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Abstract—In this paper, we introduce a new metric, named
Penalty upon Decision (PuD), for measuring the impact of
communication delays and state changes at the source on a
remote decision maker. Specifically, the metric quantifies the
performance degradation at the decision maker’s side due to
delayed, erroneous, and (possibly) missed decisions. We clarify
the rationale for the metric and derive closed-form expressions
for its average in M/GI/1 and M/GI/1/1 with blocking settings.
Numerical results are then presented to support our expressions
and to compare the infinite and zero buffer regimes. Interestingly,
comparing these two settings sheds light on a buffer length design
challenge that is essential to minimize the average PuD.

I. INTRODUCTION

The timeliness of information from continuous data streams
is crucial for the proper functioning of a variety of Internet of
Things (IoT) and edge computing applications, such as sensor
networks, cognitive radio, and vehicular communication net-
works. For this reason, a metric named the Age of Information
(AoI) has been proposed in [1] to measure the timeliness of
status updates in various communication or remote-controlled
systems. This metric is particularly useful in applications
where timely updates are essential for the decision-making
process, such as autonomous driving systems, remote surgery
systems, and industrial IoT. Since its introduction in [1], the
AoI has attracted a significant amount of research attention and
has been analyzed and optimized in numerous single-source
and single-server settings (e.g., see [2]–[8]).

Although the AoI metric is widely recognized as an ef-
fective means of assessing the freshness of information in
time-sensitive applications, its narrow focus limits its utility.
Precisely, the AoI metric only measures the timeliness of
information and fails to consider other critical factors that can
impact system performance, such as information mismatch
between the transmitter and receiver. In contexts such as
remote estimation, this limitation can result in suboptimal
outcomes. To address this, a new metric called the Age of
Incorrect Information (AoII) was proposed in [9]. Concretely,
the AoII takes into account the mismatch of information
between the transmitter and the receiver in its formulation
and quantifies the negative impact that this mismatch has
on the system’s performance over time. Numerous research
problems related to the AoII have been since investigated
in the literature (e.g., [10]–[14]). Another limitation of the
AoI metric is that it assumes the receiver is always interested
in obtaining fresh information. However, in systems where a
decision-maker is present, fresh information is only needed
at specific decision-making points. To address this, the Age

upon Decision (AuD) metric was introduced in the literature
[15]. Similarly, the Query Age of Information (QAoI) metric
was proposed to measure the timeliness of updates at the exact
moments when the destination node will utilize the incoming
information [16]. Additionally, recent studies have introduced
goal-oriented measures that capture the costs associated with
decisions, such as the cost of actuation error [17].

While the AoII metric measures the impact of information
mismatch between the transmitter and receiver on the system’s
performance, it implicitly assumes that this mismatch is always
harmful. However, this is not necessarily the case when a
decision-maker is present at the receiver’s side, as this harm
can be mitigated due to state transitions at the source before
the decision instant. Meanwhile, the AuD and QAoI metrics
fail to capture the system’s performance degradation when
a decision-maker makes wrong decisions as a result of an
information discrepancy between the transmitter and receiver.
Furthermore, the cost of actuation error metric, while effective
in capturing the effect of state mismatch at the decision instant,
falls short in capturing the impact of missed decisions or
correct but delayed decisions. As a result, there remains a
need for further research and development of metrics that
can account for a broader range of performance factors and
facilitate more accurate and comprehensive evaluations of
system performance at all possible decision instants. In this
paper, we propose a new metric called Penalty upon Decision
(PuD) for a multi-state information source with a decision-
maker at the receiver side. The PuD captures the system’s
performance loss at all decision instants, considering delayed,
erroneous, and (possibly) missed decisions. To that end, our
contributions are summarized below:

• We begin by explaining the reasoning behind the PuD
metric and outlining its general form. This form considers
all the relevant parameters that can be customized to suit
the specific needs of the application at hand.

• Next, we examine a specific case of the PuD metric
and develop closed-form expressions for its average in
both the M/GI/1 and M/GI/1/1 with blocking systems.
Our calculations are based on stochastic analysis of the
expected PuD that considers all the possible events.

