by the communication
graphs Gk. Specifically, each MED i maintains a local variable
zik = (zi1k , . . . , z

iN
k )T ∈ RN , where zijk is MED i’s estimate

of the decision xjk for MED j 6= i, while ziik = xik. Thus,
zik comprises the decision ziik = xik ∈ R of MED i and the
estimate zi,−ik ∈ RN−1 of MED i for the decisions of the other
MEDs. At each time k, each MED i sends its estimate zik and
receives estimates zjk from its neighbors j ∈ Nik. MED i then
updates its own action xik+1 and local estimate zik+1 using the
received information. It is worth noting that in the decentralized
algorithm, instead of evaluating its gradient at actual decisions,
as in Ji(xi, x−i) (see (10)), each MED evaluates its gradient
at local estimates. The method is outlined in Algorithm 1.

The Metropolis weights introduced in [11] are employed
as the weights Wk in Algorithm 1. The Metropolis weights
can be calculated in a distributed fashion with two rounds of
communication between neighboring nodes, without requiring
any global knowledge of the communication graph. The initial
round entails each node calculating its degree by enumerating
its instantaneous neighbors, while in the subsequent round, each
node disseminates its degree information to all its neighbors. It
is noteworthy that the proposed method obviates the require-
ment of global knowledge pertaining to the communication
graph. Due to the undirected nature of Gk, it can be readily
observed that the weight matrix Wk satisfies the following:

Lemma 4. For each k≥0, the weight matrix Wk is compatible
with the graph Gk, symmetric, and doubly-stochastic, i.e.,

Wk1 = 1 and 1TWk = 1T.

Furthermore, there exist a scalar w>0 such that min+(Wk) ≥
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Algorithm 2: DCrowdCache-m
MEDs are instructed to use step-size α and parameter β.
Every MED i ∈ I initializes with arbitrary initial vectors
zi,−i0 , zi,−i−1 ∈ RN−1 and xi0, x

i
−1 ∈ R.

for k = 0, 1, . . . , every MED i ∈ I does the following:
Receives zjk and |Njk| from neighbors j ∈ Nik;
Sends zik and |Nik| to neighbors j ∈ Nik;
Calculates the weights using Metropolis weights;
Updates estimates zi,−ik+1 and the action xik+1 by

zi,−ik+1 =

N∑
j=1

[Wk]ijz
j,−i
k +β(zi,−ik − zi,−ik−1),

xik+1 =ΠXi

[
N∑
j=1

[Wk]ij [z
j
k]i − α∇iJi

(
N∑
j=1

[Wk]ijz
j
k

)]
+ βi(x

i
k − xik−1);

end for

w, for all k ≥ 0.

Remark 2. In the absence of any additional knowledge on the
graph structures, the minimal weight can be observed as w =
1/N . If more information is available, such as the maximal
in-degree d of the nodes (MEDs) in any of the communication
graphs, then w = 1/(d+ 1).

Using the iterates zik = (zi1k , . . . , z
iN
k )T, define matrices

zk = [z1k, . . . , z
N
k ]T, ẑk = 1(ẑk)T, x∗ = 1(x∗)T, (11)

where ẑk= 1
N

∑N
i=1 z

i
k and x∗ is an NE point of the game Γ.

The following presents the primary convergence result. It
asserts that the iterates generated by Algorithm 1 converge
linearly to the NE of the game Γ.

Theorem 4. Consider the game Γ = (I, {Ji}, {Xi}) where
Xi = [0, Ci] ⊆ R and the function Ji(xi, x−i) is defined in (6),
for each MED i ∈ I. For a sufficiently small constant step-size
α > 0, the sequence {zk, k ≥ 0} generated by Algorithm 1
converges to x∗ = 1(x∗)T, where x∗ is the unique NE of the
game Γ, with linear rate, i.e.,

lim
k→∞

‖zk − x∗‖ = 0, lim
k→∞

‖xk − x∗‖ = 0.

