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Abstract—When multiple users share a common link in direct
transmission, packet loss and link congestion may occur due
to the simultaneous arrival of traffics at the source node. To
tackle this problem, users may resort to an indirect path: the
packet flows are first relayed through a sidelink to another
source node, then transmitted to the destination. This behavior
brings the problems of packet routing or load balancing: (1)
how to maximize the total traffic in a collaborative way; (2)
how self-interested users choose routing strategies to minimize
their individual packet loss independently. In this work, we
propose a generalized mathematical framework to tackle the
packet and load balancing issue in loss networks. In centralized
scenarios with a planner, we provide a polynomial-time algo-
rithm to compute the system optimum point where the total
traffic rate is maximized. Conversely, in decentralized settings
with autonomous users making distributed decisions, the system
converges to an equilibrium where no user can reduce their
loss probability through unilateral deviation. We thereby provide
a full characterization of Nash equilibrium and examine the
efficiency loss stemming from selfish behaviors, both theoretically
and empirically. In general, the performance degradation caused
by selfish behaviors is not catastrophic; however, this gap is
not monotonic and can have extreme values in certain specific
scenarios.

Index Terms—load balancing, Nash equilibria, price of anar-
chy, network congestion, sidelink

I. INTRODUCTION

Since the seminal work of Erlang [1], loss networks have

played a crucial role in analyzing and optimizing stochastic

systems involving simultaneous resource utilization, and non-

backlogging workloads (for an extensive overview, see [2]).

Meanwhile, in the post-5G era, cloud-enabled networks have

emerged as a dominant architecture, where multiple servers

collect data from users and relay it to a central hub for

final processing. To guarantee network efficacy, that is no

server is either overburdened or underutilized, load balanc-

ing strategies are well studied, e.g., [3]. In this context,

loss networks provide valuable mathematical frameworks for

comprehending and enhancing load distribution within cloud-

enabled networks.

Early load balancing research for cloud-enabled networks

focused on centralized scenarios, where a centralized planner

scheduled workloads to optimize aspects like performance-

energy tradeoffs [3] and algorithmic considerations [4], [5].

However, due to the stringent latency requirement for real-

time decisions and the increasing signaling overhead caused

by the large-scale deployment of servers and massive users,

distributed decisions become a better solution. In this context,

the complexity of the problem increases due to the non-

cooperative and competitive behaviors among users within the

system.

To address the challenges of load balancing in a distributed

way, game theory provides a mathematical framework that

describes and analyzes scenarios with interactive decisions

[6]. Till now, some studies have demonstrated the efficacy of

game-theoretic models in addressing load balancing problems.

For instance, Mondal et al. [7] developed a game-theoretic

model for load balancing among competitive cloudlets, while

Yi et al. [8] investigated a similar problem, incorporating

additional considerations of queue-aware strategies. In [9],

[10], symmetric loss models where each source has an equal

number of users are considered. However, previous studies

mostly focused on limited cases of identical user strategies,

which may not reflect real-world scenarios, i.e., different

users may have different objectives and preferences. Therefore,

further research is needed to develop game-theoretic models

that can address the challenges of load balancing in a more

general and realistic manner.

In this paper, we employ game theory to address load

balancing in both distributed and centralized environments,

where users have non-identical strategies and the number

of users is not evenly distributed. Specifically, we consider

the load balancing in a cloud-enabled network consisting of

m source nodes (servers) {s1, . . . , sm} and one destination

node (central hub) d. Each source si has ni users seeking

service, and the traffic originating from each user is assumed to

follow an independent Poisson point process with an identical

rate. The nodes in the network are connected by two types

of communication links, namely sidelinks that connect two

sources, and direct links that connect a source and destination.

The sidelink has a random identical independent distribution

(i.i.d) loss with a fixed probability q, and the direct link has

a congestion loss that depends on the arrival rate and service

rate of each server.

The user cannot split its traffic, and has to determine how

to route all of its traffic from the source node arrived at to

the destination node. There are two approaches for the traffic

transmission: a direct path (DP) in which the packet goes

directly from the source arrived at to the destination, and

an indirect path (IP) in which the packet is first relayed to

another source node and then takes the direct link from that
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node to the destination. We treat packet loss probability as

the performance metric in load balancing, instead of additive

costs like delay or fees in classical routing games [10],

[11], resulting in a non-additive and non-convex optimization

process. Each user aims to minimize its own loss probability

and engage in a game by strategically selecting its own path.

In the end, no user can reduce its loss probability by unilateral

deviation and reaches the state of Nash Equilibrium (NE).

A. Our Contributions

Our work contributes to the load balancing game in the

following aspects: First, we prove two lemmas related to the

optimal solution when a centralized planner exists. Based on

these lemmas, a low-complexity algorithm that maximizes the

total traffic is proposed. Second, we study the decentralized

environment where decisions are made by autonomous and

self-interested users. The sufficient and necessary conditions

on NE are derived, which depend on the number of users

on direct path and each indirect path. Moreover, since a NE

may be suboptimal, we use the price of anarchy (PoA) [12]

to measure the gap between the NE led by users’ selfish

behaviors and the system optimum achieved by the centralized

planner.

