
ar
X

iv
:2

31
2.

15
23

1v
1 

 [
cs

.I
T

] 
 2

3 
D

ec
 2

02
3

Sensing-Enhanced Secure Communication: Joint

Time Allocation and Beamforming Design

(Invited Paper)

Dongfang Xu˚, Yiming Xu˚, Zhiqiang Wei;, Shenghui Song˚, and Derrick Wing Kwan Ng:
˚The Hong Kong University of Science and Technology, Hong Kong;

;Xi’an Jiaotong University, China; :The University of New South Wales, Australia

Abstract—The integration of sensing and communication en-
ables wireless communication systems to serve environment-aware
applications. In this paper, we propose to leverage sensing to
enhance physical layer security (PLS) in multiuser communication
systems in the presence of a suspicious target. To this end, we
develop a two-phase framework to first estimate the location of the
potential eavesdropper by sensing and then utilize the estimated
information to enhance PLS for communication. In particular,
in the first phase, a dual-functional radar and communication
(DFRC) base station (BS) exploits a sensing signal to mitigate
the sensing information uncertainty of the potential eavesdropper.
Then, in the second phase, to facilitate joint sensing and secure
communication, the DFRC BS employs beamforming and artificial
noise to enhance secure communication. The design objective is to
maximize the system sum rate while alleviating the information
leakage by jointly optimizing the time allocation and beamforming
policy. Capitalizing on monotonic optimization theory, we develop
a two-layer globally optimal algorithm to reveal the performance
upper bound of the considered system. Simulation results show
that the proposed scheme achieves a significant sum rate gain over
two baseline schemes that adopt existing techniques. Moreover, our
results unveil that ISAC is a promising paradigm for enhancing
secure communication in wireless networks.

I. INTRODUCTION

The broadcast nature of wireless information transmission

is vulnerable to potential eavesdropping, thus causing a fun-

damental issue for wireless networks. In practice, security can

be guaranteed to a certain extent by employing cryptographic

encryption methods in the upper layers. However, these conven-

tional methods may impose a heavy computational burden that

inevitably introduce an unfavorable delay to wireless communi-

cation systems. To conquer these issues, advanced beamforming

techniques, e.g., precoding, interference alignment, or artificial

noise (AN), have been developed in recent years for physical

layer security provisioning in wireless networks [1]–[4]. Yet,

all these works assumed that potential eavesdroppers have been

identified and their channel state information (CSI) is somehow

partially known by the serving base stations (BSs), which can

be overly optimistic for various practical systems. In fact, since

potential eavesdroppers are usually silent and do not interact

with BSs, it is challenging to detect the presence of potential

eavesdroppers, let alone obtain the associated CSI. This creates

a bottleneck to ensuring security in wireless networks.

One promising approach to address the aforementioned is-

sues is to integrate sensing capability in existing wireless net-

works. According to radar sensing theory [5], by illuminating

an area of interest or a target of interest with energy-focused

sensing beams, we can identify the presence of an object or

extract desired sensing information, e.g., angle, velocity, or

distance, from the received echo signals. Inspired by this, we

can deploy dual-functional radar and communication (DFRC)

BSs in wireless networks to enhance physical layer security

with the aid of target sensing. In the literature, some initial

works have studied the beamforming design in integrated

sensing and communication (ISAC) systems for security pro-

visioning [6]–[8]. In particular, the authors of [6] considered

a multiuser ISAC system and investigated the beamforming

design for the minimization of the signal-to-interference-plus-

noise ratio (SINR) at a potential eavesdropper while providing

satisfactory performance for communication users. Also, in

[8], the authors proposed a low-complexity robust resource

allocation algorithm to maximize the sum secrecy rate of a

multiuser ISAC system over a given time horizon. However,

all these works focused on designing the beamforming policy

with given CSI of the potential eavesdropper while ignoring the

fact that the system has to first devote time and energy to obtain

the CSI of the potential eavesdropper. Therefore, this calls for

a comprehensive design framework that jointly optimizes the

available resources. On the other hand, all the existing works,

e.g., [6]–[8], investigated only suboptimal resource allocation

algorithms for secure ISAC systems. To the best of the authors’

knowledge, the optimal resource allocation algorithm for secure

ISAC systems is unknown in the literature, yet.

Motivated by above observations, this paper proposes a two-

phase design framework for ISAC systems to achieve secure

communication, where the desired sensing information of the

potential eavesdropper is acquired in the first phase while the

secure transmission is performed in the second phase. To this

end, we jointly optimize time allocation between two phases

and beamforming policy of each phase for maximizing the

system sum rate while restricting the maximal information

leakage. A globally optimal algorithm is developed to reveal

the performance upper bound of the considered ISAC system.

Notation: Vectors and matrices are denoted by boldface lower

case and boldface capital letters, respectively. The imaginary

unit of a complex number is denoted by  “
?

´1. RNˆM and

CNˆM denote the space of N ˆM real-valued and complex-

valued matrices, respectively. ℜ tcu and ℑ tcu represent the real

part and image part of a complex number c, respectively. | ¨ |
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Fig. 1. Illustration of a multiuser ISAC system comprising one DFRC BS,
K “ 3 users, and one target of interest which can be a potential eavesdropper.
The scheduled time slot is divided into two orthogonal phases. The desired
sensing information of the potential eavesdropper is refined in the first phase
while secure information transmission is performed in the second phase.

and || ¨ || denote the absolute value and the l2-norm of their

arguments, respectively. p¨qT and p¨qH stand for the transpose

and the conjugate transpose of of their arguments, respectively.