The technique known as the heavy-ball method, originally
introduced in [12], has gained widespread use as a means of
accelerating gradient-based methods to achieve faster conver-
gence in distributed optimization [13], non-cooperative games
[14], and aggregative games [15]. In light of this, we propose
integrating the heavy-ball momentum and consensus-based
gradient method to seek a discrete-time NE for the game Γ
in a distributed manner. Our proposed method is presented
in Algorithm 2, and its linear convergence for unconstrained
games has been proven in [14]. We demonstrate the linear
convergence of Algorithm 2 through numerical examples.

V. NUMERICAL RESULTS

A. Simulation Setting

We consider a partial information scenario where there is no
centralized communication system between MEDs. However,

(a) MEDs coverage areas (b) MEDs connections

Fig. 2: Mobile edge devices (MEDs) locations at ASU campus

they may communicate with a local subset of neighbouring
MEDs via undirected communication graph. We assume D2D
communication among MEDs, such as WiFi-Direct or LTE-
Direct. While the coverage for WiFi can vary depending on
the device and environment, it typically has a range of up to
200 meters in open spaces with no obstructions. In practical
use, the range can be lower, especially in indoor environments
where walls and other obstacles can interfere with the signal.
We assume that the coverage range for each device is within
the range of [150, 200] meters. By exploiting the EUA dataset3,
we generate initial locations of N MEDs from the ASU Tempe
campus, which includes longitude and latitude coordinates for
each MED. In each iteration, the MEDs randomly move within
the designated range, and their new locations and coverage
ranges are used to create a communication graph among them.
Figure 2 demonstrates the locations, coverage areas, and con-
nections among MEDs around the ASU campus. We have made
the raw experimental data publicly available, which includes
information on the starting positions of MEDs, as well as their
locations and connections over time 4.

In our analysis, we begin with the base case scenario, which
considers a small system comprising N = 29 MEDs. We use
the hourly price of the m5d.xlarge Amazon EC2 instance5

as a reference point and normalize all parameters such that
the maximum reward offered by the platform (P̄ ) for each
unit of storage is set to 1. The quadratic cost of MED i
(Qi,∀i) is randomly generated from a uniform distribution
U [0.01, 0.1]$ per hour, and the linear cost (hi,∀i) is generated
from U [0.05, 0.15]$ per hour. We set the storage capacities
Cj randomly from the values 16, 32, 48, and 64 GB. The
experiments are conducted in the MATLAB environment on
a MacBook Air with an M2 core and 16 GB of RAM.

B. Performance analysis

It is well-known that under full information, the sequence
of decision updates converges to the NE (see [10]). In this
case, the NE x∗ can be found using (10). We evaluate the
accuracy and efficiency of two proposed privacy-preserving
decentralized algorithms, DCrowdCache and DCrowdCache-m,
and compare their performance with the state-of-the-art cen-
tralized algorithm, Cen-CrowdCache. Note that our proposed

3https://github.com/swinedge/eua-dataset
4https://github.com/duongnguyen1601/CrowdCache-dataset
5https://instances.vantage.sh, Access March 2023
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algorithms operate even under the partial information scenario,
and the utility functions are private to each MED. However,
Cen-CrowdCache is the algorithm when there is a centralized
communication system that broadcasts information from all
MEDs. We set the step-size α = 20 for all algorithms. The
heavy-ball momentum parameter is β = 0.5 for DCrowdCache-
m(1) and β = 0.8 for DCrowdCache-m(2). We compute
the error between the iterations generated by the NE-seeking
algorithm at iteration k and the NE x∗ for each algorithm.

Fig. 3: Convergence properties
Figure 3 illustrates the convergence properties of all algo-

rithms, indicating that the DCrowdCache-m algorithm con-
verges faster than the DCrowdCache algorithm, and larger
momentum leads to faster convergence. Notably, the proposed
decentralized algorithms with privacy-preserving properties
perform better than the centralized algorithm when heavy-ball
momentum is used. When there are no momentum terms, the
performance is still comparable which showcases the ability of
the proposed fully distributed privacy-preserving algorithms to
achieve effective coordination among MEDs.

C. Sensitivity analysis

We examine the impact of various design parameters on the
system’s performance. We use the term Proposed to refer to the
proposed decentralized NE-seeking algorithms. We compare
three algorithms: Proposed, the heuristic scheme (Heuristic),
and the average scheme (Average). The Heuristic algorithm uses
20% of the maximum idle resources from MEDs, as long as
the utility is positive. This percentage is hand-optimized. The
Average algorithm uses 50% of the maximum idle resources
offered by MEDs, as long as the utility is positive.