The rest of the paper is structured as follows. The formal

model and notations are presented in Section II. In Sec-

tion III, we provide details to compute the optimal solution

that maximizes the total traffic when a centralized planner

exists. In Section IV, we study the NE in the decentralized

decision-making scenarios, and analyzed the efficiency loss

stemming from selfish behaviors. In Section V, a fine-grained

analysis is performed on the existence of NE in various

network configurations for a specific scenario involving two

source nodes. Numerical results are presented and discussed

in Section VI. Finally, Section VII concludes the paper and

outlines some future work.

B. Other related works

Routing games. As a special class of congestion games,

routing games in a network are problems of routing traffic

to achieve the best possible network performance, and have

been studied within various contexts and within various com-

munities, for example, the mathematics community [13], the

telecommunications [14], and theoretical computer science

[15], [16]. The above references have all in common a cost

framework which is additive over links, such as delays or tolls,

and is flow conserving (the amount entering a node equals the

amount leaving it). Routing games with non-additive cost in

loss networks are studied in [17].

Braess-like paradox in distributed systems. The Braess-like

paradox is said to occur in a network system with distributed

behaviors if adding an extra link or adding communication

capacity to the system leads to a worse system performance. It

widely exists in transportation networks and queuing networks.

Bean et al. [18] show that it can occur in loss networks.

Kameda et al. [19] consider a model similar to ours in that a

job (packet) can be processed directly or indirectly; however,

Fig. 1: An illustration of the game model.

they do not consider the loss probability. They identify a

Braess-like paradox in which adding capacity to the channel

may degrade the system performance on the response time.

Kameda and Pourtallier [20] characterize conditions under

which such paradoxical behavior occurs, and give examples in

which the degradation of performance may increase without

bound.

II. MODEL AND PRELIMINARIES

We abstractly model our problem using a graph. Consider

a network with m source nodes S = {s1, . . . , sm} and one

destination node d. For each source node si ∈ S, let Ni

be the set of users arriving at si, and ni = |Ni| be the

number of such users. Without loss of generality, we assume

n1 > n2 > . . . > nm. Denote [m] = {1, . . . ,m}. There

is a total of n =
∑

i∈[m] ni users in the system, who are

self-interested players in the game. We say players and users

interchangeably throughout this paper. Each user is identified

with a flow (or traffic) of packets, which originates from the

user and is assumed to form an independent Poisson process

with an identical rate φ. See Fig. 1 for illustration.

Each user controls its route that all its packets should follow.

For a user associated with si ∈ S, there are only two types of

routes to ship these packets to the destination d: either a direct

path (DP) (si, d), or an indirect two-hop path (IP) (si, sj , d)
for some sj 6= si, in which the packet is first sent to another

source sj by the side link (si, sj), and then passes through

the direct link (sj , d).

Strategies. For every source si, each user k ∈ Ni decides

a one-shot strategy p
(i)
k =

Ä

p
(i)
k1 , . . . , p

(i)
km

äT
∈ [0, 1]m with

∑

j∈[m] p
(i)
kj = 1, where p

(i)
ki is the probability of routing

all packets through DP, and p
(i)
kj (j ∈ [m], j 6= i) is the

probability of routing all packets through IP (si, sj , d). When

no confusion arises, we simply write the strategy p
(i)
k as pk.

We focus on pure strategies in this paper: a strategy pk is

pure if ‖pk‖∞ = 1, i.e., user k deterministically selects a

route with probability 1 (for example, pk = (0, 1, 0, . . . , 0)T ).

Let p = (p1, . . . ,pn) be the strategy profile of all users.

Loss probability and loss rate. There are two types of

losses: (1) Losses on side links. We assume that a packet



originating from node si and relayed to node sj is lost with a

fixed probability q for every side link (si, sj), independently

of any other loss. Denote by q̄ = 1 − q the probability that

a packet is successfully relayed. (2) Congestion losses on

direct links. We assume that there is no buffer to restore the

backlogged packets, so a packet will be lost when it enters the

direct path which is occupied for the transmission of another

packet. The transmission time of a packet on a direct link

(si, d) is a random variable σ following a distribution X , which

is assumed to be an identically independent distribution (i.i.d)

for all packets.

Given strategy profile p, user k ∈ Ni continuously sends

packets that follow an independent Poisson process with rate

p
(i)
ki · φ to DP (si, d), and an independent Poisson process of

packets with rate p
(i)
kj · φ to IP (si, sj , d), for any sj 6= si.

Since there is a random loss on the side link (si, sj), the flow

of packets from user k ∈ Ni that arrive at the node sj is also

a Poisson process with rate q̄p
(i)
kj φ.

Thus, for each source si ∈ S, the flow over the link (si, d)
is Poisson distributed with a traffic rate Ti(p) given by

Ti(p) =
∑

k∈Ni

p
(i)
ki φ+

∑

j∈[m]\{i}

∑

k∈Nj

p
(j)
ki q̄φ. (1)

When no confusion arises, we simply write Ti(p) as Ti.