• Finally, we present our numerical implementations that
demonstrate the accuracy of our derived closed-form
expressions and provide comparisons of different queuing
schemes and parameter settings in terms of average PuD.
Our results reveal a performance trade-off between the
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Fig. 1: Illustration of our system where status updates packets
arrive at a single server transmission queue with a decision
maker at the receiver side.

M/GI/1/1 and M/GI/1 settings, highlighting the impor-
tance of buffer length design in minimizing the PuD.

The rest of the paper is organized as follows. We present
our system model in Section II. In Section III, the rationale
for the metric is provided and an analysis of the measure is
conducted in Sections IV and V. Finally, the numerical results
and the ensuing discussions are laid out in Section VI while
Section VII concludes the paper.

II. SYSTEM MODEL

In our paper, we examine a point-to-point communication
system with a single server sending status updates from a
source to a receiver where a decision maker is located. An
illustration of the system is shown in Fig. 1. We consider that
the source generates packets containing information about a
time-varying discrete stochastic process. We use si to denote
the state recorded by the ith packet, where si ∈ S and S
is the state space to which si belongs. We will also assume
that the source only generates a new update packet when a
state transition happens, and these packets arrive at the server
as a Poisson process with rate λ. When an update packet is
received, the decision maker makes a decision based on the
state recorded by the packet after a waiting time D (which we
assume to be 0 for simplicity). In other words, we consider that
a decision is made immediately when the packet is received.

In this paper, we cover the M/GI/1 and M/GI/1/1 queuing
systems. In the M/GI/1 system, packets are stored in an
infinite buffer and are served on a first-come-first-serve basis.
In contrast, the M/GI/1/1 system has no buffer, and packets
arriving while the server is busy are discarded. We assume
that the service times of the packets are i.i.d. (independent
and identically distributed) and follow a general distribution
fT (t), t ≥ 0. We useMT (γ) to denote the moment generating
function of the service time distribution evaluated at γ

MT (γ) , E[eγT ], (1)

where we are interested in γ ≥ 0. To use in the ensuing
analysis, we also define the following quantity

M(T,n)(γ) , E[TneγT ], (2)

where M(T,n)(γ) denotes the nth derivative of the moment
generating function of T with respect to γ. Note that E[Tn] can
be obtained from M(T,n)(γ) by evaluating M(T,n) at γ = 0.

III. PENALTY UPON DECISION

With the system model clarified, we delve into the details
of the proposed PuD metric. We assume that for each state’s
transition event that takes place at the source, a corresponding

decision is supposed to be made at the receiver side. With this
in mind, we distinguish between three types of decisions:

• Correct decisions: If the state used for a decision is
identical to the instantaneous state at the source, then
this decision will be considered to be correct.

• Incorrect decisions: A decision is said to be incorrect
if the state used for the decision is different from the
instantaneous state at the source.

• Missed decisions: If a packet is dropped by the system,
the corresponding decision is said to be a missed decision
by the system.

To motivate our PuD metric, we consider an autonomous
driving system in which a sensor is detecting the distance
between the car and other vehicles in front. Based on the states
observed by the monitor, a speed-up or slow-down decision
will be made by the decision maker. In this system, it is
clear that correct but delayed decisions, incorrect decisions,
and missed decisions have the potential to cause an accident.
Therefore, an appropriate penalty should be considered for
these types of decisions to evaluate the system’s performance.

With this in mind, we assume that if a decision is correct, the
penalty will be related to the delay between the instant when
this packet is generated and the instant when the decision is
made. This delay reflects the deviation from an ideal scenario,
where the decision maker would have immediately responded
to the new state of the system. To that end, we define the
Penalty upon Correct Decision (PuCD) for packet i as

σi,C = fC(∆i), (3)

where fC(·) is a non-decreasing function and ∆i represents
the delay in making a decision for packet i. On the other hand,
if an incorrect decision is made for packet i, we let