To quantify the effect of design parameters, we introduce
scaling factors Γ, Λ and Ψ for the parameter γ, maximum
unit price P̄ , quadratic cost Qi, for all i ∈ I. The CP can
dynamically adjust sensitivity parameter γ to balance the trade-
off between service availability and resource cost in MEC
environment. For instance, when Γ = 0.5, the value of γ used
in the experiment is half of that used in the base case. We
conduct computations to derive and compare the average utility
attained by individual MEDs, as well as the aggregated quantity
of resources that are delegated from MEDs to the platform, for
each of the considered algorithms.

Figure 4 indicates that decreasing the value of γ results in
higher utility as expected since the unit price increases. When
the CP reduces γ, it can motivate more MEDs to contribute
their resources to the system, which in turn can enhance service
availability and performance. In cases where the total demand
for the content is already met by the available resources,

Fig. 4: Impacts of number of γ

increasing γ can prompt MEDs to reduce their contributions,
thus avoiding over-provisioning costs.

Fig. 5: Impacts of maximum unit price P̄
Determining the unit price for outsourced resources is a

critical aspect of the platform. Several factors, including mar-
ket demand, resource availability, competitive landscape, and
quality, require thorough evaluation to set the optimal unit
price that balances cost and profit objectives. The illustration
in Figure 5 presents the effect of the maximum price P̄ that
the CP is willing to pay for one unit of resources. As expected,
increasing P̄ incentivizes the MED to supply more resources
to the platform, resulting in a higher average utility for the
MED, as shown in Figure 5(a). The platform benefits from
this collaboration by accessing a larger pool of resources (see
Figure 5(b)), leading to operational scalability, efficiency, and
improved services to its users.

Fig. 6: Impacts of Qi, for all i ∈ I
Figure 6 illustrates the the impact of the quadratic cost co-

efficient (Qi) associated with outsourcing additional resources.
A higher quadratic cost coefficient results in a more significant
increase in the cost of outsourcing additional resources. This, in
turn, implies that the MED may reduce the number of resources
it offers to outsource, leading to a decrease in the amount of idle
resources available for outsourcing, as illustrated in Figure 6(b).
Furthermore, the quadratic cost coefficient affects the MED’s
utility, which is a concave function of the number of resources
produced. An increase in the quadratic cost coefficient leads
to a more rapid decline in the marginal utility of outsourcing
additional resources, as demonstrated in Figure 6(a).

D. Time complexity analysis

To analyze the time complexity, we conduct experiments
with varying numbers of MEDs. We select different sizes of
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MEDs, including N = 28, 29, 210, 211, and 212, and measured
the computation time required for each MED to execute the
algorithm. The experimental results are presented in Table I.
As the table illustrates, the proposed system is highly efficient
and can handle large-scale computations within a short time,
particularly when a heavy-ball momentum is incorporated into
the algorithm. The scalability of the proposed system with the
problem size is also demonstrated.

N
DCrowdCache DCrowdCache-m (β = 0.5)

# Iterations Run time (s) # Iterations Run time (s)
28 2973 0.035 1474 0.018
29 5791 0.099 2876 0.053
210 10812 0.437 5407 0.239
211 19951 1.519 9978 0.858
212 37541 8.482 18734 4.464

TABLE I: Average performance over 1000 simulations.

VI. RELATED WORK

A considerable body of research has explored the topic
of mobile edge content caching and sharing. For example,
[2] formulates a crowdsourcing-based mobile edge caching
problem as a Stackelberg game. Reference [16] considers a
joint caching and resource allocation problem solved by a dis-
tributed ADMM-based algorithm. A computational offloading
problem among MEDs is examined in [17], where the proposed
decentralized game formulation allows MED users to make
decisions locally. [18] develops a collaborative data caching and
task offloading strategy in MEC. Additionally, [19] proposes an
edge resource pooling framework and [20] investigates content
caching and user association in MEC. However, these studies
assume complete information on competitors’ actions, which is
challenging to obtain in practical scenarios.