The probability of no congestion loss on the direct link

(si, d) equals the probability that there is no arrival during a

transmission time σ, which is given by Eσ∼X e−Tiσ . As usual

practice, assume X is an exponential distribution with a rate

parameter µ (service rate) and mean 1
µ . Thus the probability

of no congestion loss on (si, d) is

E
σ∼X

e−Tiσ =

∫ +∞

0

µe−µσe−Tiσdσ =
µ

Ti + µ
, (2)

and the loss probability on link (si, d) is Ti

Ti+µ .

Given the strategy profile p, for si ∈ S and k ∈ Ni, the

loss rate of user k is defined as

LRk(p)=



p
(i)
ki

Ti

Ti+µ
+
Ä

1−p
(i)
ki

ä

q+(1−q)
∑

j∈[m]\{i}

p
(i)
kj

Tj

Tj+µ



φ, (3)

and the loss probability of user k is
LRk(p)

φ .

Total traffic. Regarding the system efficiency, we measure

it by the total traffic rate arriving at the destination d. Given

the strategy profile p, the total traffic rate TR(p) of the system

can be derived in two ways. The first expression is derived as

the summation of successful transmission rates on direct links:

TR(p) =
∑

i∈[m]

Ti ·
µ

Ti + µ

= µ









m−
∑

i∈[m]

µ
∑

k∈Ni

p
(i)
ki φ+

∑

j∈[m]\{i}

∑

k∈Nj

p
(j)
ki q̄φ+ µ









(4)

where Ti is the traffic rate over link (si, d), and µ
Ti+µ is the

probability of no congestion loss on (si, d).

The second expression is from users’ perspective:

TR(p) :=
∑

i∈[m]

∑

k∈Ni

(φ − LRk), (5)

where φ − LRk(p) is the traffic rate of user k ∈ Ni that

successfully arrive at d. It is not hard to see that (4) and (5)

are equivalent.

Nash equilibria. A Nash equilibrium (NE) is a strategy

profile where no player can decrease its loss probability by

unilaterally deviating to any other strategy. Formally, we give

a definition.

Definition 1. A strategy profile p is a Nash equilibrium, if for

any source si ∈ S and any player k ∈ Ni, we have

LRk(pk,p−k) ≤ LRk(p
′
k,p−k),

where p
′
k can be any feasible strategy of player k, and p−k

is the strategy profile of all other players.

We measure the efficiency of NEs by the price of anarchy

(PoA) [12], which is defined as the ratio between social

efficiencies in an optimal solution and in the worst NE.

Formally, given an instance Γ of this game, we define

PoA(Γ) =
TR(opt)

minp∈NE TR(p)
.

where opt is an optimal solution of Γ, and NE is the set of all

NEs. The PoA of the whole game is defined as the maximum

over all instances, that is, PoA = maxΓ PoA(Γ).

III. CENTRALIZED ANALYSIS

The main technical results of the paper are presented now.

We show how to compute an optimal solution that maximizes

the total traffic. Note that the total traffic rate depends on the

number of users working on each source by DP or IP, but not

the users’ identity. Given a strategy profile p, let ui = |{k ∈

Ni | p
(i)
ki = 1}| be the number of users working with DP

(si, d), and let vi = |{k ∈ Nj , j ∈ [m]\i| p
(j)
ki = 1}| be the

users working with IP through link (si, d). Define yi = ui+vi
as the number of users who choose source si (including both

DP and IP).

Lemma 1. In any optimal solution, for any source si, either

ui = ni or vi = 0 or both hold.

Proof. Let p be an optimal solution. Suppose for contradiction

that ui < ni, vi > 0 for some source si. Then there exists a

user (say, k) in Ni who chooses IP (say, (si, si′ , d) for some

i′ 6= i). Also, since vi > 0, there exist a source sj 6= si and

a user l ∈ Nj who chooses IP (sj , si, d). The total traffic rate

is TR(p) = µTi

Ti+µ +
∑

w∈[m]\{i}

Ä

µTw

Tw+µ

ä

.

Now we show that the total traffic rate can be improved by

revising p. Let user k ∈ Ni choose DP, and let user l ∈ Nj

choose IP (sj , si′ , d). Fixing all others’ strategies, denote the

new strategy profile by p
′, and define u′

i, v
′
i accordingly. Note

that u′
i = ui + 1, v′i = vi − 1, and Tw(p

′) = Tw(p) for all

source sw 6= si. Since q > 0, we have

Ti(p
′) = (ui + 1)φ+ (vi − 1)q̄φ > uiφ+ viq̄φ = Ti(p).



So TR(p′) > TR(p), contradicting to the optimality.

Lemma 1 indicates that if a source (say si) provides service

to the users of other sources, then all users of si choose DP.

Lemma 2. In any optimal solution, there must exist ĩ ∈ [m],
such that vl = 0 for all l ≤ ĩ, and uj = nj for all j > ĩ.

Proof. Given an optimal solution p, suppose for contradiction

that there exist i, j ∈ [m] (i < j) such that vi > 0 and uj < nj .