IN refers to the identity matrix of dimension N . HN denotes

the set of complex Hermitian matrices of dimension N . Trp¨q
and Rankp¨q refer to the trace and rank of their arguments,

respectively. A ľ 0 indicates that A is a positive semidefinite

matrix. CN p0, σ2q specifies the distribution of a circularly

symmetric complex Gaussian (CSCG) random variable with

mean 0 and variance σ2.
∆“ and „ stand for “defined as” and

“distributed as”, respectively. E t¨u denotes statistical expecta-

tion. Bf
Bx denotes the partial derivative of function f with respect

to variable x. Operation rxs` denotes max t0, xu.

II. MULTIUSER ISAC SYSTEM MODEL

We consider a multiuser MISO ISAC system involving a

DFRC BS, K users, and a target of interest. The DFRC BS

is equipped with a uniform linear array (ULA) consisting

of NT antennas while all the K users and the target of

interest are assumed to be single-antenna devices. Unlike the

communication users that can collaborate with the DFRC BS,

we assume that some coarse knowledge of the target (e.g.,

direction and distance) is available via preliminary detection

of the DFRC BS [6], [8]. Moreover, we assume that the

target of interest is also a potential eavesdropper who may

wiretap the information to the K users.1 To refine the sensing

knowledge of the potential eavesdropper while ensuring secure

communication, we focus on a scheduled time slot of duration

Ttot and propose a two-phase design framework. In particular,

in the first phase of duration Ts, the DFRC BS illuminates the

possible direction with a directional sensing beam based on the

coarse knowledge and refines the sensing information based

1We note that the potential eavesdropper can be identified by employing
periodical scanning [8] or omnidirectional sensing beam [9]. For consistency,
we refer to the target of interest as the potential eavesdropper in the following.

on the echo signal [10]. Subsequently, in the second phase of

duration Ttot ´ Ts, the DFRC BS performs beamforming to

facilitate secure communication based on the refined sensing

information. In this paper, we assume that the DFRC BS can

obtain the perfect CSI of the communication users [6], [7]. As

for the potential eavesdropper, the CSI uncertainty model will

be discussed in Section II-C.

A. First Phase

During the first phase of duration Ts, the DFRC BS transmits

a probing signal s P CNTˆ1 to sense the potential eavesdropper.

In particular, the echo signal received by the DFRC BS is given

by [11]

y “ ΓHs ` n, (1)

where vector n „ CN p0, σ2
s INT

q is the additive white Gaussian

noise (AWGN) at the DFRC BS with variance σ2
s . The variable

Γ P C indicates the coefficient of the round-trip link from

the DFRC BS to the potential eavesdropper, which captures

the joint effect of path loss and radar cross section (RCS) of

the potential eavesdropper, and frequency of the carrier [12].

Moreover, matrix H P CNTˆNT denotes the target response

matrix between the DFRC BS and the potential eavesdropper.

In this paper, we assume that the channel between the DFRC BS

and the potential eavesdropper is a line-of-sight (LoS) dominant

link [6], [13]. Hence, H is defined as H “ apθqaHpθq, where

apθq P CNTˆ1 is the steering vector of the BS-eavesdropper

link given by

apθq “
”
1, e2πωsinθ, ¨ ¨ ¨ , e2πωpNT´1qsinθ

ıT
, (2)

with ω and θ representing the normalized spacing between

the adjacent antenna elements and the angle of departure

(AoD) from the DFRC BS to the potential eavesdropper [14],

respectively. We note that by employing existing parameter

estimation methods, e.g., [15], [16], the DFRC BS is able to

refine the AoD information of the potential eavesdropper based

on the echo signal.

B. Second Phase

Based on the AoD of the potential eavesdropper refined in

the first phase, the DFRC BS performs secure information

transmission in the second phase. In particular, within the

duration Ttot ´ Ts, the DFRC BS transmits a signal stream

as follows

x “
ÿ

kPK

wkbk ` z. (3)

Here, wk P CNTˆ1 and bk P C indicate the beamforming vector

for user k and the corresponding information-bearing symbol,

respectively. Without loss of generality, we assume E
 
bkb

˚
k

(
“

1, @k P K. Moreover, to further enhance the security while

updating the sensing information of the potential eavesdropper

for the next time slot, we propose to exploit AN to perform

target sensing in the second phase. In particular, we model

the AN signal z as a circularly symmetric complex Gaussian

random variable, i.e., z „ CN p0,Zq. Here, matrix Z P HNT



indicates the covariance matrix of the AN signal and it satisfies

Z ľ 0.

On the other hand, the received signal of user k is given by

yUk
“ gH

k wkbklooomooon
Desired signal

`
ÿ

jPKztku

gH
k wjbj

loooooooomoooooooon
Multiuser interference

` gH
k zloomoon

Artificial noise

`nUk
, (4)

where vector gk P CNTˆ1 represents the channel between the

DFRC BS and user k, and scalar nUk
„ CN p0, σ2

Uk
q denotes

the AWGN at user k with variance σ2
Uk

.

The received signal at the potential eavesdropper is given by

yE “ hH
ÿ

kPK

wkbk ` hHz ` nE, (5)

where scalar nE „ CN p0, σ2
E

q denotes the AWGN at the

potential eavesdropper with variance σ2
E

. Moreover, vector

h P HNT characterizes the LoS link from the DFRC BS to

the potential eavesdropper and is given by

h “
?
β

d
apθq, (6)

where β “ p λc

4π
q2 is a constant determined by the wavelength of

the adopted carrier λc. Moreover, d P R denotes the distance

between the DFRC BS and the potential eavesdropper. Note

that the target response matrix H is determined by h and the

RCS of the target.