Privacy is a crucial issue in EC that has received increasing
attention, but it has been overlooked in the existing literature. In
[21], authors develop a privacy-preserving distributed algorithm
for computing an ME while allowing market participants to
obfuscate their private information. Reference [5] suggests a
distributed consensus mechanism to ensure edge data integrity
and repair corrupted data replicas. In [22], a privacy-preserving
Multi-Party Cooperative Cache sharing framework is presented
for multiple network operators. However, existing work typi-
cally assumes a time-invariant communication network among
MEDs, which may not hold in certain applications.

VII. CONCLUSION

The paper introduced a novel privacy-preserving framework
to tackle the decentralized mobile edge content caching and
sharing problem, where MEDs can share their cached content
with neighbors. The framework was designed to operate over a
time-varying communication graph, ensuring that users’ privacy
is preserved throughout the process. Specifically, we developed
a decentralized gradient-based algorithm, called DCrowdCache,
for NE computation. The algorithm achieves this by enabling
users to exchange local information with their neighbors while
performing a gradient step to maximize their utility. We also
examined the convergence of the algorithm over a time-varying

undirected communication network. Extensive numerical re-
sults demonstrated the efficacy of our proposed framework.
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APPENDIX

A. Notations and Terminologies

All vectors are viewed as column vectors unless stated
otherwise and we consider a discrete time model where the
time index is denoted by k. For every vector u ∈ RN , uT is
the transpose of u. We use 〈·, ·〉 to denote the inner product,
and ‖ · ‖ to denote the standard Euclidean norm. We write 1 to
denote the vector with all entries equal to 1. The dimensions
of the vector 1 is to be understood from the context. The i-th
entry of a vector u is denoted by ui, while it is denoted by [uk]i
for a time-varying vector uk. Given a vector v, we use min(v)
and max(v) to denote the smallest and the largest entry of v,
respectively, i.e., min(v) = mini vi and max(v) = maxi vi.
A vector is said to be a stochastic vector if its entries are
nonnegative and sum to 1.

To denote the ij-th entry of a matrix A, we write Aij , and we
write [Ak]ij when the matrix is time-dependent. For any two
matrices A and B of the same dimension, we write A ≤ B to
denote that Aij ≤ Bij , for all i and j; in other words, the in-
equality A ≤ B is to be interpreted component-wise. A matrix
is said to be nonnegative if all its entries are nonnegative. For a
nonnegative matrix A, we use min+(A) to denote the smallest
positive entry of A, i.e., denote min+(A) = min{ij:Aij>0}Aij .

Given a vector π ∈ RN with positive entries π1, . . . , πN , the
π-weighted inner product and π-weighted norm are defined,
respectively, as follows:

〈u,v〉π =
∑N
i=1 πi〈ui, vi〉 and ‖u‖π =

√∑N
i=1 πi‖ui‖2,

where u := [uT1 , . . . , u
T
N ]T,v := [vT1 , . . . , v

T
N ]T ∈ RN×m, and

ui, vi ∈ Rm. When π = 1, we simply write 〈u,v〉 and ‖u‖.

B. Proof of Lemma 2

Proof. We begin by computing the derivatives of Ji with
respect to xi for each MED i ∈ I:

∇iJi(xi, x−i) = 2(Qi + γ)xi + γ
∑

j∈I\{i}

xj + hi − P̄ .

For all x = (xi, x−i), y = (yi, y−i) ∈ RN , we have∑
i∈I
〈xi − yi,∇iJi(x)−∇iJi(y)〉

=
∑
i∈I

(2Qi + γ)(xi − yi)2 + γ

(∑
j∈I

(xj − yj)

)2

≥
(

2 min
i∈I

Qi + 2γ

)
‖x− y‖2 = µ‖x− y‖2,

thus shows the strong monotonicity of the game mapping F .
The above relation implies that for any x = (xi, x−i) ∈ RN

and y = (yi, x−i) ∈ RN , the following holds for all i ∈ I:

〈xi − yi,∇iJi(xi, x−i)−∇iJi(yi, x−i)〉 ≥ µ‖xi − yi‖2,

thus proves the strong convexity of function Ji(xi, x−i) on R
for every x−i ∈ RN−1.