By Lemma 1, we have ui = ni and vj = 0. There exists a

source si′ and a user k ∈ Ni′ selecting IP (si′ , si, d). There

exists a source sj′ (j′ 6= j) and a user k′ ∈ Nj selecting IP

(sj , sj′ , d). Note that when i′ = j and j′ = i, users k and k′

may coincide. The total traffic rate is

TR(p) =
µTi

Ti + µ
+

µTj

Tj + µ
+

∑

w∈[m]\{i,j}

Å

µTw

Tw + µ

ã

= µ(2−
1

Ti + µ
−

1

Tj + µ
) +

∑

w∈[m]\{i,j}

Å

µTw

Tw + µ

ã

.

Now we show that the total traffic rate can be improved by

revising p. Let user k choose IP (si′ , sj′ , d) if i′ 6= j′ and

choose DP (si′ , d) if i′ = j′. Let user k′ ∈ Nj choose DP.

Fixing all others’ strategies, denote the new strategy profile

by p
′, and define u′

i, v
′
i accordingly. Note that v′i = vi − 1,

u′
j =uj + 1, and Tw(p

′) = Tw(p) for all other sources sw 6=
si, sj . Since i<j, it follows that ni≥nj>uj . Therefore, we

have

1

Ti + µ
+

1

Tj + µ
=

1

niφ+ viq̄φ+ µ
+

1

ujφ+ µ

>
1

niφ+ v′iq̄φ+ µ
+

1

u′
jφ+ µ

=
1

T ′
i + µ

+
1

T ′
j + µ

,

which indicates that TR(p) < TR(p′), a contradiction.

Lemma 2 shows that there exists a threshold ĩ: 1) if i > ĩ,
all users from si chose DP; 2) if i ≤ ĩ, portion users chose

DP, and portion users chose IP.

Now we are ready to present Algorithm 1. The main idea

is searching for ĩ in Lemma 2. For each candidate of ĩ, let B
be the number of users selecting IP, all of whom come from

L = {sl | l ≤ ĩ}, and go to R = {sj | j > ĩ}. For every

possible value of B, we compute the best possible way for

extracting the B users from L and distributing them over R.

In Algorithm 1, step (a) is to make Tl (and thus no

congestion probability µ
Tl+µ ) as equal as possible for l ∈ [̃i].

This can be realized by initializing ul=nl, and then removing

players one by one from the highest ul and updating until

B players have been removed. The goal of step (b) is to

make Tj (and thus µ
Tj+µ ) as even as possible. This can be

realized by initializing vj = 0, then adding users one by one

to vj′ = argminj>ĩ njφ + vj q̄φ + µ and updating, until B
players have been added. These two steps guarantee that the

B loads are distributed in an optimal way to maximize the

traffic rate.

Theorem 1. Algorithm 1 returns an optimal solution for

maximizing the total traffic, and runs in O(mn2) time.

ALGORITHM 1: Computing an optimal solution.

Input: m source with n1 ≥ n2 ≥ · · · ≥ nm, φ, µ, q
Output: (u∗

i , v
∗
i )i∈N

1: Initialize ui = vi = 0 for all i ∈ [m]. TR∗ = 0
2: for ĩ = 1, . . . ,m do

3: Let vl = 0 for all l = 1, 2, . . . , ĩ
4: Let uj = nj for all j = ĩ+ 1, . . . ,m

5: for B = 1, 2, . . . ,
∑ĩ

l=1 nl do

6: (a) Compute (ul)l∈[̃i] s.t.
∑ĩ

l=1(nl−ul)=B
and the values of ul are as equal as possible.

7: (b) Compute (vj)j>ĩ s.t.
∑m

j=ĩ+1 vj=B and the

values of njφ+vj q̄φ+µ are as equal as possible.

8: (c) Compute TR with respect to (ui, vi)i∈N

9: if TR > TR∗ then

10: TR∗ ← TR, and (u∗
i , v

∗
i )i∈N ← (ui, vi)i∈N

11: end if

12: end for

13: end for

Proof. In the first loop, we traverse all indexes in [m] to find

the ĩ in Lemma 2. In the second loop, we traverse all possible

numbers of users who select IP, and given any such a number

B, we extract the B users from {sl | l ≤ ĩ} and distribute them

over {sj | j > ĩ} in an optimal way to maximize the traffic

rate. So all possible optimal solutions have been searched by

the algorithm, giving the optimality. For the time complexity,

we have m iterations in the first loop, at most n iterations in

the second loop, and the time for each iteration is O(n).

Intuitively, when the transmission loss probability is suffi-

ciently large, all packets should go through DP; when there is

no transmission loss, the load of packets should be distributed

evenly over all sources. We verify the intuition as follows.

Corollary 1. If q = 1, the unique optimal solution is that all

users choose DP (i.e., ui = ni, vi = 0, ∀i ∈ M ). If q = 0, a

strategy profile p is optimal if and only if |yi − yj| ≤ 1 for

all i, j ∈ [m].