C. Channel Uncertainty Model

In this paper, we consider slowly time-varying fading chan-

nels. At the beginning of each time slot, the DFRC BS can

obtain the perfect CSI of the users. However, as for the potential

eavesdropper, the perfect information, e.g., AoD and distance,

is challenging to obtain, due to the movement of the potential

eavesdropper, hardware limitation, and estimation error. Hence,

in this paper, we take into account the following uncertainties

of the potential eavesdropper-involved channel when designing

the ISAC system.

i) The uncertainty of AoD θ: First, we assume that only the

coarse knowledge of the AoD θ between the DFRC BS and

the potential eavesdropper is known [6]. In particular, due to

movement of the potential eavesdropper, limited beamwidth of

sensing signal and/or finite angle resolution of the DFRC BS,

it is challenging to obtain the accurate AoD of the potential

eavesdropper. To capture the impact of θ on resource allocation

design, we adopt a uncertainty model with a deterministic

bound as follows

θ “ θ ` ∆θ, Ωθ
∆“
 
∆θ

ˇ̌
|∆θ| ď ψ

(
, (7)

where θ is the estimate of the AoD acquired when identifying

the potential eavesdropper and ∆θ denotes the AoD uncertainty.

We assume that the value of the AoD uncertainty ∆θ falls in a

continuous set Ωθ while the maximum of its norm is ψ. Then,

the steering vector in (2) is given by

apθq “
”
1, e2πωsinpθ`∆θq, . . . , e2πωpNT´1qsinpθ`∆θq

ıT
. (8)

We note that apθq is a nonlinear function with respect to ∆θ,

which is challenging to handle for resource allocation algorithm

design. To circumvent this difficulty, for a given estimate θ,

we approximate apθq by employing its first order Taylor series

expansion as follows [17]

apθq « ap0qpθq ` ap1qpθqpθ ´ θq, (9)

where

ap0qpθq “
´
1, e2πωsinθ, . . . , e2πωpNT´1qsinθ

¯T

, (10)

ap1qpθq “
`
0, 2πωcosθ, . . . , 2π pNT ´ 1qωcosθ

˘T˝ ap0qpθq,(11)

with ˝ representing the Hadamard product. Then, the steering

vector apθq can be rewritten as a “ a ` ∆a, where a and

∆a P CNTˆ1 are defined as a
∆“ ap0qpθq and ∆a

∆“ ap1qpθq∆θ,

respectively.

ii) The uncertainty of channel coefficient Γ : Second, we

assume that only an estimate of Γ is known due to the clutter

interference, unavoidable quantization errors, and unknown

value of the RCS. As such, similar to the AoD θ, we model

the channel coefficient Γ as follows

Γ “ Γ ` ∆Γ, ΩΓ

∆“
 
∆Γ

ˇ̌
|∆Γ| ď Λ

(
. (12)

Here, Γ is the estimate of the channel coefficient acquired

when identifying the potential eavesdropper and ∆Γ denotes

the channel coefficient uncertainty. We assume that the value

of the channel coefficient uncertainty ∆Γ falls in a continuous

set ΩΓ with the upper bound value Λ.

iii) The uncertainty of distance d : Third, taking into account

the movement of the potential eavesdropper, unavoidable delay

introduced by signal processing, and limited range resolution of

the DFRC BS, we assume that only the coarse knowledge of the

distance between the DFRC BS and the potential eavesdropper

is known. To characterize this uncertainty, we again model the

distance d as follows

d “ d ` ∆d, Ωd
∆“
 
∆d

ˇ̌
|∆d| ď D

(
. (13)

Here, d is the estimate of the distance acquired when identifying

the potential eavesdropper and ∆d denotes the distance uncer-

tainty. We assume that the value of the distance uncertainty ∆d

falls in a continuous set Ωd with the upper bound value D.

III. PROBLEM FORMULATION

In this section, we first define the performance metrics for

the considered system. Then, we formulate the corresponding

resource allocation design as an optimization problem.

A. Performance Metrics

In this paper, we adopt the Cramér-Rao lower bound (CRLB)

as the performance metric for sensing. Compared to the distance

information, we are more interested in acquiring more accurate

AoD information as this allows us to better exploit the spatial

diversity brought by the ULA.2 Following the similar steps as

2Due to the space limitation, we only consider the CLRB for θ in this paper.
Yet, the currently adopted CRLB can be easily extended to a more general
version that simultaneously takes into account θ and d.



in [18, Appendix B], we derive the CRLB for estimating AoD

θ as follows

CRLBpθq “ σ2
s

2 |Γ|2 Ts
´
Tr
`

BH
Bθ Rs

BHH

Bθ

˘
´

ˇ̌
ˇTr
`
HRs

BHH

Bθ

˘ˇ̌
ˇ
2

Tr

`
HRsH

H

˘
¯ .

(14)

To facilitate high-quality target sensing, the DFRC BS has

to illuminate the directions with energy-focused beams such

that the echo signal contains sufficient sensing information.

Taking into account the AoD uncertainty, the direction range

in the first phase is given by
“
θ ´ ψI, θ ` ψI

‰
, where ψI is

the maximum AoD uncertainty at the beginning of the first

phase. By performing target sensing in the first phase, we

can significantly reduce the AoD uncertainty to ψII, where

ψII is the maximum AoD uncertainty at the end of the first

phase and its value is determined by the CRLBpθq, cf. (14).

As such, to combat the AoD uncertainty in both phases, we

discretize a given angular range into L directions and generate

the ideal beam pattern tPppϑlquLl“1
for phase p, where Pppϑlq

denotes the beam pattern power in direction ϑl and p P tI, IIu.