σi,I = fI(∆i, δs) (4)

denote the Penalty upon Incorrect Decision (PuID), where
fI(∆i, δs) is a non-decreasing function of the delay and the
difference δs between the packet’s state and the source’s
state. The intuition behind such an expression is that as the
difference δs grows, a higher penalty should be incurred by the
system. Lastly, if packet i is dropped in the queuing phase due
to the server being busy, we define the Penalty upon Missed
Decision (PuMD) as

σi,M = fM (t, δs, ni), (5)

where ni denotes the sequential position of the dropped packet
i relative to all other packets dropped during the server’s
current busy period. There exists a wide variety of choices
for the above penalty functions depending on the application
at hand. In this paper, we adopt the following expressions:

σi,C = ∆i, σi,I = ∆i + |δs|∆|δs|+1
i , σi,M = nir

(|δs|+1)
ni

,
(6)

where rni represents the time interval between the arrival of
the dropped packet i in the system and the time the decision-
maker makes a decision upon reception of the packet in
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Fig. 2: Evolution of the PuD in an M/GI/1/1 system.

service by the system. Based on these expressions, one can
see that the PuCD is nothing but the delay of the packet. For
the PuID, an incorrect decision incurs an additional penalty
term that is added to the delay. This additional penalty is
designed to reflect the greater impact of an incorrect decision
compared to a correct one. Note that as δs → 0, PuID
approaches PuCD, reflecting the desired outcome. In the case
of missed decisions, we adopt a hypothetical scenario where
the dropped packet is redirected to a “virtual” server instead
of being discarded due to the server being busy. The decision-
making entity will then make a decision upon reception of
the actual packet in service. In this context, rni

signifies the
“imagined” time lag between the arrival of the dropped packet
and the decision maker taking a decision. With this in mind,
and inspired by both the PuCD and PuID, the PuMD will
depend on rni , along with the difference between the source’s
state at the decision-making instant and the state recorded by
the dropped packet in question. Lastly, to address the issue
of missed packets that arrive close to the decision-making
moment having less impact, we incorporate the index ni into
the penalty calculation to give these packets added importance.

To further clarify our proposed decision penalty metrics,
we illustrate their evolution with an example in Fig. 2 for
an M/GI/1/1 system. In the remainder of the paper, we will
consider that S = {1, 2}. The initial state of the source is
state 1 and the state changes to state 2 at time t1 where an
update packet recording the information of state 2 is generated
and served immediately by the transmitter. The transmission
finishes and the decision is made at time instant t′1. Therefore,
it is a correct decision and the penalty for this packet equals the
delay ∆1. Then, at time t2, the state of the source changes to
state 1, and packet 2 is served by the transmitter. At times t3,
t4, and t5, new packets are generated due to the state transition
and are dropped since the transmitter is busy. Therefore, those
packets are missed packets and their penalties will be related to
the state of the source when the decision is made for packet 2.
At time t′2, the transmission finishes, and the decision is made
while the source is in state 2. However, the state recorded by
packet 2 is state 1. Therefore, this decision is an incorrect
decision where the penalty is taken as larger than ∆2. As for
packet 3, it is treated as a missed correct packet with a penalty

equal to r1 = t′2 − t3. On the other hand, for packet 4, it is
considered a missed incorrect packet with a penalty equal to
2r22 , where r2 = t′2 − t4 and with the squaring accounting for
δs = 1. Packet 5 is also a correct missed packet with a penalty
of 3r3 where r3 = t′2 − t5.

IV. M/GI/1 QUEUE ANALYSIS

We start with an M/GI/1 system with infinite buffer size.
Accordingly, no packets will be dropped, and the missed
decision portion of our metric will not play a role. Since we
are investigating a two-states information source, whether a
decision will be correct or incorrect depends on the number
of packets that have arrived during its service period. If an even
number of packets arrive during a packet’s service period, then
the decision for the received packet will be a correct decision.
Otherwise, an incorrect decision will be made for this packet.
To analyze the PuD in these settings, we provide the following
lemma.

Lemma 1 Let Y = W + T designate the system time of the
packets, where W and T denote the waiting time in the queue
and service time, respectively. Then, the moment generating
function of Y is

MY (γ) =
−γ(1− λE[T ])MT (−γ)

−γ − λ+ λMT (−γ)
. (7)

Proof: This Lemma can be proved by leveraging the
Pollaczek-Khinchine transform reported in [18, Chapter 2.9].