Proof. If q = 1, TR =
∑

i∈[m]
µuiφ
uiφ+µ is increasing with

respect to every ui. By the monotonicity, the optimum is

achieved when ui = ni. If q = 0, suppose for contra-

diction that there exist i, j ∈ [m] in an optimal solution

p such that yi − yj ≥ 2. The total traffic rate is TR =
µ(m −

∑

k∈[m]
µ

ykφ+µ ). Consider a new strategy profile p
′

with y′i = yi − 1, y′j = yj + 1, i.e., a user who chooses

source si deviates to sj . Then the total traffic rate becomes

TR′ = µ(m−
∑

k∈[m]\{i,j}
µ

ykφ+µ −
µ

y′

i
φ+µ −

µ
y′

j
φ+µ ) > TR,

a contradiction.

IV. DECENTRALIZED ANALYSIS

In this section, we study the Nash equilibria in the decen-

tralized decision-making scenario where each user makes a

decision on the choice of DP or IP.



A. Characterization of NEs

A NE should satisfy that: for a user selecting DP, its loss rate

will not decrease if it deviates to any IP; for a user selecting

IP, its loss rate will not decrease if it deviates to DP or another

IP. We formalize it as the following characterization.

Theorem 2. Given an arbitrary strategy profile p with

(ui, vi)i∈[m], let i∗ ∈ argmini∈[m]{ui + viq̄}, and let xij ∈
{0, 1} be an indicator where xij = 1 if there exists at least

one user selecting IP (si, sj , d). Then, p is a NE, if and only

if the following conditions are satisfied:

(i) for all i ∈ [m] with ui > 0, we have

q̄(ui + viq̄) ≤ ui∗ + vi∗ q̄ + q̄ +
qµ

φ
; (6)

(ii) for all i, l ∈ [m] with xil = 1, we have

ul+vlq̄ ≤ min

ß

q̄(ui+1+viq̄)−
qµ

φ
, ui∗+vi∗ q̄+q̄

™

(7)

Proof. Suppose p is a NE. Consider an arbitrary source si ∈ S
and arbitrary user k ∈ Ni.

Case 1. User k selects DP in p (denoted as p
(i)
k where

p
(i)
ki = 1). If it deviates to IP (si, sj, d) where j 6= i

(denoted as p
′(i)
k where pikj = 1), by Definition 1, we have

LRk(p
(i)
k ,p−k) ≤ LRk(p

′(i)
k ,p−k). It is equivalent to

1−
µ

uiφ+ viq̄φ+ µ
≤q + q̄ ·

Å

1−
µ

ujφ+ (vj + 1)q̄φ+ µ

ã

⇔
q̄

ujφ+ (vj + 1)q̄φ+ µ
≤

1

uiφ+ viq̄φ+ µ

⇔ q̄(ui + viq̄)−
qµ

φ
≤ uj + (vj + 1)q̄,

The above inequality should hold for all j 6= i, and thus is

equivalent to Equation (6).

Case 2. User k selects IP (si, sl, d) in p. If it deviates to

DP (si, d), by Definition 1, we should have LRk(p
(i)
k ,p−k) ≤

LRk(p
′(i)
k ,p−k). It is equivalent to

q+q̄ ·

Å

1−
µ

ulφ+ vlq̄φ+ µ

ã

≤ 1−
µ

(ui + 1)φ+ viq̄φ+ µ

⇔
1

(ui + 1)φ+ viq̄φ+ µ
≤

q̄

ulφ+ vlq̄φ+ µ

⇔ ul + vlq̄ ≤ q̄(ui + 1 + viq̄)−
qµ

φ
.

Moreover, a NE must guarantee that user k will not deviate

to another IP (si, sj , 0), and thus we should have

1−
µ

ulφ+ vlq̄φ+ µ
≤ 1−

µ

ujφ+ (vj + 1)q̄φ+ µ

⇔ ul + vlq̄ ≤ uj + (vj + 1)q̄.

Note that the above inequality should hold for all j 6= i, l.
Therefore, we obtain Equation (7).

B. Price of Anarchy

We investigate the price of anarchy in this section, which

measures the efficiency of NE. We give an upper bound on

the optimal total traffic rate, and a lower bound on the total

traffic rate of any NE.

Lemma 3. In an optimal solution p, the total traffic rate is

TR(p) ≤ µm
Ä

1− µ
n1φ+µ

ä

.

Proof. Let i be the index stated in Lemma 2. It suffices to show

with the proof by contradiction that in the optimal solution p,

ui + viq̄ ≤ ni. First, for i = 1, we have v1 = 0, and thus

it satisfies u1 + v1q̄ = u1 ≤ n1. For any i > 1, suppose for

contradiction that ui+viq̄ > ni. Then vi > 0, and there exists

a source sj and a user k ∈ Nj that chooses the IP (sj , si, d),
i.e., uj < nj . By Lemma 1, it must be vj = 0, and thus

Tj = ujφ. Denote the strategy as p with p
(j)
ki = 1. The total

traffic rate is

TR(p) = µ

Ñ

m−
µ

Tj + µ
−

µ

Ti + µ
−

∑

w∈[m]\{j}

µ

Tw + µ

é

(8)

We show that the total traffic rate can be improved with user

k ∈ Nj deviating from IP (sj , si, d) to DP (sj , d). Fixing the

strategies of all others, denote by p
′ the new strategy profile,

and define (u′
w, v

′
w, T

′
w)w∈[m] accordingly. Note that u′

j = uj+
1, v′i = vi − 1, u′

i = ui, and T ′
w = Tw for any w ∈ [m]\{j}.

