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Abstract— Misinformation has become a growing issue on
online social platforms (OSPs), especially during elections or
pandemics. To combat this, OSPs have implemented various
policies, such as tagging, to notify users about potentially
misleading information. However, these policies are often trans-
parent and therefore susceptible to being exploited by content
creators, who may not be willing to invest effort into producing
authentic content, causing the viral spread of misinformation.
Instead of mitigating the reach of existing misinformation, this
work focuses on a solution of prevention, aiming to stop the
spread of misinformation before it has a chance to gain mo-
mentum. We propose a Bayesian persuaded branching process
(BP2) to model the strategic interactions among the OSP, the
content creator, and the user. The misinformation spread on
OSP is modeled by a multi-type branching process, where users’
positive and negative comments influence the misinformation
spreading. Using a Lagrangian induced by Bayesian plausibility,
we characterize the OSP’s optimal policy under the perfect
Bayesian equilibrium. The convexity of the Lagrangian implies
that the OSP’s optimal policy is simply the fully informative
tagging policy: revealing the content’s accuracy to the user.
Such a tagging policy solicits the best effort from the content
creator in reducing misinformation, even though the OSP exerts
no direct control over the content creator. We corroborate our
findings using numerical simulations.

I. INTRODUCTION

Misinformation has become a growing concern on online
social platforms (OSP), as false information can spread
rapidly and have significant consequences [1]. For instance,
false stories about candidates were shared widely through
OSPs during the 2016 US presidential election; misinfor-
mation about the virus, mask-wearing policies, and vaccine
concerns spread through social networks during the COVID-
19 pandemic. To address this issue, OSPs have implemented
policies such as labeling, tagging, or notifying to alert
users to potentially false or misleading information [2], [3].
Previous studies have shown that these policies effectively
(to some extent) curb the spread of misinformation [4].

However, as mandated by related regulations or ethical
standards [5], [6], these policies are often transparent, mean-
ing that they are publicly announced to the content creators
(creators) and users. Aware of the OSP’s policies, creators
take advantage of this transparency by spending the least
possible effort to make their posts as trustworthy as possible
so as to pass the screening. On the other hand, OSPs are
constantly upgrading their policies to combat such tactics.
As the two parties fall into an endless arms race caused by
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Fig. 1: The Bayesian Persuaded Branching Process. The OSP
first commits to an information structure π, followed by
a private effort λ exerted by the content creator, influenc-
ing the distribution of true/fake posts ω. The users offer
positive/negative comments to the post after observing the
realized tag/label s, and then forward it to others.

the conflict of interests, it is natural to ask: Does the two
reach an equilibrium in the end? Does the transparency
requirement give content creators the upper hand?

To address these questions, we propose a persuasion game
that captures the interactions among the OSP, the content
creator, and the user as illustrated in Fig. 1. The OSP
designs a tagging policy whose realized tags indicate the
content accuracy of an arbitrary post. Such a policy does
not directly control any decisions or utilities but influences
others’ behaviors through information provision. Hence, this
tagging policy is referred to as the information structure
[7], and the OSP’s problem is termed information design.
Fully aware of this policy, the content creator exerts a private
effort in creating the content, with the assumption that the
more effort exerted, the more accurate the content is. Finally,
the user observes the tagging policy and the realized tags,
then decides on their views and comments. The OSP aims
to persuade the user not to facilitate the misinformation
circulation and incentivize the content creator to spend the
highest possible effort (i.e., not to create misinformation).

The proposed model differs from the seminal Bayesian
persuasion model [8] in that the user cannot directly observe
the prior distribution. As a result, the receiver must form
a conjecture about the content creator’s behavior to update
their beliefs. This conjecture must be consistent with the
agent’s equilibrium behavior, which leads to the concept of
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perfect Bayesian equilibrium (PBE) as the natural solution
concept for our game. In addition, the user’s action (e.g.,
comment and share) might influence the trends on the social
platform [9]. Hence, we use the branching process (BP)
to capture misinformation spreading [10], which affects the
content creator’s reputation and the OSP’s payoff.

This research demonstrates that a simple information
structure can be a powerful tool in combatting misinforma-
tion spread. By adopting a fully informative policy, such as
using tagging to indicate content accuracy, content creators
are incentivized to produce trustworthy material. Although
the OSP may not have direct control over content creators, it
can nudge user perceptions through the information structure.
The collective behaviors of users, under these perceptions,
determine the content creators’ reputations, effectively mak-
ing users the OSP’s proxy in terms of incentive provision.
Our contributions can be summarized as follows.