C. Proof of Lemma 3

Proof. For any x−i ∈ RN−1, we have for all xi, yi ∈ R:

|∇iJi(xi, x−i)−∇iJi(yi, x−i)| = 2(Qi + γ)|xi − yi|.

Similarly, for any xi ∈ R and all x−i, y−i ∈ RN−1, we have

|∇iJi(xi, x−i)−∇iJi(xi, y−i)|

= γ

∣∣∣∣ ∑
j∈I\{i}

(xj − yj)
∣∣∣∣ ≤ γ√N − 1 ‖x−i − y−i‖,

which establish the desired statements in (a) and (b).

D. Basic Results

In our analysis of Algorithm 1, we use a mapping Fα(·) :
RN×N → RN×N to capture the updates for all MEDs i ∈ N .
Given a matrix z ∈ RN×N , let zi be the vector in the ith row
of z. The ith row of the matrix Fα(z) is defined by

[Fα(z)]i: = (0, . . . , 0, α(∇iJi(zi))T, 0, . . . , 0). (12)

Lemma 5 (Lemma 5.6 of [7]). Consider the mapping Fα(·)
defined by (12) and L =

√
L2
1 + L2

2, we have

‖Fα(z)− Fα(y))‖2 ≤ L2α2‖z− y‖2 for all z,y ∈ RN×N .

Lemma 6 ( [7], Corollary 5.2). Consider a vector collection
{ui, i ∈ N} ⊂ RN , and a scalar collection {νi, i ∈ N} ⊂ R
of scalars such that

∑N
i=1 νi = 1. For all u ∈ RN , we have

the following relation:∥∥∥∥∥
N∑
i=1

νiui − u

∥∥∥∥∥
2

=

N∑
i=1

νi‖ui − u‖2−
N∑
i=1

νi

∥∥∥∥∥ui−
(

N∑
j=1

γjuj

)∥∥∥∥∥
2

.

We have the following contraction property for a doubly-
stochastic matrix W . The proof of this Lemma can be adapted
from the proof of the contraction property of a row- or column-
stochastic matrix in [7].

Lemma 7. Let G = (I,E) be a connected undirected graph,
and let W be an N × N doubly-stochastic matrix that is
compatible with the graph and has positive diagonal entries,
i.e., Wij > 0 when j = i and (i, j) ∈ E, and Wij = 0
otherwise. Consider a collection of vectors z1, . . . , zN ∈ RN
and consider the vectors ri =

∑N
j=1Wijzj , for all i ∈ N , and

let ẑ = 1
N

∑N
i=1 zi, for all u∈RN , we have

N∑
i=1

‖ri − u‖2≤
N∑
j=1

‖zj − u‖2−
N
(
min+(W )

)2
D(G)K(G)

N∑
j=1

‖zj − ẑ‖2.

Here, D(G) and K(G) are the diameter and the maximal edge-
utility of the graph G, respectively.
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E. Proof of Theorem 4

Proof. For simplicity, we provide the proof for B = 1, i.e.,
every graph Gk is connected for all k ≥ 0. The proof for
B > 1 follows similarly.

Under Theorem 3, an NE point x∗ ∈ X exists and it is
unique. According to the notation in (11), we have that

‖zk+1 − x∗‖2 =

N∑
i=1

(
‖xik+1 − x∗i ‖2+ ‖zi,−ik+1 − x

∗
−i‖2

)
. (13)

Using the definition of xik+1 in Algorithm 1, the fixed point
relation for the NE in (8), and the non-expansiveness property
of the projection, we obtain

‖xik+1 − x∗i ‖2

=

∥∥∥∥∥ΠXi

[
N∑
j=1

[Wk]ij [z
j
k]i − α∇iJi

(
N∑
j=1

[Wk]ijz
j
k

)]

−ΠXi
[x∗i − αi∇iJi(x∗)]

∥∥∥∥∥
2

≤

∥∥∥∥∥
N∑
j=1

[Wk]ij [z
j
k]i − α∇iJi

(
N∑
j=1

[Wk]ijz
j
k

)

− (x∗i − αi∇iJi(x∗))

∥∥∥∥∥
2

. (14)