Specifically, the ideal beam pattern tPppϑlquLl“1
of phase p, is

given by [7], [19]

Pppϑlq “
"
1,

ˇ̌
ϑl ´ θ

ˇ̌
ď |ψp| ,

0, otherwise.
, (15)

To achieve secure communication, we consider the maximum

achievable secrecy rate between the DFRC BS and user k,

which is given by Rsec
k “

”
Rk ´ Ck

ı`

. Here, Rk is the

achievable rate (bits/s/Hz) of user k and is given by

Rk “ log2

´
1 `

ˇ̌
gH
k wk

ˇ̌2
ř

rPKztku

ˇ̌
gH
k wr

ˇ̌2 ` Trpgkg
H
k Zq ` σ2

Uk

¯
. (16)

On the other hand, Ck is the capacity (bits/s/Hz) of the channel

between the DFRC BS and the potential eavesdropper for

wiretapping the signal of user k and is given by3

Ck “ log2

´
1 `

β
d2

ˇ̌
aHpθqwk

ˇ̌2
β
d2TrpapθqaH pθqZq ` σ2

E

¯
. (17)

B. Problem Formulation

For the system considered in this paper, we investigate the

resource allocation design in a given time slot to unveil the

relationship between sensing and communication. In particular,

we first divide a given time slot of duration Ttot into two phases

and obtain a time allocation policy T “ tTs, Ttot ´ Tsu. Then,

in the first phase, we aim to minimize the CRLB for estimating

AoD θ by jointly designing the covariance matrix of the sensing

signal and the scaling factor of the sensing beampattern ζI.

Subsequently, in the second phase, based on the refined AoD

uncertainty of the potential eavesdropper, we jointly optimize

3In this paper, for security provisioning, we consider a worst-case scenario
where the potential eavesdropper is equipped with unlimited computational
resources and is able to cancel all the multiuser interference before decoding
the information intended for a specific user [20].

the beamforming vectors wk, the covariance matrix of the

AN Z, and the scaling factor of the sensing beampattern ζII
for the maximization the system sum rate while suppressing

the information leakage to the potential eavesdropper below a

pre-defined level. To this end, we formulate an optimization

problem involving two subproblems as follows,

minimize
RsPHNT ,
Rsľ0,ζI

ξ
`
Rs |T

˘
∆“ max

∆ΓPΩΓ

CRLBpθq

subject to C1: TrpRsq ď Pmax,

C2:

Lÿ

l“1

ˇ̌
ζIPIpϑlq ´ aHpϑlqRsapϑlq

ˇ̌
ď ιI.(18)

maximize
ZPHNT ,

Zľ0,wk,ζII

R
`
wk,Z |T , ξ

˘
∆“
´
1 ´ Ts

Ttot

¯ ÿ

kPK

Rk

subject to ĂC1:
ÿ

kPK

}wk}2 ` TrpZq ď Pmax,

ĂC2:

Lÿ

l“1

ˇ̌
ζIIPIIpϑlq ´ aHpϑlqZapϑlq

ˇ̌
ď ιII,

ĂC3:
´
1 ´ Ts

Ttot

¯
max

∆θPΩθ|ξ,

∆dPΩd

Ck ď Ctol

k , @k. (19)

We note that the objective functions of the subproblems (18)

and (19), i.e., ξ
`
Rs |T

˘
and R

`
wk,Z |T , ξ

˘
, are influenced

by the time allocation policy T . Also, recall that the AoD

information refined in the first phase will be utilized in the

second phase, the value of ξ
`
Rs |T

˘
directly determines the

AoD uncertainty set in (19), i.e., Ωθ|ξ, where Ωθ|ξ is the

AoD uncertainty set defined in (7) given the CRLB value ξ.4

Considering this causality, we propose to solve (18) and (19) in

a sequential manner. On the other hand, in both problems (18)

and (19), constant Pmax denotes the transmit power budget of

the DFRC BS. Moreover, in both phases, we employ an energy-

focusing beam to illuminate the whole uncertain direction of

the potential eavesdropper to update sensing information. As

such, in constraints C2 and ĂC2, we define parameters ιI and

ιII to restrict the differences between the desired beam pattern

and the actual beam pattern in the two phases, respectively.

Besides, in problem (19), secure communication is guaranteed

by constraint ĂC3 with the lower bound of the sum
ř
kPK

Rsec
k ě

ř
kPK

”
Rk ´Ctol

k

ı`

. Here, Ctol
k is a pre-defined parameter which

is adopted to limit the maximum information leakage of user

k.

We note that optimization problem (18) is non-convex due

to the quadratic term in the objective function. On the other

hand, optimization problem (19) is also a non-convex problem

because of the non-convex objective function and the fractional

term in constraint ĂC3. Moreover, both problems are intractable

as they involve continuous sets which is intractable for resource

allocation design. In the literature, the optimization framework

4In this paper, we adopt the three-sigma rule of thumb and assume the
maximum AoD uncertainty in the second phase is upper bounded by a three-
fold the square root of CRLBpθq, i.e., ψII “ 3

?
ξ.



that obtain the globally optimal solution of (18) and (19) is

still unknown. To fill this gap, in the next section, we develop

a two-layer optimization algorithm which solves (18) and (19)

optimally.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

In this section, we develop a nested-loop optimization algo-

rithm to acquire the globally optimal solution to the formu-

lated optimization problem. In particular, in the outer layer,

we implement a line search to determine the time allocation

policy. Then, for the given time allocation policy, we first

solve problem (18) optimally via S-procedure. Subsequently,

by capitalizing on the monotonic optimization approach, we

obtain the optimal solution to (19).

A. Solution of Problem (18)

To tackle the intractable objective function, we first recast

problem (18) equivalently into its epigraph form, i.e.,

minimize
RsPHNT

Rsľ0,ζI,η

η

subject to C1: TrpRsq ď Pmax,

C2:

Lÿ

l“1

ˇ̌
ζIPIpϑlq ´ aHpϑlqRsapϑlq

ˇ̌
ď ιI,

C4: max
∆ΓPΩΓ

CRLBpθq ď η, (20)

where η P R is a slack variable. Then, substituting (14) into

constraint C4 yields

C4:
1

´
Tr
`

BH
Bθ Rs

BHH

Bθ

˘
´

ˇ̌
ˇTr
`
HRs

BHH

Bθ

˘ˇ̌
ˇ
2

Tr

`
HRsH

H

˘
¯ ď min

∆ΓPΩΓ

2

σ2
s

|Γ|2 η.