With the above in mind, we can derive the following theorems.

Theorem 1 In an M/GI/1 system, the probabilities of correct
and incorrect decisions are, respectively, equal to

pC =
1

2
+

1

2
MY (−2λ), (8)

pI =
1

2
− 1

2
MY (−2λ). (9)

Proof: The details can be found in Appendix A.
Next, using the penalties outlined in eq. (6), we can obtain
below the penalty upon decision, given that a correct and
incorrect decision is made, respectively.

Theorem 2 In an M/GI/1 system, the average PuCD and
PuID are, respectively, equal to

E[σC ] =
1

2pC
(E[Y ] +M(Y,1)(−2λ)), (10)

E[σI ] =
1

2pI
(E[Y ] + E[Y 2]−M(Y,1)(−2λ)−M(Y,2)(−2λ)).

(11)

Proof: The details can be found in Appendix B.
In light of the above theorems, we can conclude that the total
average PuD of the system, denoted by E[σ], is

E[σ] = E[σC ]pC+E[σI ]pI =
1

2
(2E[Y ]+E[Y 2]−M(Y,2)(−2λ)).

(12)
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V. M/GI/1/1 QUEUE ANALYSIS

This section presents the theoretical analysis for an
M/GI/1/1 system, where a packet will be dropped if it finds the
server busy. Given this, the probability of a missed decision
is equal to the probability that a packet arrives during a busy
period. Note that the system’s renewal structure allows us to
calculate the missed decision probability as the ratio of the
average busy time during one renewal cycle to the average
length of a renewal cycle [19]. Therefore, the probability of
missed decision can be written as

pM =
E[T ]

1
λ + E[T ]

, (13)

where 1
λ is the expected idle period. Next, we investigate the

probability of a correct and incorrect decision.

Theorem 3 In the M/GI/1/1 system, given that a decision is
made for a packet (i.e., not missed), the probabilities of correct
and incorrect decisions are given by

p̃C =
1

2
+

1

2
MT (−2λ), (14)

p̃I =
1

2
− 1

2
MT (−2λ). (15)

Proof: The details can be found in Appendix C.
Knowing that the above probabilities are conditioned on the
event that the packet is not missed, we can conclude that
the correct and incorrect decision probabilities for all the
generated packets are pC = p̃C(1−pM ) and pI = p̃I(1−pM ),
respectively. Next, using the penalties outlined in eq. (6), we
can derive the following results.

Theorem 4 In the M/GI/1/1 system, the average PuCD and
PuID for delivered packets are

E[σC ] =
1

2p̃C
(E[T ] +M(T,1)(−2λ)), (16)

E[σI ] =
1

2p̃I
(E[T ] + E[T 2]−M(T,1)(−2λ)−M(T,2)(−2λ)).

(17)

Proof: The details can be found in Appendix D.
What remains is to derive an expression of the average PuMD.
To do so, we consider that a packet is being served by the
system, and we condition on a given service period time T = t.
Furthermore, we assume that M = m packets arrive and are
dropped during this period. Then, for the nth dropped packet
during this service time, we define rn = t−Xn, where Xn is
the time elapsed between the arrival of the packet in service
and the arrival time of the nth dropped packet. Given that the
PuMD depends on rn, as depicted in eq. (6), we characterize
the distribution of Xn in the following lemma.

Lemma 2 Given a system service period t and m packets
arriving within this service period, the probability density
function of the random variable Xn is given by

fXn(xn) =

m

t

(
m− 1

n− 1

)(xn
t

)n−1 (
1− xn

t

)m−n
, xn ∈ [0, t],

(18)

for n = 1, . . . ,m.

Proof: The proof’s details are provided in Appendix E.