• We propose a three-player persuasion game to capture
the interactions induced by the conflict of interests
between the OSP, the content creator, and the user,
where the multi-type branching process is utilized to
model the spread of misinformation content;

• We develop a Lagrangian approach to identify players’
strategies under perfect Bayesian equilibrium, which is
known to be challenging to solve [11]–[13]. Through
Bayesian plausibility, we transform the equilibrium
problem into the posterior belief space and develop an
equality-constrained nonlinear programming associated
with the equilibria, facilitating the study of the optimal
information structure.

Related works Existing research on misinformation typ-
ically focuses on a finite set of players connected by a
graph, with the reliability of articles, news, and content
drawn from a known distribution [14], [15]. For instance,
[14] has proposed a model for online sharing behavior of
fully Bayesian users under potential misinformation and
studies the impact of network structure, demonstrating that
social media platforms that aim to maximize engagement
might help propagate misinformation. [15] has investigated
how the platform should design a signaling mechanism to
influence users’ engagement for maximizing engagement or
minimizing misinformation purposes.

In contrast, our approach considers the population-wide ef-
fects of misinformation circulation. Specifically, we analyze
the proportion of individuals receiving negative comments
among all receivers using branching processes, which is
shown to match well to statistical characteristics of infor-
mation cascades [10], and has been utilized in studying the
determinants behind misinformation spreading [16]. Rather
than analyzing misinformation circulation [17] through
branching processes, we aim to prevent it from being created
in the first place. To study this preemptive solution, we
introduce a third player, i.e., the content creator, into the
Bayesian persuasion framework, where the OSP incentivizes
the content creator to produce accurate content. The ultimate
goal is to curb misinformation spread by promoting the

creation of truthful and reliable content.

II. ONLINE MISINFORMATION CIRCULATION:
MODELING AND INFORMATION DESIGN

This section introduces a three-player persuasion game
that models the interactions among the online social plat-
form, the content creators, and the users. Naturally, misinfor-
mation circulation on OSP involves a population of content
creators and users. To simplify the exposition, we consider a
representative creator and a population of users with identical
utilities. We pick a representative user, referred to as “the
user,” when discussing strategic reasoning in the persuasion
game, as the population all share the same interest. In
contrast, we consider “users” when treating population-level
misinformation dissemination using branching processes.

A. The Bayesian Persuaded Branching Processes Model

In the persuasion game, the OSP designs a tagging policy
about a state variable that reflects the accuracy of the content
of the post. Fully aware of this tagging policy, the content
creator then exerts a private effort, which is unobservable
to both the OSP and the user, to determine the distribution
of the accuracy of the content. Less effort leads to more
misinformation prevailing over social media. Finally, the user
takes action by commenting on the post and sharing after
knowing the tagging policy and observing the tag realiza-
tion. Note that the state variable remains hidden from the
user throughout the game, as individuals lack the necessary
resources to verify the authenticity.

The action taken by the user results in a trend (negative
or positive about the post) in social media. To understand
this notion, we consider a multi-type branching process (in-
troduced later in Section III-A). Denote by X(t) the number
of users who have just received the post with a negative
comment at time t (x-type user). Similarly, Y (t) denotes
the number of users who have received a positive comment
(y-type user). After reading the received post, users forward
it to some of their followers/friends with their own (either
negative or positive) comments, producing “offsprings” (the
new x/y-type users). The trend is measured through the
proportion of negative comments over all the comments:
η(t) = X(t)/(X(t) + Y (t)).

For the rest of the paper, we refer to the OSP, the content
creator, and the user as the sender, the agent, and the receiver,
respectively, following the custom in persuasion literature
[8]. To summarize the discussion above, the persuasion game
is given by the tuple ⟨Ω,Σ,Λ, p,A, η∗, uS , uA, uR, ⟩, where

i) Ω is the state space endowed with Borel algebra, and
ω ∈ Ω reflects how accurate the content of the post is;

ii) Σ is the signal space of the sender (Borel algebra), and
s ∈ Σ denotes the tag associated with the post;

iii) Λ is the action set of the agent, and each λ ∈ Λ rep-
resents how much effort the agent exerts in producing
trustworthy content;

iv) p : Λ → ∆(Ω) is the control function of the agent,
whose effort λ is turned into the state distribution p(·|λ)
over the accuracy of the content Ω;