Since ui + viq̄ > n1 ≥ nj ≥ uj , we have

1

Tj + µ
+

1

Ti + µ
=

1

ujφ+ µ
+

1

uiφ+ viq̄φ+ µ

>
1

u′
jφ+ µ

+
1

u′
iφ+ v′iq̄φ+ µ

=
1

T ′
j + µ

+
1

T ′
i + µ

.

It indicates that TR(p′) > TR(p) is a contradiction. Con-

sequently, ui + viq̄ ≤ ni ≤ n1. According (4), we have

TR(p) ≤ µm(1 − µ
n1φ+µ ).

Lemma 4. Let z = min{nm, n
4m − q̄− qµ

φ }. For every NE p,

the total traffic rate satisfies TR(p) ≥ µ(m− mµ
zφ+µ ).

Proof. Let i∗ = argmini∈[m]{ui + viq̄}. Since TR(p) ≥
µm(1− µ

(ui∗+vi∗ q̄)φ+µ ), it suffices to prove that ui∗+vi∗ q̄ ≥ z.

If ui∗ + vi∗ q̄ ≥ nm, it is done. We only need to consider the

case when ui∗ + vi∗ q̄ < nm ≤ ni∗ . There exists some users

in Ni∗ selecting IP. By Equation (7), we have

ui∗ + vi∗ q̄ ≤ q̄(ui∗ + 1 + vi∗ q̄)−
qµ

φ
.

By Theorem 2, for each i ∈ [m], if ui > 0, then q̄(ui+viq̄) ≤
ui∗ + vi∗ q̄+ q̄+ qµ

φ ; if vi > 0, then ui+ viq̄ ≤ ui∗ + vi∗ q̄+ q̄.

In both cases, we obtain ui + vi/2 ≤ 2(ui∗ + vi∗ q̄ + q̄ + qµ
φ ).

Summing up over all i ∈ [m], we have

n/2 ≤
∑

i∈[m]

(ui + vi/2) ≤ 2m(ui∗ + vi∗ q̄ + q̄ +
qµ

φ
),

which implies that ui∗ + vi∗ q̄ ≥
n
4m − q̄ − qµ

φ .



Theorem 3. For any instance with m sources, the price of

anarchy is PoA ≤ 1 + n1µ
n1zφ+zµ , where z = min{nm, n

4m −
q̄ − qµ

φ }.

Proof. Combining the upper bound in Lemma 3 and the lower

bound on TR(p) for any NE p in Lemma 4, it follows

PoA ≤
m− mµ

n1φ+µ

m− mµ
zφ+µ

=
n1(zφ+ µ)

z(n1φ+ µ)
= 1 +

n1µ

n1zφ+ zµ
.

V. A PARTICULAR CASE: TWO SOURCES

In this section, we focus on the special case of m = 2.

That is, there are only two sources s1 and s2. Assume w.l.o.g.

that n1 ≥ n2. For each user k ∈ Ni, there is only one IP.

Accordingly, its strategy becomes p
(i)
k =

Ä

p
(i)
k1 , p

(i)
k2

ä

, i = 1, 2.

And we have

n1 = u1 + v2; (9)

n2 = u2 + v1. (10)

The traffic rate Ti(p) in (1) is rephrased as

Ti(p) =
∑

k∈Ni

p
(i)
ki φ+

∑

k∈Nj ,j 6=i

p
(j)
ki q̄φ = uiφ+ viq̄φ. (11)

Given strategy profile p, the set N is further partitioned

into 4 subsets (V1, V2, V3, V4) where V1 = {k ∈ N1 | p
(1)
k =

(1, 0)}, V2 = {k ∈ N1 | p
(1)
k = (0, 1)}, V3 = {k ∈

N2 | p
(2)
k = (0, 1)} and V4 = {k ∈ N2 | p

(2)
k = (1, 0)}.

Clearly, users in V1 and V3 choose DP, and users in V2 and

V4 choose IP.

Suppose p is a NE. We study the deviation of users in

V1, V2, V3, V4, respectively. For user k ∈ V1, the strategy is

p
(1)
k =

Ä

p
(1)
k1 , p

(1)
k2

ä

= (1, 0), and the loss rate in (3) is

LRk(p)=
φT1(p)

T1(p) + µ
=

ï

1−
µ/φ

u1 + v1q̄ + µ/φ

ò

φ.

When user k ∈ V1 deviates to IP, the strategy profile becomes

p
′ =
Ä

p
′(1)
k ,p−k

ä

where p
′(1)
k = (0, 1). The loss rate of user

k becomes

LRi(p
′)=qφ+q̄φ

T2(p
′)

T2(p′)+µ
=

ï

1−
q̄µ/φ

u2+(v2+1)q̄+µ/φ

ò

φ.

Since p is NE, k has no incentive to deviate, and thus

LPk(p) ≤ LRk(p
′), which is equivalent to

t1(u2) :=
qµ/φ+u2(1+q̄2)+(n1+1)q̄−n2q̄

2

2q̄
≥ u1, (12)

where t1(u2) is a function with respect to variable u2.