Next, for every dropped packet n, we make the distinction
between the PuMD for a missed correct decision versus the
PuMD for a missed incorrect decision, denoted by HMC(·) and
HMI(·) respectively. Following the definitions reported in eq.
(6), and considering the results of the above lemma, we have

HMC(n|T = t,M = m) =

∫ t

0

n(t− xn)f(xn)dxn

=

(
n− n2

m+ 1

)
t, (19)

HMI(n|T = t,M = m) =

∫ t

0

n(t− xn)2f(xn)dxn

=

(
n− 2n2

m+ 1
+

n2(n+ 1)

(m+ 2)(m+ 1)

)
t2.

(20)

Note that for a two-states system, whether a dropped packet
will lead to a missed incorrect decision or a missed correct
decision depends on the number of packets that arrive between
the packet in question and the end of the service period t.
With this in mind, and based on the indices m and n, we use
I ∈ {I1, I2, I3, I4} to denote the events of whether a dropped
packet leads to a missed correct or incorrect decision. The
details of these events are summarized below.

• Event I1: If m and n are even numbers, then the packet
with index n will be a correct missed packet.

• Event I2: If m is an even number and n is an odd
number, the packet with index n will be an incorrect
missed packet.

• Event I3: If m is an odd number and n is an even
number, the packet with index n will be an incorrect
missed packet.

• Event I4: If m and n are odd numbers, the packet with
index n will be a correct missed packet.

By leveraging the above events, a step forward towards calcu-
lating the average PuMD consists of characterizing the PuMD
jointly with any of the aforementioned events. Then, the law of
total expectation can be applied by integrating over the whole
space of T and M to obtain E[σM,I=Ij ] for j = 1, . . . , 4.
With this in mind, we report below our results.
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Fig. 3: PuD and decision probability
versus λ in M/M/1 system with µ = 1.
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Fig. 4: Decision probability versus λ
in M/M/1/1 system where µ = 1.
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Theorem 5 The average PuMD, when considered jointly with
the event I1 and given that a packet is being served by the
system, has the following expression

E[σM,I=I1 ] =
λE[T 2]

8
+
λ2E[T 3]

24
−
λM(T,2)(−2λ)

8

+
λ2M(T,3)(−2λ)

24
. (21)

Proof: The details are provided in Appendix F.
Due to space constraints, and given that the remaining results
can be obtained by following a similar method, we report the
final equations of E[σM,I=Ij ] for j = 2, . . . , 4 in Appendix
G. Now, given that the set {I1, . . . , I4} forms a partition of
the probability space, we first sum together E[σM,I=Ij ] for
j = 1, . . . , 4. We then note that the results from the above
theorem are based on the assumption that a packet is served
by the system. Thus, we multiply the aforementioned sum by
1 − pM , which represents the probability of a packet being
served. Lastly, since the average PuMD is defined as being
conditioned on a packet being missed, we divide the resulting
quantity by pM . In conclusion, the PuMD can be expressed
as follows:

E[σM ] =

 ∑
Ij∈{I1,I2,I3,I4}

E[σM,I=Ij ]

 1− pM
pM

. (22)

VI. NUMERICAL RESULTS

In this section, we provide numerical implementations to
characterize the probability of the possible types of decisions
along with their associated penalties. Our simulations are
packet-based and were run with a total of one million packets
to guarantee convergence. In all figures, the simulation results
are depicted as circles, while the theoretical expressions from
our analysis are displayed as solid lines. The results show
a strong match between the simulation outcomes and the
theoretical expressions, confirming the validity of our analysis.
With this in mind, we now delve deeper into the dynamics
of the quantities involved and gain further insights into the
systems under consideration.

We start with Fig. 3, which displays both the probabilities
of the possible types of decisions and their corresponding
penalties in an M/M/1 system. With a server service rate
µ fixed to 1, we vary λ to observe how that would affect

the quantities involved. As λ increases, we can see that pC
decreases while pI increases. This indicates that as λ becomes
large, the waiting time for packets in the queue becomes
longer, increasing the likelihood of an incorrect decision being
made. As λ approaches 1, both the correct and incorrect
decision penalties approach 0.5. To understand this trend,
we recall that as λ becomes close to its maximum value 1
(beyond which the queue becomes unstable), the queuing time
becomes extremely large. Therefore, by the time a packet
is delivered, many others would have already arrived in the
queue, indicating changes in the state of the source. At this
point, the system’s estimation of the source state will become
equivalent to a coin toss. It’s worth noting that as λ increases,
both the PuCD and PuID also rise due to the prolonged delay
for each packet in the system.