v) A is the action set of the receiver, which is a continuum
[0, 1], and a ∈ A denotes the probability of offering a
positive comment;

vi) η∗ is the proportion of negative comment η(t) as t→ ∞
obtained from the stabilized branching processes, which
is related to the reputation of the agent and the impact
of misinformation spreading;

vii) uS : Ω×A → R, uA : A× Λ → R, uR : Ω×A → R
are utility functions of the sender, the agent, and the
receiver, respectively. The definitions of these utilities
are as follows.
a) The Receiver’s Utility: To minimize the mismatch

between the comment and the truth, the receiver’s utility is
uR(ω, a) = −(a − ω)2. Suppose that the receiver believes
that the state variable is subject to µ ∈ ∆(Ω), its best
response under this belief is

a∗(µ) = argmax
a∈[0,1]

Eω∼µ − (a− ω)2 = Eµ[ω]. (1)

b) The Agent’s Utility: The agent is concerned with the
effort and its reputation measured through η∗ (the proportion
of negative comments on its post). Denote by c(λ) the cost
induced by the effort λ; and by rA(a) = 1 − η∗(a) the
agent’s reputation when the receiver responds with a. The
agent’s utility is given by

uA(a, λ) = rA(a)− c(λ), (2)

c) The Sender’s Utility: The sender’s goal is to mitigate
the influence of misinformation: if the content is misleading,
the sender prefers fewer positive comments. Define

uS(ω, a) = −(1− ω)(1− η∗(a)) + ω(1− η∗(a)). (3)

Given that 1 − η∗(a) represents the proportion of positive
comments and 1 − ω indicates the level of inaccuracy of
the content, the former term suggests that the sender’s
utility decreases when inaccurate content receives positive
comments. Similarly, the latter term implies that the sender’
aims to promote accurate content.

The game unfolds in three stages. 1) In the first stage, the
sender designs and commits to a tagging policy (also termed
signaling) π : Ω → ∆(Σ), specifying a conditional distribu-
tion π(·|ω) over the possible tags when the authenticity of a
post ω is revealed. 2) Second, observing the tagging policy π,
the agent chooses an effort λ that leads to a distribution over
the accuracy of the post p(·|λ) ∈ ∆(Ω). 3) Finally, when
encountering an arbitrary post ω from p(·|λ), the receiver
receives a tag from the tagging policy and subsequently
determines their view. Note that the tagging policy π is
transparent, whereas the agent’s λ is hidden from the user.

B. Perfect Bayesian Equilibrium

It is worth noting that what distinguishes the introduced
model from the classical Bayesian persuasion [8] is that the
receiver now does not explicitly acquire the prior distribution
p(λ), as λ is unobservable. Hence, when the receiver acts,
they must resort to a conjecture on the agent’s action to
update the posterior beliefs µ. This conjecture must be

consistent with the agent’s equilibrium choice, which nat-
urally leads to the perfect Bayesian equilibrium (PBE). The
formal definition and associated details are presented in the
following.

A Perfect Bayesian Equilibrium (PBE) of the proposed
persuasion game consists of a tagging policy π, the agent’s
effort λ, and a belief system {µs, s ∈ Σ}1, which satisfies
the following properties:

i) given a tagging policy π (sender) and a belief system
{µs, s ∈ Σ} (receiver), the agent’s effort λ maximizes
the expected utility, i.e.,

λ = argmax
∑
ω

p(w|λ)[
∑
s

π(s|ω)uA(µs, λ)] (4)

uA(µs, λ) := rA(a
∗(µs), λ)

ii) the receiver’s belief is consistent with the agent’s effort
λ and the tagging policy π, i.e.,

µs =
π(s|·)⊙ p(·|λ)
⟨π(s|·), p(·|λ)⟩

, (5)

π(s|·) = [π(s|ω1), . . . , π(s|ωN )] ∈ R|Ω| (6)

p(·|λ) = [p(ω1|λ), . . . , p(ωN |λ)] ∈ R|Ω| (7)

where ⊙ denotes the point-wise product.
iii) the tagging policy maximizes the sender’s expected

utility, i.e.,

π ∈ argmax
∑
ω

p(ω|λ)
∑
s

π(s|ω)uS(a∗(µs), ω).