(21)

For ease of handling the uncertainty in constraint C4, we further

define an auxiliary optimization variable χ P R and decompose

constraint C4 equivalently into the following two constraints

C4a: Tr
`BH

Bθ Rs

BHH

Bθ
˘

´

ˇ̌
ˇTr

`
HRs

BHH

Bθ

˘ˇ̌
ˇ
2

Tr
`
HRsHH

˘ ě χ, (22)

C4b:
1

χ
ď min

∆ΓPΩΓ

2

σ2
s

|Γ|2 η. (23)

Then, by exploiting the Schur complement, we can further

rewrite constraint C4a equivalently as the following convex

constraint [21], [22]

C4a:

«
Tr
`

BH
Bθ Rs

BHH

Bθ

˘
´ χ Tr

`
HRs

BHH

Bθ

˘

Tr
`
HRs

BHH

Bθ

˘
Tr
`
HRsH

H
˘
ff

ľ 0. (24)

Next, we tackle the semi-infinite constraint C4b by applying

the following lemma.

Lemma 1. (S-Procedure [21]) Two functions uipcq : CNˆ1 Ñ
R, i P t1, 2u, with vector variable c P CNˆ1, are defined as

uipcq “ cHQic ` 2ℜ
 
qH
i c

(
` qi, (25)

where Qi P H
N , qi P C

Nˆ1, and qi P R. Then, we can ensure

the implication u1pcq ď 0 ñ u2pcq ď 0 if there exists a non-

negative scalar δ ě 0 satisfying the following linear matrix

inequality (LMI)

δ

„
Q1 q1

qH
1 q1


´
„
Q2 q2

qH
2 q2


ľ 0. (26)

To facilitate the application of S-procedure, we rewrite

constraint C4b as follows

C4b:
1

χ
´ 2η

σ2
s

`
p∆Γq2 ` 2∆ΓΓ ` Γ

2˘ ď 0. (27)

Then, utilizing Lemma 1, the following implication can be

obtained: p∆Γq2 ´ Λ2 ď 0 ñ C4b holds if and only if there

exists δ ě 0 satisfying the following LMI constraint C4b

C4b: δ

„
1 0

0 ´Λ2


`
«

2η
σ2
s

4η
σ2
s

Γ

4η
σ2
s

Γ 4η
σ2
s

Γ
2 ´ 1

χ

ff
ľ 0. (28)

Now, problem (18) is reformulated equivalently as the fol-

lowing convex optimization problem [23]

minimize
RsPHNT ,Rsľ0,

ζI,η,χ,δ

η

subject to C1,C2,C4a,C4b. (29)

We note that problem (29) can be efficiently and optimally

solved by a standard convex program solver such as CVX [24].

B. Solution of Problem (19)

To facilitate the optimal algorithm design, we define beam-

forming matrix Wk P CNTˆNT as Wk “ wkw
H
k , @k. Then,

we rewrite problem (20) equivalently as follows

maximize
Wk,ZPHNT ,
Wk,Zľ0,ζII

´
1 ´ T

Ttot

¯ ÿ

kPK

log2

´
1 ` SINRk

¯

subject to ĂC1:
ÿ

kPK

TrpWkq ` TrpZq ď Pmax,

ĂC2:

Lÿ

l“1

ˇ̌
ζIIPIIpϑlq ´ aHpϑlqZapϑlq

ˇ̌
ď ιII,

ĂC3: max
∆θPΩθ|ξ,

∆dPΩd

Ck ď C
tol

k , @k,

ĂC5: RankpWkq ď 1, @k, (30)

where scalars SINRk and C
tol

k are defined by SINRk “
Tr

`
GkWk

˘
ř

rPKztku
Tr

`
GkWr

˘
`TrpGkZq`σ2

Uk

and C
tol

k “ Ctol

k p Ttot

Ttot´Ts
q,

respectively. Also, Wk P H
NT , Wk ľ 0, and the rank-one

constraint ĂC5 compel the solution of (30) to be feasible to

the original problem (19). Next, to convexify the semi-infinite

constraint ĂC3, we first explicitly express it as follows

ĂC3: max
∆θPΩθ|ξ,

∆dPΩd

β
d2Tr

`
apθqaH pθqWk

˘

β
d2Tr

`
apθqaH pθqZ

˘
` σ2

E

ď 2C
tol

k ´1, @k. (31)



Algorithm 1 Polyblock Approximation Algorithm

1: Construct polyblock P
p1q with vertex set V

p1q “
!
v

p1q
)

, set

convergence tolerance factor 0 ď ǫPA ! 1 and iteration index
m “ 1

2: repeat
3: Calculate the projection of vertex v

pmq onto set F , i.e.,

πpvpmqq, via Algorithm 2

4: Generate a set pVpmq that contains K new vertices, i.e.,
pVpmq “

!
pvpmq
1

, ¨ ¨ ¨ , pvpmq
K

)
, where pvpmq

i “ v
pmq ´

`
v

pmq
k ´

πkpvpmqq
˘
ek, @k P K

5: Construct a smaller polyblock P
pm`1q with new vertex set

V
pm`1q “

`
V

pmqz
!
v

pmq
) ˘

Y pVpmq

6: Find v
pm`1q from V

pm`1q whose projection maximizes

the objective function of the problem, i.e., v
pm`1q “

arg max
vPVpm`1q

Φ
`
πpvpm`1qq

˘
.