Next, in Fig. 4, we show the probabilities of the possible
types of decisions in an M/M/1/1 system. The service rate
of the server is set to µ = 1, and we vary λ to observe its
effect. Unlike the M/M/1 system, the M/M/1/1 queue has no
buffer, resulting in dropped packets when the server is busy.
As λ increases, we can see that pM also increases since more
packets are dropped in the queue. Additionally, there is a peak
value for pI , which is due to the fact that as λ increases, p̃I
also increases. However, the total number of received packets
decreases since a higher number of them are dropped, resulting
in the showcased trend of pI .

With the performance of the M/M/1 and M/M/1/1 queues
depicted, our attention shifts to comparing both systems in
terms of total PuD. We fix the arrival rate λ to 1, and we
vary the service rate µ to observe its effect on the total
PuD. As seen in Fig. 5, the total PuD of the M/M/1 system
is consistently higher than that of the M/M/1/1 system. To
understand this trend, we recall that the M/M/1 system does
not exhibit a PuMD when compared to the M/M/1/1 system.
Therefore, although the availability of an infinite buffer may
lead to queuing delays, it also eliminates the possibility of
missed decisions. The results in Fig. 5 suggest that for the
PuD functions adopted in this paper and detailed in eq. (6),
dropping packets from the queue rather than storing them in
the buffer comes at a smaller cost for the total PuD of the
system. However, this is not necessarily true for any penalty
function that follows the general form reported in eq. (3)-
(5). For this reason, one can conclude that a trade-off exists

5



between the reduction of the PuMD by increasing the buffer
length and the reduction of the total PuD of the system.
This trade-off is closely related to the application at hand,
and thus finding the optimal buffer length is an important
design challenge for the minimization of the PuD. For this
reason, studying this trade-off is an essential research direction
for our future work. Moreover, this trade-off also highlights
the difference between the PuD and traditional AoI metric.
While removing the buffer is always considered optimal for
the AoI metric [20], this is not necessarily the case for the
PuD metric, as a larger buffer may result in a lower PuD. This
underscores the significance of introducing new performance
measures, such as the PuD metric, to the literature as such
introductions present new design challenges that can further
improve the system’s overall performance. Note that as we
increase the service rate µ, the performance gap between the
two systems decreases. This is because as the service rate
approaches infinity, all packets are served immediately, making
the buffer length irrelevant.

VII. CONCLUSION

In this paper, we proposed the penalty upon decision metric
to measure the impact of correct but delayed, incorrect,
and missed decisions on a multi-state source system with a
decision maker at the receiver. We provided a general form of
the metric and discussed the various aspects it captures. For a
specific case of the metric, we derived closed-form expressions
of its average in M/GI/1 and M/GI/1/1 queueing systems
with a two-state source. Our numerical implementations have
shown that our closed-form expressions yield accurate results
and highlighted a buffer length design challenge necessary
to minimize the average penalty. Our future research will
focus on expanding our analysis to cover multi-state sources
and exploring more generalized forms of the PuD. Such an
extension approach will involve utilizing the dynamics of
information source transitions and examining their impact on
the various penalty functions.
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APPENDIX A
PROOF OF THEOREM 1

To prove our theorem, let us consider that a random packet’s
system time Y is equal to y. Additionally, let M denote the
number of packets arriving during this packet’s system time.
Since the packets’ arrivals follow a Poisson distribution, we
can conclude that the probability of m packets arriving during
the system time period y is

P (M = m|Y = y) =
(λy)me−λy

m!
. (23)

Given the results of Lemma 1, we have that the probability of
a correct decision for packets in an M/GI/1 system is:

pC = EY [
∑

m is even

P (M = m|Y )]