(8)

C. Binary-State State Model

For simplicity, we focus on a binary case study. Under
such a circumstance, the state space only consists of two
elements Ω = {0, 1} with 0 indicating the content contains
misinformation while 1 represents the content is accurate.
Hence, the signal space is also assumed to be binary: Σ =
{0, 1}, where 0 and 1 denote the “fake” and “real” tags, re-
spectively2. Since the state space is binary, the corresponding
prior distribution of the accuracy of the content lives in the
simplex spanned by p0 = [1, 0] and p1 = [0, 1]. Hence,
we assume that the effort spent by the agent λ is a scalar
from [0, 1], and the resulting prior distribution is the convex
combination of p0 and p1: p(λ) = (1− λ)p0 + λp1.

As the state space is finite, the players’ strategies are
finite-dimensional vectors, and hence, we can “vectorize”
our analysis so that convex analysis tools can be utilized.
We impose the following customary assumption [8], [18] to
ensure that the agent’s equilibrium problem is well-behaved.

Assumption 1: For the agent’s utility given by (2), we
assume that rA(·) is non-negative and bounded, and c(·) ∈
C2 is strictly increasing and convex. In addition, c(0) =
∇c(0) = 0, and ∇c(1) > 1.

1A belief system is a collection of posterior beliefs µs, and µs denotes
the belief when the receiver receives signal s.

2In general, a sufficient signal space needs to be of (|Ω|+1)-cardinality
[11]. Yet, as we later show in Proposition 8, the binary signal space suffices.



Let vA(µ) = rA(a
∗(µ)) denote the agent’s payoff un-

der the receiver’s belief µ. Moreover, let v̄A(ω|π) :=∑
s π(s|ω)vA(µs) denote the agent’s expected payoff con-

ditional on the generated state ω under the tagging
policy π, and let v⃗A(π) be the corresponding vec-
tor: v⃗A(π) = [v̄A(0|π), v̄A(1|π)]. Similarly, we have
the following notations for the sender. Given the re-
ceiver’s belief µ, the sender’s expected payoff is de-
noted by vS(µ) := Eω∼µ[uS(a∗(µ), ω)]. Then, let
v̄S(ω|π) =

∑
s π(s|ω)vS(µs), and therefore v⃗S(π) :=

[v̄S(0|π), v̄S(1|π)].
To characterize the PBE in the proposed model, we use

backward induction, i.e., first analyzing the optimal actions
of the receiver, then the agent, and finally the sender. To
begin with, the receiver’s best response (comment) under
the belief µs is given by (1). The best-response a∗(µs) then
affects the spread of misinformation in social media through
branching processes presented in Section III-A.

III. CONTENT SPREADING THROUGH BRANCHING
PROCESS

This section treats the spread of misinformation through
branching processes. Specifically, we focus on the evolution
of the trend η(t), the proportion of negative comments, as
the receiver forwards the post to others. One key finding is
that the evolutionary dynamics of η(t) under the branching
process stabilizes in the limit, and the receiver’s belief
completely determines the stationary point η∗.

A. Multi-type Branching Processes

Suppose that the number of the receiver’s friend N
is independent and identically distributed with expectation
E[N ] = mN and is finite. The receiver shares the post with
Bin(N, q) friends, where q ∈ [0, 1] represents the impact or
attractiveness of the post (assumed to be constant). Hence,
the number of “offspring” (friends receiving the sharing)
of the receiver, denoted by ξ, is subject to a binomial
distribution: ξ ∼ Bin(N, q) with E[ξ] = mN · q := m.

Denote by τn the time when nth individual “wakes up”,
meaning that such individual becomes active on an OSP and
is ready to share the post. Let Xn = X(τ+n ), Yn = Y (τ+n ),
Zn = Xn+Yn, and ξn

i.i.d.∼ Bin(N, q). If the x-type receiver
(who receives negative comments) wakes up, then

Xn+1 = Xn − 1 + 1xξn,
Yn+1 = Yn + 1yξn,

(9)

and if the y-type receiver wakes up,

Xn+1 = Xn + 1xξn,
Yn+1 = Yn − 1 + 1yξn.

(10)

where the indicator function 1x means that the receiver
makes a negative comment while 1y indicates the opposite
(the positive comment). The total population is updated by
Zn+1 = Zn − 1 + ξn.