7: Set m “ m ` 1

8: until

ˇ̌
ˇΦ
`
v

pmq
˘

´ Φ
`
πpvpmqq

˘ˇ̌
ˇ ď ǫPA

9: Obtain the optimal solution W
˚
k , Z˚, and ζ˚

II

Then, we divide the denominator and numerator of the frac-

tional term of (31) with β
d2 and introduce a slack variable

τk P R to decompose constraint ĂC3 into the following a pair

of constraints [17]

ĄC3a: max
∆θPΩθ|ξ

Tr
`
apθqaHpθqWk

˘
´ cTr

`
apθqaHpθqZ

˘
ď τk, (32)

ĄC3b: τkβ ď min
∆dPΩd

cd2σ2

E, (33)

where constant c is given by c “ 2C
tol

k ´ 1. Subsequently,

similar to constraint C4b, we employ S-procedure to transform

constraints C3a and C3b into the following LMI constraints

ĄĄC3a:

„
κk 0

0 τk ´ κkψ
2


´ UH

a rWk ´ cZsUa ľ 0, @k,

ĄĄC3b:

«
̺k ` rσ cdσ2

E

cdσ2
E

´̺kD2 ´ τkβ ` cd
2

σ2
E

ff
ľ 0, @k, (34)

where matrix Ua P CNTˆ2 is given by Ua “
“
ap1qpθq a

‰
and

variables κk, ̺k ě 0.

Next, we exploit monotonic optimization theory [25] to find

the optimal solution of (30). To start with, we introduce a slack

variable µ P F , where set F P RK is given by

F “
"
µ

ˇ̌
ˇ 1 ď µk ď fkpW,Zq

gkpW,Zq , pW,Zq P G, @k P K

*
. (35)

Here, variable W is the collection of all the matrices Wk.

Moreover, functions fkpW,Zq and gkpW,Zq are given by,

respectively,

fkpW,Zq “
ÿ

jPK

Tr
`
GkWj

˘
` TrpGkZq ` σ2

Uk
, (36)

gkpW,Zq “
ÿ

rPKztku

Tr
`
GkWr

˘
` TrpGkZq ` σ2

Uk
, (37)

and set G is established by constraints ĂC1, ĂC2,
ĄĄC3a,

ĄĄC3b, and
ĂC5.

Now, the optimization problem (30) is rewritten as the

following canonical monotonic optimization problem

maximize
Wk,ZPHNT ,
Wk,Zľ0,ζII,
τk,κk,̺k,µk

Φpµq “
ÿ

kPK

log2pµkq

subject to µ P F . (38)

We note that the objective function of problem (38) is a mono-

tonic increasing function in µ over the feasible set F . Hence,

the optimal solution, referred to as µ˚, lies on the upper bound-

ary of the feasible set F . Next, be employing the polyblock

approximation [25], we design a globally optimal algorithm for

the monotonic optimization problem (38). Considering the fact

that the upper boundary of F is usually unknown, we propose

to approach the boundary by iteratively pruning a pre-defined

polyblock Pp1q while ensuring the resulting polyblock always

contains the feasible set. To start with, we generate one vertex

vp1q P RK associated with the vertex set Vp1q and construct

the corresponding polyblock Pp1q that enfolds the feasible set

F .5 Based on the vertex vp1q, we generate K new vertices

in the vertex set pVp1q “
!
pvp1q
1
, ¨ ¨ ¨ , pvp1q

K

)
. Specifically, we

calculate pvp1q
k “ vp1q ´ pvp1q

k ´ πkpvp1qqqek, @k P K, where

scalar variables v
p1q
k and πkpvp1qq denote the k-th elements of

vp1q and πpvp1qq, respectively. Here, πpvp1qq P RK represents

the projection of the vertex vp1q onto the upper boundary of

set F and ek is a unit vector with element k equal to 1.

Subsequently, the polyblock Pp1q is shrunken by substituting

the vertex vp1q with K new vertices in pVp1q and the new

polyblock Pp2q still satisfies Pp2q Ą F . Accordingly, we update

the vertex set of Pp2q as Vp2q “ pVp1q
Ť`

Vp1qz
 
vp1q

( ˘
. Then,

for each vertex in the set Vp2q, we compute the projection

onto the upper boundary of F . Afterward, the vertex whose

projection maximizes the objective function of problem (38)

is selected as the optimal vertex vp2q in Vp2q, i.e., vp2q “
arg max

vPVp2q

Φ
`
πpvp2qq

˘
. The above steps are implemented again

to shrink Pp2q based on vertex vp2q. As a result, we keep

obtaining a smaller polyblock during iterations, resulting in a

sequence of polyblocks satisfying Pp1q Ą Pp2q Ą ¨ ¨ ¨ Ą F .

The algorithm terminates if
ˇ̌
Φ
`
vpmq

˘
´ Φ

`
πpvpmqq

˘ˇ̌
ď ǫPA,

where m is the iteration index and constant ǫPA ą 0 is the

pre-defined convergence tolerance factor which is adopted to

specify the accuracy of the algorithm. The key steps of the

developed polyblock approximation algorithm are summarized

in Algorithm 1.

We note that the projection of vertex vpmq on the upper

boundary of set F , i.e., πpvpmqq, is required in each iteration

of Algorithm 1. For this purpose, we propose a bisection

search-based algorithm to obtain the desired projection of

vpmq, i.e., πpvpmqq “ ̟vpmq, where 0 ă ̟ ă 1 is the

projection parameter. The proposed algorithm is summarized

in Algorithm 2. Next, we interpret the key step of Algorithm

2, i.e., step 4. In particular, in the j-th iteration, for a given

5The generation of the first vertex and the initialization will be discussed
later.