=

∫ ∞
0

∑
m is even

(λt)me−λy

m!
fY (y)dy

=

∫ ∞
0

fY (y)e−λy
∑

m is even

(λy)m

m!
dy

=

∫ ∞
0

fY (y)e−λy cosh(λy)dy

=
1

2
+

1

2
MY (−2λ). (24)

Now, given that an incorrect decision occurs when an odd
number of packets arrive during the packet’s service time, we
can conclude that the probability of an incorrect decision is:

pI = EY [
∑

m is odd

P (M = m|Y )]

=

∫ ∞
0

fY (y)e−λy
∑

m is odd

(λy)m

m!
dy

=

∫ ∞
0

fY (y)e−λy sinh(λy)dy

=
1

2
− 1

2
MY (−2λ). (25)

APPENDIX B
PROOF OF THEOREM 2

To derive the average PuCD, we recall that the PuCD is
defined as the penalty upon decision, given that a packet
delivery leads to a correct decision. Therefore, knowing that
the packet delay is nothing but its system time Y , we can
follow similar arguments to those in Appendix A to conclude

E[σC ] = EY [
∑

m is even

Y P (M = m|Y )]/pC

=
1

pC

∫ ∞
0

yfY (y)e−λy cosh(λy)dy

=
1

2pC
(E[Y ] +M(Y,1)(−2λ)). (26)

Likewise, we can deduce that the average PuID is

E[σI ] = EY [
∑

m is odd

(Y + Y 2)P (M = m|Y )]/pI

=
1

pI

∫ ∞
0

(y + y2)fY (y)e−λy sinh(λy)dy

=
1

2pI
(E[Y ] + E[Y 2]−M(Y,1)(−2λ)−M(Y,2)(−2λ)).

(27)

APPENDIX C
PROOF OF THEOREM 3

Given that the probability density function of T is fT (t),
we can obtain the following expression for the probability of
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correct decision for received packets (i.e., not missed).

p̃C = ET [
∑

m is even

P (M = m|T )]

=

∫ ∞
0

∑
m is even

(λt)me−λt

m!
fT (t)dt

=

∫ ∞
0

fT (t)e−λt cosh(λt)dt

=
1

2
+

1

2
MT (−2λ). (28)

Similarly, we can obtain the following expression for the
probability of incorrect decision for the received packets.

p̃I = ET [
∑

m is odd

P (M = m|T )]

=

∫ ∞
0

fT (t)e−λt sinh(λt)dt

=
1

2
− 1

2
MT (−2λ). (29)

APPENDIX D
PROOF OF THEOREM 4

In an M/GI/1/1 queue, the delay for a packet’s decision to be
taken will be its service time. Therefore, the expected PuCD,
given that the packet is not missed, can be derived as follows.

E[σC ] = ET [
∑

m is even

TP (M = m|T )]/p̃C

=
1

p̃C

∫ ∞
0

tfT (t)e−λt cosh(λt)dt

=
1

2p̃C
(E[T ] +M(T,1)(−2λ)). (30)

Likewise, we can derive the expected PuID hereby.

E[σI ] = ET [
∑

m is odd

(T + T 2)P (M = m|T )]/p̃I

=
1

p̃I

∫ ∞
0

(t+ t2)fT (t)e−λt sinh(λt)dt

=
1

2p̃I
(E[T ] + E[T 2]−M(T,1)(−2λ)−M(T,2)(−2λ)).

(31)

APPENDIX E
PROOF OF THEOREM 2

To prove our theorem, let us first recall that we assumed
that the server was busy, and we conditioned on a given
service period time T = t. Also, we considered that m packets
arrived during this service period. Given that the packets’
arrival follows a Poisson distribution, we can conclude that
the arrival times of these packets within the service period
T are independent and uniformly distributed on [0, t] [21,
Chapter 2.12]. Hence, let U1, . . . , Um denote the unordered
set of these arrival times. Next, we recall that our goal is
to characterize the distribution of Xn for n = 1, . . . ,m. By
definition, the set X1, . . . , Xm denotes an ordered set of the

random variables U1, . . . , Um. Particularly,

X1 = min{U1, . . . , Um}, (32)

Xm = max{U1, . . . , Um}. (33)