The probability of a receiver who receives the post with a
negative comment also commenting negatively can be char-
acterized by a negative-to-negative factor αxx(s) depending

on the tag s. Likewise, we denote by a positive-to-negative
factor αyx(s) the probability of a receiver who receives a
positive comment commenting negatively. As the receiver’s
comment only depends on the belief µs [see the best response
in (1)], αxx(s) = αyx(s) = 1−a∗(µs) = 1−Eµs

[ω]. Simply
put, the higher the Eµs [w], the more confident the receiver
is about the content accuracy, and hence, the less likely the
receiver is to give a negative comment.

B. Stochastic Approximation Analysis

To analyze the limit behavior of the process, we apply
stochastic approximation [19] and consider the continuous-
time dynamics of the multiple-type branching. Since there
are only two types in the branching process, it suffices to
consider the dynamics of the total population and that of
the x-type. Toward this end, let Z̄n = Zn

n , X̄n = Xn

n , and
γn = 1

n+1 , and then we aggregate the branching equations
in (9) and (10), leading to the following:

Z̄n+1 = Z̄n + γn
(
ξn − 1− Z̄n

)
1{Z̄n>0},

X̄n+1 = X̄n + γn
[
1{x−wakes}

(
1xξn − 1

)
+ 1{y−wakes}1xξn − X̄n

]
1{Z̄n>0},

(11)

where E[1{x−wakes}] = X̄n

Z̄n
, E[1{y−wakes}] = 1 − X̄n

Z̄n

indicate the probabilities of an individual of x-type and y-
type wakes up. Let X̄0 = X0, Z̄0 = X0 + Y0 be the
initial conditions. As the discrete-time trajectory of (11)
is an asymptotic pseudo-trajectory of the continuous-time
system in (12) [19], the two systems share the same limiting
behavior. Hence, we arrive at Proposition 1.

ż = hz(z, x) = (m− 1− z)1{z>0},

ẋ = hx(z, x) =
[
η
(
αxx(s) ·m− 1

)
+ (1− η)αyx(s) ·m− x

]
1{z>0}, η =

x

z

(12)

Proposition 1: For E[N2] < ∞, the {Z̄n}, {X̄n} se-
quences converge to Z̄∗, X̄∗ almost surely, where Z̄∗ =
m − 1 and X̄∗ = η∗(s)Z̄∗ with η∗(s) =

αyx(s)
1−αxx(s)+αyx(s)

are solutions to (12).
The proof for the above proposition follows [17]. Note

that η∗(s) and η∗(a) can be used interchangeably because
the receiver decides an action a based on the posterior belief
µs with respect to the tag s. Since the receiver’s comment
only depends on the belief, we can characterize the limiting
trend under tag s by the following statement.

Corollary 1: As αyx(s) = αxx(s) = 1 − Eµs [ω], then
the proportion of negative comments η∗(s) = η∗(a(µs)) =
αyx(s) = 1− Eµs

[ω].

C. Optimality Conditions under Stable Branching

Given the receiver’s best response a∗(µs) and the sta-
bilized branching process, one can simplify the agent’s
problem, as the trend η∗(s) admits a simple formula. Since
η∗(a) = 1−Eµ[ω] from Corollary 1, we notice that vA(µ) =
rA(a

∗(µ)) = 1 − η∗(a) = Eµ[ω] = µ(1), which is linear
in µ(1). In the binary-state case, the belief µs is uniquely
determined by its second entry µ(1). Hence, the following



discussion will treat µs as a scalar. The same treatment also
applies to the prior p. The agent’s optimality conditions under
the signaling in (4) can be rewritten as

max
λ∈[0,1]

⟨p(λ), v⃗A(π)⟩ − c(λ).

Due to the linearity of the first term and the convexity of the
second term, the optimality follows the first-order condition:

⟨p1 − p0, v⃗A(π)⟩ = ∇c(λ), (13)

As later shown in the ensuing section, the agent’s marginal
cost ∇c plays a significant part in the feasibility of the
sender’s information structures.

Since η∗(a) = 1 − Eµ[ω], the sender’s expected utility
under the belief µ is vS(µ) = −(1− Eµ[ω])Eµ[ω] + E2

µ[ω].
In the binary-state case, vS(µ) = µ(µ− 1)+µ2. Hence, the
sender’s problem is given by

max
π,λ

⟨p(λ), v⃗S(π)⟩

s.t. ⟨p1 − p0, v⃗A(π)⟩ = ∇c(λ)
consistent belief system in (5)

(14)

Note that the agent’s decision variable λ also appears in the
maximization, as we assume that the tie breaks in favor
of the sender should there exists multiple effort level λ
satisfying the first constraint in (14). The consistency require-
ment in (5) involves division operation, leading to a highly
nonlinear programming problem. To simplify our analysis,
the proposition in the following section IV-A transforms
the sender’s problem into the posterior belief space using
Bayesian Plausibility.