Algorithm 2 Projection Bisection Search Algorithm

1: Initialize ̟min “ 0, ̟max “ 1, iteration index j “ 1, and
convergence tolerance 0 ă δBS ! 1

2: repeat
3: Calculate ̟j based on ̟j “ p̟min ` ̟maxq{2
4: If ̟jv

pmq P F , then set ̟min “ ̟j

5: Else set ̟max “ ̟j

6: j “ j ` 1
7: until ̟max ´ ̟min ď δBS

8: Calculate projection πpvpmqq “ ̟minv
pmq

Algorithm 3 Two-Layer Optimization Algorithm

1: Set step size of time ∆T and iteration index d “ 1
2: repeat
3: Generate a time allocation policy Td “ td∆T, Ttot ´ d∆T u
4: Solve problem (29) for a given time d∆T
5: Based on the objective function value of problem (29), obtain

the maximum AoD uncertainty ψII in set Ωθ|ξ, cf. (19)
6: For given Ttot ´d∆T and ψII, solve problem (38) by employ-

ing Algorithm 1
7: Store the solutions and the corresponding objective function

values
8: d “ d ` 1
9: until d∆T “ Ttot

10: Select the optimal solution tTd,Wk,Z, ζI, ζIIu that corresponds
to the maximum system sum rate

projection parameter ̟j and vertex vpmq, we have ̟vpmq P F

if the following optimization problem is feasible

Find tWk,Z, ζII, τk, κk, ̺ku
subject to ĂC1,ĂC2,

ĄĄC3a,
ĄĄC3b,ĂC5,

C6: fkpW,Zq ´̟jv
pmq
k gkpW,Zq ě 0, @k.(39)

Now, the only barrier for efficiently solving problem (39) is the

rank-one constraint ĂC5. To this end, we employ semidefinite

relaxation to remove constraint ĂC5 from (39) and utilize CVX

on the resulting convex problem. In addition, the tightness of

the SDR is revealed in the following theorem.

Theorem 1. For a given positive constant Pmax in the relaxed

version of (39), we can always obtain an optimal beamforming

matrix W˚
k with unit-rank.

Proof: The proof of Theorem 1 follows similar steps as

in [26, Appendix A] and thus is omitted here due to page

limitation.

We propose a two-layer algorithm where the optimal time

allocation policy is searched in the outer layer while the optimal

beamforming strategies for both phases are obtained in the

inner layer. The proposed two-layer algorithm is summarized

in Algorithm 3. Some additional remarks on the proposed

algorithms are as follows:

i) Initial point: We initialize Algorithm 3 by setting the time

allocation policy as T1 “ t∆T, Ttot ´ ∆T u, where ∆T P R is

the step size and without loss of generality, we assume Ttot “
D∆T , where D P N`. For Algorithm 1, to ensure the first

polyblock Pp1q Ą F , we generate vp1q by finding the utopia

TABLE I
SYSTEM SIMULATION PARAMETERS.

σ2
Uk

, σ2
E

, σ2s Noise power ´90 dBm

Ts Duration of the time slot 1 ms

Pmax DFRC BS maximum transmit power 30 dBm [28]

Ctol

k
Maximum tolerable information leakage 0.5 bits/s/Hz

∆T Step size of time 0.1 ms

ǫPA, δBS Convergence tolerance factors 10´3

point for the considered problem (38). In particular, the k-th

term of vp1q, i.e., v
p1q
k , is given by v

p1q
k “ 1 ` TrpGkqPmax

σ2

Uk

.

ii) Convergence and optimality: We note that in the m-th

iteration of Algorithm 1, we have Ppmq Ą F . Recall that vpmq

and πpvpmqq are the vertex of the polyblock Ppmq and the cor-

responding projection on the upper boundary of F , respectively.

As a result, the objective function value of vpmq, i.e., Φ
`
vpmq

˘
,

is an upper bound of Φ
`
πpvpmqq

˘
. As Algorithm 1 proceeds,

we can progressively slash the difference between Φ
`
vpmq

˘

and Φ
`
πpvpmqq

˘
. According to [25], for given ǫPA Ñ 0,

Algorithm 1 is guaranteed to converge to the globally optimal

solution of (30). A detailed proof about the convergence of

Algorithm 1 can be found in [25, Theorem 1]. Moreover, since

problem (29) is a convex problem, we can efficiently obtain

its optimum. In fact, the objective function value of (29) is

monotonically decreases when increasing T . Also, for given

time allocation policy Td and resulting ξ
`
Rs |Td

˘
from (29),

we solve (29) to obtain the associated maximal system sum

rate. Hence, as we implement the one-dimensional line search

over T in Algorithm 3, we actually complete the traversal over

all possible time allocation policy and the corresponding CRLB

value. Therefore, we can guarantee to obtain the optimal time

allocation and beamforming policy that maximizes the system

sum rate of the considered system for a maximum information

leakage threshold.

iii) Complexity: In the outer layer of Algorithm 3, we

implement a low-complexity line search. In the inner layer, we

solve a semidefinite programming (SDP) problem and a non-

convex problem in step 4 and 6, respectively. In particular, the

computational complexity of solving SDP problem (29) is given

by O

´
log2p 1

δIP
qN3.5

T

¯
, where O p¨q is the big-O notation and

δIP ą 0 is the convergence tolerance factor when employing

the interior-point method to solve the SDP problem (29) [27].