For user k ∈ V2 with strategy p
(1)
k = (0, 1), the loss rate is

LRk(p) = qφ+ q̄φ
T2(p)

T2(p) + µ
=

ï

1−
q̄µ/φ

u2 + v2q̄ + µ/φ

ò

φ.

When user k ∈ V2 deviates to DP, the strategy profile becomes

p
′ =
Ä

p
′(1)
k ,p−k

ä

where p
′(1)
k = (1, 0). The loss rate of k

becomes

LRk(p
′) =

φT1(p
′)

T1(p′) + µ
=

ï

1−
µ/φ

u1 + 1 + v1q̄ + µ/φ

ò

φ.

Since p is NE, we have LRk(p) ≤ LRk(p
′), that is,

u1 ≥
qµ/φ+u2(1+q̄2)+(n1−1)q̄−n2q̄

2

2q̄
= t1(u2)−1. (13)

Symmetrically, for each user k ∈ V3 and k ∈ V4, since p

is NE, we have

t2(u1)− 1 ≤ u2 ≤ t2(u1), (14)

where

t2(u1) :=
qµ/φ+ u1(1 + q̄2) + (n2 + 1)q̄ − n1q̄

2

2q̄
.

Note that Eq. (12) - (14) are the sufficient and necessary

conditions for an arbitrary strategy p to achieve NE. Now

we are ready to give a characterization of NEs.

Theorem 4. Let p be an arbitrary strategy profile for the

game with two sources. Let u1 and u2 be the number of users

in N1 and N2 who choose DP under p, respectively. We have

[1] when (a) u1 = n1, u2 < n2, or (b) u1 = 0, u2 > 0, p

cannot be a NE;

[2] when u1 ∈ [0, n1), u2 ∈ [0, n2), p is NE if and only if

u1 ≥ t1(u2)− 1 and u2 ≥ t2(u1)− 1;

[3] when u1 ∈ (0, n1), u2 = n2, p is NE if and only if

u1 ∈ [t1(u2)− 1, t1(u2)];
[4] when u1 = n1, u2 = n2, p is NE if and only if n1q̄ ≤

qµ/φ+ n2 + q̄.

Proof. Given p, let (V1, V2, V3, V4) be a partition of N as

defined above. We discuss the four cases.

Case 1. When (a) u1 = n1 and u2 < n2, V4 is nonempty. If

p is a NE, it must satisfy t2(u1)− 1 ≤ u2. However, because

q̄u2 ≤ n1, q̄u2 ≤ (n2 − 1)q̄ and qµ/φ > 0, it cannot hold.

When (b) u1 = 0 and u2 > 0, V2 is nonempty. If p is a NE,

it must satisfy Eq. (13), that is, u1 ≥ t1(u2) − 1. It follows

that 0 = 2q̄u1 ≥ qµ/φ + u2(1 + q̄2) + (n1 − 1)q̄ − n2q̄
2 ≥

qµ/φ + 1 + (n1 − 1)q̄ − (n2 − 1)q̄2 ≥ qµ/φ + 1 > 0, a

contradiction.

Case 2. When u1 ∈ [0, n1), u2 ∈ [0, n2), V2 and V4 are

nonempty. It is easy to see that p is NE if and only if u1 ≥
t1(u2)− 1 and u2 ≥ t2(u1)− 1 are satisfied simultaneously.

Case 3. When u2 = n2, u1 ∈ (0, n1), V1, V2, V3 are

nonempty, and V4 is empty. p is NE if and only if t1(u2)−1 ≤
u1 ≤ t1(u2) and u2 ≤ t2(u1) hold simultaneously. Moreover,

note that u2 ≤ t2(u1) is implied by u1 ≥ t1(u2) − 1.

Therefore, the sufficient and necessary condition for NE is

u1 ∈ [t1(u2)− 1, t1(u2)].

Case 4. When u1 = n1, u2 = n2, V1, V3 are nonempty,

and V2, V4 are empty. p is NE if and only if u1 ≤ t1(u2)
and u2 ≤ t2(u1). It is easy to see that, it is equivalent to

n1q̄ ≤ qµ/φ+ n2 + q̄.

Note that every situation of u1, u2 is included in the above

four cases. So we complete a characterization.

Case 4 can be intuitively explained by considering the

sidelink loss probability q over link (s1, s2). If q is sufficiently

high, no user would prefer the indirect path, and selecting the



direct path would be a NE for all users. Conversely, when there

is no transmission loss over sidelink (s1, s2) (i.e., q = 0),

every user would prefer to use the source with fewer users.

Therefore, the profile of all users selecting DP is a NE only

if the user distribution between the two sources is as even as

possible, with n1 ≤ n2 + 1. Based on Theorem 4, we give

some interesting conclusions.

Corollary 2. If a strategy profile with u1 = n1, u2 = n2 is

optimal, then it is also a NE.