IV. PERFECT BAYESIAN EQUILIBRIUM
CHARACTERIZATION: A LAGRANGIAN APPROACH

A. Bayesian Plausibility

Bayesian plausibility is a sanity check for any infor-
mation structure: all possible posterior beliefs induced by
the realized signals should be consistent with the prior
under the information structure. Formally, the proposition
below reformulates the sender’s problem where the decision
variable is a distribution over posteriors τ ∈ ∆(∆(Ω)).

Proposition 2 (Bayesian Plausibility): Given an effort λ,
there exists a signaling mechanism (tagging policy) π sat-
isfying the conditions in (14) if and only if there exists a
distribution over posteriors τ ∈ ∆(∆(Ω)) such that

Eτ [µ] = p(λ),Eτ [Eµ[∇ log p(λ)]vA(µ)] = ∇c(λ).
Proof: We first prove the equivalence between the

signaling mechanism π and the distribution τ . Without loss
of generality, assume that for each signal s ∈ Σ, the receiver
has a distinct posterior belief µs. Starting from π, and fixing
λ, the probability of generating µs is

τ(µs) =
∑
ω

π(s|ω)p(ω;λ) = ⟨π(s|·), p(λ)⟩.

Following the above equation, one can compute the distribu-
tion of posteriors using the signaling. Conversely, recall that

the Bayes rule gives

µs =
π(s|·)⊙ p(λ)

⟨π(s|·), p(λ)⟩
=
π(s|·)⊙ p(λ)

τ(µs)
,

implying that π(s|·) = τ(µs)(µs ⊘ p(λ)), where ⊘ denotes
the point-wise division. The equation above indicates that
one can recover the signaling using the distribution of
posteriors τ . Finally, note that

π(s|·) = τ(µs)(µs ⊘ p(λ)) ⇔
∑
s

π(s|·)p(λ) =
∑
s

τ(µs)µs,

which proves the first equality in the proposition. The poste-
rior distribution τ associated with π is called the Bayesian-
plausible distribution in the literature [8].

To recover the agent’s optimality condition (also called
incentive-compatibility constraint), consider the constraint:

⟨p1 − p0, v⃗A(π)⟩ = ∇c(λ).

Plugging the above equation into the left-hand side gives

⟨p1 − p0, v⃗A(π)⟩

=
∑
ω

(∑
s

π(s|ω)vA(µs)

)
(p1(ω)− p0(ω))

=
∑
ω

(∑
s

τ(µs)
µs(ω)

π(ω;λ)
vA(µs)

)
(p1(ω)− p0(ω))

=
∑
s

τ(µs)
∑
ω

(
p1(ω)− p0(ω)

p(ω;λ)
µs(ω)

)
vA(µs)

=
∑
s

τ(µs)
∑
ω

(
∇λp(ω;λ)

p(ω;λ)
µs(ω)

)
vA(µs)

= Eτ [Eµ[∇λ log p(ω;λ)]vA(µ)]

Let f(µ) = Eµ[∇λ log p(ω;λ)]vA(µ) − ∇c(λ), then the
sender’s problem can be rewritten as

max
τ∈∆(∆(Ω)),λ

Eτ [vS(µ)], (15)

s.t. Eτ [µ] = p(λ), (16)
Eτ [f(µ)] = 0, (17)

where (16), referred to as the Bayesian plausibility constraint
(BP), corresponds to the consistency in (5); (17), referred to
as the incentive-compatibility constraint (IC), rephrases the
agent’s optimality condition in (13).

B. The Lagrangian Characterization

With Bayesian plausibility, the sender’s problem becomes
equality-constrained nonlinear programming, which naturally
prompts one to consider the Lagrange multiplier method. In
what follows, we present a PBE characterization through the
lens of Lagrangian. The discussion begins with the feasible
domain of the maximization in (15).

Proposition 3 (Implementable Effort, Feasible Condition):
In the binary-state model, let λ̄ be the value such that
∇c(λ) = p1 − p0. Then, λ is feasible if and only if λ ≤ λ̄.