Combining (13) and (14), we obtain

‖zk+1 − x∗‖2 ≤‖(Wkzk − x∗)− (Fα(Wkzk)− Fα(x∗))‖2

=‖Wkzk − x∗‖2 + ‖Fα(Wkzk)− Fα(x∗)‖2

−2〈Wkzk − x∗,Fα(Wkzk)− Fα(x∗)〉, (15)

where Fα(·) is as defined in (12). We apply Lemma 5 to bound
the second term in the preceding relation, as follows:

‖Fα(Wkzk)− Fα(x∗)‖2 ≤ L2α2‖Wkzk − x∗‖2,

where L =
√
L2
1 + L2

2. Therefore,

‖zk+1 − x∗‖2 ≤ (1 + L2α2)‖Wkzk − x∗‖2

− 2〈Wkzk − x∗,Fα(Wkzk)− Fα(x∗)〉. (16)

To estimate the inner product in (16), we write

〈Wkzk − x∗,Fα(Wkzk)− Fα(x∗)〉
=〈Wkzk − x∗,Fα(Wkzk)− Fα(ẑk)〉

+ 〈Wkzk − ẑk,Fα(ẑk)− Fα(x∗)〉
+ 〈ẑk − x∗,Fα(ẑk)− Fα(x∗)〉. (17)

Applying the Cauchy–Schwarz inequality and Lemma 5, we
further obtain

|〈Wkzk − x∗,Fα(Wkzk)− Fα(ẑk)〉|
≤‖Wkzk − x∗‖‖Fα(Wkzk)− Fα(ẑk)‖
≤αL‖Wkzk − x∗‖‖Wkzk − ẑk‖. (18)

Similarly,

|〈Wkzk − ẑk,Fα(ẑk)− Fα(x∗)〉|
≤‖Wkzk − ẑk‖‖Fα(ẑk)− Fα(x∗)‖
≤αL‖Wkzk − ẑk‖‖ẑk − x∗‖. (19)

To estimate the last inner product in (17), we write

〈ẑk − x∗,Fα(ẑk)− Fα(x∗)〉

=α

N∑
i=1

〈ẑik − x∗i ,∇iJi(ẑk)−∇iJi(x∗)〉 ≥ αµ‖ẑk − x∗‖2,

where the last inequality follows from Lemma 2. Thus,

〈ẑk − x∗, Fα(ẑk)− Fα(x∗)〉 ≥ αµ

N
‖ẑk − x∗‖2. (20)

Upon substituting estimates (17)–(20) into (16), we obtain

‖zk+1−x∗‖2≤
(
1+L2α2

)
‖Wkzk−x∗‖2−

2µα

N
‖ẑk−x∗‖2

+ 2αL‖Wkzk − x∗‖‖Wkzk − ẑk‖
+ 2αL‖Wkzk − ẑk‖‖ẑk − x∗‖. (21)

The main idea of the rest of the proof is to determine the
evolution relations for the quantity ‖zk+1 − x∗‖ in terms of
‖zk−ẑk‖ and ‖ẑk−x∗‖. Toward this end, we employ Lemma 7
with W = Wk, zi = zik ∈ RN , u = ẑk and notation ẑk =
1(ẑk)T (see (11)), we obtain

‖Wkzk − ẑk‖2 ≤ c2k‖zk − ẑk‖2, (22)

where c2k = Nw2

D(Gk)K(Gk)
∈ (0, 1). Similarly, applying Lemma 7

with u = x∗ and using notation x∗ = 1(x∗)T (see (11)), yields

‖Wkzk − x∗‖2 ≤ ‖zk − x∗‖2 − (1− c2k)‖zk − ẑk‖2. (23)

By Lemma 6, with νi = 1
N , ui = zik, u = x∗, and noting

that ‖ẑk − x∗‖2 = N‖ẑk − x∗‖2, we find that

‖zk − x∗‖2 = ‖zk − ẑk‖2 + ‖ẑk − x∗‖2. (24)

Plugging in the relation (24) for the first term in (23), we obtain
the following

‖Wkzk − x∗‖2 ≤ ‖ẑk − x∗‖2 + c2k‖zk − ẑk‖2. (25)

Furthermore, by using
√
a+ b ≤

√
a+
√
b, which is valid for

any two scalars a, b ≥ 0, the preceding relation implies

‖Wkzk − x∗‖ ≤ ‖ẑk − x∗‖+ ck‖zk − ẑk‖. (26)