While the computational complexity of Algorithm 1 is given

by O

´
log2p 1

ǫPA
qKIPA

“
IBS

`
pK ` 1qN3.5

T
` pK ` 1q2N2.5

T

˘‰¯
,

where IPA and IBS are the number of iterations required for

Algorithm 1 and Algorithm 2 to converge, respectively.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

framework via simulations. In particular, we consider a mul-

tiuser ISAC system serving a 120-degree sector of a circular

cell with a radius of 200 m. The DFRC BS is located at the

center of the cell and is equipped with NT “ 8 antennas while

K “ 4 users are uniformly and randomly distributed in the

sector. The path loss exponent for the channels between the



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time for the first phase, T
s
 (ms)

0

1

2

3

4

5

6
A

v
e

ra
g

e
 s

y
s
te

m
 s

u
m

 r
a

te
 (

b
it
s
/s

/H
z
)

Proposed scheme

Baseline scheme 1

Baseline scheme 2

Baseline scheme 1

Proposed scheme

Sum rate

improvement

Baseline scheme 2
Sum rate

improvement

Fig. 2. Average system sum rate versus the time allocated to the first phase
for different schemes.

DFRC BS and users is set to 3 while that of the potential

eavesdropper-involved channel is set to 2. The path loss at the

reference distance of 1 m is set to 40 dB [29]. We assume that

the small-scale fading coefficients of the BS-user links follow

an independent and identically distributed Rayleigh distribu-

tion. The angular domain is equally separated into L “ 120

directions to generate the ideal beam pattern tP pϑlquLl“1
for

both phases. The beam pattern difference tolerance factors ιI
and ιII are set to 0.1, respectively. The upper bounds of AoD

uncertainty before and after the first phase are set to pψ “ π
6

and

ψ “ 3
?
ξ, respectively. The bound of the distance uncertainty

of the potential eavesdropper is assumed to be D “ 10 m. For

ease of presentation, we normalize the maximum estimation

errors for the coefficient of the round-trip channel according

to ς “ |Λ|

|Γ| and set ς “ 0.1. For comparison purposes, we

also consider two baseline schemes. For baseline scheme 1,

the available time is equally allocated to the two phases with

duration T “ 0.5Ttot and no AN is employed in the second

phase. For baseline scheme 2, we assume the ISAC system

does not perform the first phase to refine the information of

the potential eavesdropper, i.e., T “ 0. Then, we solve the

problem in (19) based on the coarse knowledge about the

potential eavesdropper. Unless otherwise specified, we adopt

the parameters summarized in Table I.

In Fig. 2, we investigate the average system sum rate versus

the duration of the first phase, Ts, for different schemes. In

particular, we can observe that as Ts increases, the system sum

rate of the proposed scheme first increases and then decreases.

In fact, by increasing Ts from 0 to 0.2 ms, more time is

allocated to refine the desired sensing information, thereby

significantly reducing the CRLB for estimating the AoD of

the potential eavesdropper. As a result, a much smaller AoD

uncertainty is obtained at the beginning of the second phase.

This allows the DFRC BS to execute a more precise beam-

forming policy, which in turn helps to improve the sum rate.

However, as we further extend the duration of the first phase,
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Fig. 3. Average system sum rate versus the maximum tolerable information
leakage for different schemes.

only a shorter time is available for information transmission.

In this case, the resulting average rate loss outweighs the gain

induced by further reducing the AoD uncertainty that degrades

the performance. Moreover, it can be seen from the figure

that compared to the proposed scheme, both baseline schemes

achieve dramatically lower system sum rate. Specifically, for

baseline scheme 1, although a considerable fraction of the

time slot is exploited to combat the AoD uncertainty of the

potential eavesdropper, the system sum rate is still low due to

the following two reasons. First, since AN is not employed,

the DFRC BS has to reduce the transmit power for information

beamforming for satisfying the maximum tolerable information

leakage stated in constraint ĂC3. This inevitably results in lower

systems sum rate. Second, as less time is exploited for informa-

tion transmission, the average sum rate in the considered time

slot also declines. As for baseline scheme 2, since the DFRC

BS does not perform sensing to refine the AoD uncertainty,

a large portion of transmit power has to be allocated to AN

for security provisioning, leading to an inefficient information

beamforming policy.

Fig. 3 illustrates the average system sum rate versus the

maximum tolerable information leakage Ctol
k . As can be seen

from the figure that for both the proposed scheme and two

baseline schemes, the average system sum rate increases with

Ctol
k . However, the reasons behind this are different. For the

proposed scheme, the gain originates from the following two

reasons: First, a larger value of Ctol
k increases the tolerance

of the DFRC BS against the AoD uncertainty. As a result,

the DFRC BS is allowed to allocate less amount of time

to the first phase to obtain a piece of less accurate AoD

information about the potential eavesdropper, favoring a longer

second phase for information transmission. Second, as Ctol

k

increases, the DFRC BS is allowed to adopt a more aggressive

power allocation policy where most of the available power is

exploited for information transmission, as long as constraint
ĂC3 is satisfied. In contrast, baseline scheme 1 can only ben-



efit from the aforementioned second reason. As for baseline

scheme 2, due to the fixed time allocation policy, the DFRC

BS can only optimize the beamforming policy to boost the

system performance, which loses the flexibility in striking the

balance between the transmission time and AoD accuracy. This

indicates the effectiveness of the proposed scheme by jointly

optimizing all available resources in the considered system.

VI. CONCLUSION

In this paper, we leveraged the sensing technique to enhance

physical layer security for a multiuser communication system.

In particular, we proposed a two-phase robust design frame-

work, where the desired sensing information of the potential

eavesdropper is acquired in the first phase while the secure

transmission is performed in the second phase. Taking into

account the uncertainties in the AoD, distance, and channel

coefficient of the potential eavesdropper, we developed a mono-

tonic optimization-based two-layer algorithm for determining

the optimal time allocation and beamforming policy. Simulation

results verified the remarkable ability of the proposed scheme to

improve the physical layer security of wireless communication

systems compared to the two baseline schemes. Moreover,

our results revealed that a short-duration sensing phase can

already efficiently lessen the CSI uncertainty of the potential

eavesdropper, which helps combat wiretapping effectively.
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