Corollary 3. A strategy profile with u1 = 0, u2 = 0 is a

NE, if and only if (a) n1 = n2 + 1, q̄ = 1, or (b) n1 =
n2, n1(1− q̄2) ≤ q̄ − qµ

φ .

Note that u1 ≥ t1(u2)− 1 and u2 ≥ t2(u1)− 1 cannot hold

simultaneously when q > 2
n , and u1 ≥ t1(n2)−1 cannot hold

when n1q̄ < qµ/φ+ n2 + q̄.

Corollary 4. When n1q̄ < qµ/φ + n2 + q̄ and q > 2
n , the

unique NE is that all users choose DP, i.e., u1 = n1, u2 = n2.

We end this section by proving the existence of NE.

Theorem 5. For any game instance with two sources, there

exists a NE with u1 > 0 and u2 = n2.

Proof. By Theorem 4 (4), if n1q̄ ≤ qµ/φ + n2 + q̄, then the

strategy profile that all users choose DP (i.e., u1 = n1, u2 =
n2) is a NE. Otherwise, n1q̄ > qµ/φ + n2 + q̄. Let m̃

be an integer in interval [ qµ/φ+n2+n1q̄−q̄
2q̄ , qµ/φ+n2+n1 q̄+q̄

2q̄ ] =
[t1(n2)− 1, t1(n2)], which always admits at least one integer.

Note that n1 > qµ/φ+n2+n1q̄+q̄
2q̄ ≥ m̃ > 0. By Theorem 4, a

strategy profile with u1 = m̃ and u2 = n2 is a NE.

VI. NUMERICAL EXPERIMENTS

Through numerical simulations, we explore the impact of

traffic condition on network performance, i.e., the total traffic

rate and PoA. Recall that the traffic flow originating from each

user is Poisson with rate φ, the service rate of each direct link

is µ, and the loss probability over each side link is q. Assume

φ = 1 for normalization.

We first present the simulation results in two-source net-

works. In Fig. 2, the PoA and the total traffics are plotted

under different q, µ and n1, showing a PoA of less than 1.08.

Such a little gap between the optimal solution and the worst

NE suggests that the gain of centralized-decision making over

decentralized-decision making is trivial most of the time. As

shown in Fig. 2a, the total traffic decreases with the increase

of q, i.e., the increased loss rate on sidelink. On the other hand,

the PoA is first increasing from 1 at q = 0, implying that the

NE and optimal solution are the same with u1 = n2 + v1.

That is, we have the equal number of users on (s1, d) and

(s2, d) in terms of both IP and DP. With the increase of q, the

benefit of centralized-decision making is gradually unveiled.

However, when p reaches a certain value, the PoA goes down

to 1 quickly. An intuitive explanation is that, when q becomes

larger than the loss probability on DP, no users will choose IP

in NE. And this strategy is optimal as well.

In Fig. 2b, the traffic rates grow with the increase of µ
due to the increased probability of no congestion in (2). This

is, a high service rate help clear the collision and relieve

congestion on both DP and IP. The PoA curve indicates that

either in overloaded or less congested scenarios, there is little

improvement of centralized-decision making. In Fig. 2c, the

increased number of users leads to an increase of traffic rate in

spite of the rise in loss rate. What is more, PoA tends towards

1 for small and large n1. As the strategies in opt and NE are

much similar for users at source s1, i.e., DP in less biased

scenario and IP severely biased scenario.

In the multi-source network, while the optimal solution can

be easily computed by Algorithm 1, it is difficult to find all

NEs even given Theorem 2. Hence, we merely consider a small

value of m and n (i.e., m = 3). The service rate and traffic

arrival rate are fixed as µ = 1, φ = 1. Results are given in

Fig. 3, which shows similar results in Fig, 2c. It is obvious that

the growth of the total traffic slows down gradually, because

given the service rate, an increase of n1 aggravates the network

congestion. Second, the increase of loss rate on sidelink, leads

to the increase of loss rate on IP. As a result, more users choose

DP instead, which in turn worsens the network congestion.

Figure 4 plots the performances for a range of q. When

q = 0 and q = 1, the PoA is exactly 1. The PoA converges

to 1 when q goes to 1, because when the service rate is large

enough compared with arrival rate, there is a sufficiently small

congestion loss and all users like to choose DP.

VII. CONCLUSION

In this work, we give a theoretical analysis of a load

balancing game in cloud-enabled networks, in which the users

want to minimize the loss probability of their packets with suit-

able routing strategies. In the centralized analysis, an efficient

algorithm for maximizing the total traffic rate is proposed,

according to Lemma 1 and Lemma 2. In the decentralized

analysis, a characterization of Nash equilibrium is given, and

the PoA is investigated. Numerical experiments show that the

efficiency loss due to selfish behaviors is relatively small in

most cases.

There are many future directions that are worth exploring.

First, we only focus on pure strategies of players in this

work, and an immediate and natural question is how the users

act when mixed strategies are allowed. Second, it would be

interesting to investigate heterogeneous servers (source nodes)

where each si serves a different purpose or has a different

service rate µi. Moreover, while we only consider direct path

and one-hop indirect paths, a more general scenario where

players can choose multi-hop indirect paths to the destination

can be taken into consideration.
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