Now, we are ready to finish the proof of the theorem.
Substituting the preceding relations (22), (25) and (26) back
into (15), it follows that

‖zk+1 − x∗‖2 ≤
(
1 + L2α2

)
(c2‖zk − ẑk‖2 + ‖ẑk − x∗‖2)

+2αL(c ‖zk−ẑk‖+‖ẑk−x∗‖)c‖zk−ẑk‖

+2αLc‖zk − ẑk‖‖ẑk − x∗‖ − 2µα

N
‖ẑk − x∗‖2

=

[
‖ẑk − x∗‖
‖zk − ẑk‖

]T
Q̄α

[
‖ẑk − x∗‖
‖zk − ẑk‖

]
,
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where c = maxk≥0 ck ∈ (0, 1) and,

Q̄α =

[
1− 2µα

N + L2α2 2cLα

2cLα (1 + 2Lα+ L2α2)c2

]
.

Hence,

‖zk+1 − x∗‖2 ≤λmax(Q̄α)(‖ẑk − x∗‖2 + ‖zk − ẑk‖2)

=λmax(Q̄α)‖zk − x∗‖2.

where λmax(Q̄α) is the largest eigenvalue of the matrix Q̄α,
and the last equality follows from (24). If the step-sizes α,
i∈ I, are chosen such that λmax(Q̄α)<1, then

lim
k→∞

‖zk − x∗‖ = 0, lim
k→∞

‖xk − x∗‖ = 0,

with linear rate, which proves Theorem 4.

F. Step-size Selection

The next remark provides the conditions to find the step-size
α, that guarantee the convergence of Algorithm 1, according to
Theorem 4.

Remark 3. λmax(Q̄α) < 1 if and only if the matrices Q̄α
and I − Q̄α are positive definite. By Sylvester’s criterion, the
following inequalities should hold

[Q̄α]1,1 > 0,

det(Q̄α) > 0,

[I − Q̄α]1,1 > 0,

det(I − Q̄α) > 0,

We now illustrate that such a step-size can be found. By
Sylvester’s criterion in Remark 3, we have the following
conditions for α:

L2α2 − 2ξα+ 1 > 0 (27)

c2[L4α4 + 2L2(L− ξ)α3

−2L(L+ 2ξ)α2 + 2(L− ξ)α+ 1] > 0 (28)

−L2α2 + 2ξα > 0 (29)

α[L4c2α3 + 2L2(L− ξ)c2α2

−(4L(L+ ξ)c2 + L2(1− c2))α+ 2(1− c2)ξ] > 0 (30)

with L =
√
L2
1 + L2

2, ξ = µ
N and c = maxk≥0 ck ∈ (0, 1).

Note that form Lemma 3, µ ≤ L1 and it follows that ξ < L.
As a consequence, the inequality (27) holds for any α ∈ R.

Solving (29) leads to

0 < α <
2ξ

L2
. (31)

Moreover, since the constant terms of the polynomials in
(28) and (30) are positive, we can choose step-size α small
enough that satisfies the two inequalities. Specifically, we have
L− ξ > 0, thus, (28) holds when

L4α4 − 2L(L+ 2ξ)α2 + 1 > 0,

which gives

α <
L(L+ 2ξ)− 2L

√
Lξ + ξ2

L4

or α >
L(L+ 2ξ) + 2L

√
Lξ + ξ2

L4
. (32)

The inequality in (30) holds if the quantity inside the square
brackets is positive. By rearranging terms, we obtain:

c2
[
L4α2+2L2(L−ξ)α−4L(L+ξ)

]
α+(1−c2)(2ξ−L2α) > 0.

From (31) we have 2ξ−L2α > 0 and since c ∈ (0, 1), we can
either choose α very close to 0 so that the term (1− c2)(2ξ −
L2α) dominates or we can require the following inequality to
hold

L4α2 + 2L2(L− ξ)α− 4L(L+ ξ) > 0,

which is equivalent to have

α >
−(L− ξ) +

√
5L2 + 2Lξ + ξ2

L2
, (33)

if it satisfies (31) and (32).
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