Proof: We begin with the necessity. In the binary-state
model, the incentive compatibility (IC) constraint reduces to

(p1 − p0)(v̄A(1)− v̄A(0)) = ∇c(λ),

where v̄A(ω|π) =
∑
s π(s|ω)vA(µs). Note that vA(µ) =

µ ∈ [0, 1], implying that v̄A never exceeds 1, and so is the
difference v̄A(1)− v̄A(0). Hence, p1 − p0 ≥ ∇c(λ). As the
cost function c is strictly increasing, ∇c(λ) > ∇c(λ̄) =
p1 − p0, for λ > λ̄, which means that λ is not IC.

For sufficiency, consider λ ∈ [0, λ̄], and p(λ) = (1−λ, λ).
Let ∆p = p1 − p0, we construct a Bayesian-plausible τ as
follows and refer it as a “hybrid tagging policy”. supp(τ) =
{0, λ, 1} (these scalars denote the second entries of beliefs),
and

τ(0) =
(1− λ)∇c(λ)

∆p
, τ(λ) = 1− ∇c(λ)

∆p
, τ(1) =

λ∇c(λ)
∆p

.

It is straightforward to verify that this posterior distribution
satisfies both constraints in the sender’s problem. This con-
struction implies that for any λ ∈ [0, λ̄], one can find a
feasible τ , and hence, λ is also implementable.

Remark 1: The maximum effort the receiver is willing
to exert λ̄ in uncovering the truth solely depends on their
marginal cost ∇c(λ̄), regardless of their reputation. The
higher the marginal cost ∇c(λ) is, the smaller the upper
bound λ̄ is, leading to a modest feasible set, which means
that the agent cannot afford to create authentic content in
this case, regardless of their reputation.

The term “hybrid” of the constructed τ in the proof above
is due to the observation that τ is a convex combination
of two representative tagging policies. Consider τ and τ :
supp(τ) = {0, 1}, τ(0) = 1−λ, and τ = λ; supp(τ) = {λ}
and τ(λ) = 1. τ is the fully informative tagging, where
the receiver, upon receiving the tag, is certain about the
accuracy: the post is either fake 0 or true 1. In contrast, τ is
the opposite: the uninformative tagging. The corresponding
belief system is degenerate, including only one belief that is
exactly the prior distribution. This degeneracy indicates that
the receiver does not acquire any helpful information from
the tag to update the belief on the content accuracy.

From the above construction, we arrive at the following
proposition, stating that the sender strictly prefers and incen-
tivizes the agent to exert a positive effort level.

Proposition 4 (Positive Effort Level): λ = 0 is imple-
mentable under the uninformative signaling: π(·|ω) =
unif(Σ) for any ω ∈ Ω. This uninformative signaling is
strictly dominated by the hybrid signaling with λ ∈ (0, λ̄).

Proof: From Assumption 1, λ = 0 implies ∇c(λ) = 0,
and further implies that

(p1 − p0)

(∑
s

π(s|1)vA(µs)−
∑
s

π(s|0)vA(µs)

)
= 0

The uninformative signaling naturally satisfies the above
equation; hence, λ = 0 is implementable. This uninformative
signaling (λ = 0) induces a degenerate posterior distribu-
tion: supp(τ) = {p0}, and the sender’s expected utility is
0. In contrast, consider the signaling in the proof above,

supp(τ) = {0, λ, 1}, λ ∈ (0, λ̄), with τ(0), τ(λ), and τ(1) as
in Proposition 3. Note that vS(1) = 1, the sender’s expected
utility is Eτ [vS(µ)] = λ > 0.

Corollary 2: As long as the set (0, λ̄) is not empty, the
sender can always create a tagging policy that incentivizes
the agent to invest positive effort in discovering the truth,
regardless of the value of the cost function.

The above discussion addresses the agent’s feasibility
condition. In what follows, we shift the focus to the sender’s
problem, given an implementable effort λ. Denote by τλ

and V λ the optimal solution to the sender’s problem (15)
(fixing λ), and the corresponding objective value, respec-
tively. Consider the following set Fλ ⊂ R|Ω|+2: Fλ =
{(µ, f(µ), vS(µ)) : µ ∈ ∆(Ω)}. By construction, each entry
of any element in Fλ corresponds to the integrand in the
three objects in the sender’s problem (15). These integrands
are referred to as ex-post values. Denote by co(Fλ) the
convex hull of Fλ, including all the ex-ante values that can
be generated using a probability τ ∈ ∆(∆(Ω)). A standard
argument from constrained programming gives the following.