An illustration is provided in Fig. 6. This brings us to the
notion of order statistics. In essence, the nth order statistic
of a statistical sample is equal to the nth smallest value.
Therefore, the problem boils down to characterizing the order
statistics of a set of independent uniform random variables. To
do so, let us define the normalized uniform random variables
Ûn = Un/t and the normalized random variables X̂n = Xn/t.
By leveraging the results in [22], we can conclude that the
probability distribution function of X̂n is

fX̂n
(x̂) = m

(
m− 1

n− 1

)
x̂n−1(1− x̂)m−n, x̂ ∈ [0, 1]. (34)

In other words, the random variable X̂n follows a beta
distribution β(n,m − n + 1) for n = 1, . . . ,m. Now, given
that Xn = tX̂n, we can conclude that

fXn(xn) =
1

t
fX̂n

(
xn
t

), xn ∈ [0, t]. (35)

Then, using eq. (34), we can conclude our proof.

Fig. 6: Illustration of the packets’ arrival.

APPENDIX F
PROOF OF THEOREM 5

To obtain the PuMD when considered jointly with event I1,
we first note that

E[σM,I=I1 ] =

ET [
∑
m even

∑
n even
n≤m

HMC(n|T,M = m)P (M = m|T )]. (36)

By letting m = 2x, n = 2y, we obtain

E[σM,I=I1 ] =∫ ∞
0

∞∑
x=0

x∑
y=0

(
2y − 4y2

2x+ 1

)
tP (M = 2x|T = t)fT (t)dt

=

∫ ∞
0

∞∑
x=0

(x(x+ 1)− 2

3
x(x+ 1))P (M = 2x|T = t)tfT (t)dt

=

∫ ∞
0

∞∑
x=0

(x2 + x)
(λt)2xe−λt

(2x)!

t

3
fT (t)dt. (37)
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To simplify eq. (37), we present below an analysis of the terms
included in the equation:

∞∑
x=0

x
(λt)2x

(2x)!
=

∞∑
x=0

λt

2

(λt)2x−1

(2x− 1)!
=
λt

2
sinh(λt)

∞∑
x=0

x2
(λt)2x

(2x)!
=

∞∑
x=0

2x(2x− 1) + 2x

4

(λt)2x

(2x)!

=

∞∑
x=0

[
(λt)2

4

(λt)2x−2

(2x− 2)!
+
x

2

(λt)2x

(2x)!

]
=

(λt)2

4
cosh(λt) +

λt

4
sinh(λt). (38)

By leveraging the above results, we can obtain below the final
expression for the PuMD jointly with event I1

E[σM,I=I1 ] =∫ ∞
0

[
λt2

8
+
λ2t3

24
− λt2e−2λt

8
+
λ2t3e−2λt

24

]
fT (t)dt

=
λE[T 2]

8
+
λ2E[T 3]

24
−
λM(T,2)(−2λ)

8
+
λ2M(T,3)(−2λ)

24
.

(39)

APPENDIX G
AVERAGE PUMD JOINTLY WITH EVENTS I2, I3 AND I4.

By following similar methods to those reported in Appendix
F, we can obtain the ensuing expressions of E[σM,I=Ij ] for
j = 2, . . . , 4:

E[σM,I=I2 ] =− E[T ]

16λ
+

E[T 2]

16
+
λE[T 3]

12
+
λ2E[T 4]

48

+
M(T,1)(−2λ)

16λ
+
M(T,2)(−2λ)

16

−
λM(T,3)(−2λ)

12
+
λ2M(T,4)(−2λ)

48
, (40)

E[σM,I=I3 ] =
1

16λ2
− E[T ]

16λ
− E[T 2]

16
+
λE[T 3]

12
+
λ2E[T 4]

48

− MT (−2λ)

16λ2
−
M(T,1)(−2λ)

16λ
+
M(T,2)(−2λ)

16

+
λM(T,3)(−2λ)

12
−
λ2M(T,4)(−2λ)

48
, (41)

E[σM,I=I4 ] =
E[T ]

8
+
λE[T 2]

8
+
λ2E[T 3]

24
−
M(T,1)(−2λ)

8

+
λM(T,2)(−2λ)

8
−
λ2M(T,3)(−2λ)

24
. (42)
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