Proposition 5: Given an implementable effort λ, the max-
imal utility the sender can attain is V λ = max{v :
(p(λ), 0, v) ∈ co(Fλ)}.

Proof: It suffices to note that µ = p(λ) naturally
satisfies (16), and f(µ) = 0 induces (17). Therefore, any
point (µ, f(µ), v) ∈ {(p(λ), 0, v) ∈ co(Fλ)} is feasible to
(15). Therefore, V λ, as a convex combination of these points,
is the maximal value.

The above proposition gives a geometric intuition where
the solution should be: (p(λ), 0, V λ)) lies on the boundary
of the convex set co(Fλ). Hence, there exists a supporting
hyperplane at (p(λ), 0, V λ)), leading to the following.

Proposition 6 (Lagrangian Characterization): Given an
implementable λ, a distribution of posteriors τλ is a solution
to the sender’s problem if and only if it satisfies (16), (17),
and there exists ψ ∈ R, ρ ∈ R, and φ ∈ R|Ω| such that

L(µ, ψ, φ) = vS(µ)+ψf(µ)−⟨φ, µ⟩ ≤ ρ, for all µ ∈ ∆(Ω),

where the equality holds for all µ such that τλ(µ) > 0.
Proof: We begin with the necessity. As (p(λ), 0, V λ)

is a boundary point of a closed convex set, the separating
hyperplane theorem tells that there exists a normal vector
d = (−φ,ψ, 1) ∈ R|Ω|+2 and a scalar ρ such that ⟨d, y⟩ ≤
ρ for all y ∈ co(Fλ), where the equality holds for y =
(p(λ), 0, V λ). Rearranging terms in this inner product, we
obtain that L(µ, ψ, φ) ≤ ρ.

It remains to show that L(µ, ψ, φ) = ρ for all µ ∈ {µ :
τλ(µ) > 0}. Suppose, for the sake of contradiction, that
there exists some µ ∈ supp(τλ) such that L(µ, ψ, φ) < ρ.
Note that L(µ, ψ, φ) ≤ ρ, then V λ = Eτλ [L(µ, ψ, φ)] < ρ.
Rearranging terms, we obtain ⟨d, (p(λ), 0, V λ)⟩ < ρ, which
contradicts the fact that the supporting hyperplane passes
through the point (p(λ), 0, V λ).

For the sufficiency part, if vS(µ) + ψf(µ) ≤ ρ + ⟨φ, µ⟩
for all µ ∈ ∆(Ω), then for any τ ,

Eτ [vS(µ)] + ψEτ [f(µ)] ≤ ρ+ Eτ [⟨φ, µ⟩].



Since τλ satisfies (16) and (17), the above reduces to
Eτλ [vS(µ)] ≤ ρ+ ⟨φ, p(λ)⟩. If τλ is such that L(µ, ψ, φ) =
ρ, for all µ ∈ supp(τλ), then Eτλ [vS(µ)] = ρ + ⟨φ, p(λ)⟩,
meaning that the expected utility Eτ [vS(µ)] reaches the
upper bound at τλ.

Fixing λ ∈ (0, λ̄), consider the Lagrangian function
L introduced in the above. Its second-order derivative is
given by ∂2L

∂µ2 = ∇2vS(µ) +
2ψ

λ(1−λ) . From the definition,

∇2vS(µ) > 0, and hence, the sign of ∂2L
∂µ2 depends on ψ, for

which we have the following characterization.
Proposition 7: For any λ ∈ (0, λ̄], the Lagrange multiplier

ψ associated with the solution τλ is non-positive.
Proof: Consider a relaxation to the original problem

without IC constraint (17):

Ṽ λ = max
τ∈∆(∆(Ω))

Eτ [vS(µ)] subject to Eτ [µ] = p(λ), (18)

which is exactly the standard Bayesian persuasion [8].
Denote by τ̃λ the solution to the relaxed problem when

fixing λ. Applying the Lagrangian characterization developed
in Proposition 6, there exists ρ̃ and φ̃ such that vS(µ) ≤
ρ̃+ φ̃µ, for all µ ∈ [0, 1], with equality if τ̃(µ) > 0. Define
g(λ) = Eτ̃ [f(µ)]. Let τλ be the solution to the original
problem. We aim to prove ψg(λ) ≤ 0 in the following. The
definition of two Lagrangians give

ρ+ φλ = Eτλ [vS(µ)] ≤ Eτ̃λ [vS(µ)] = ρ̃+ φ̃λ. (19)

Finally, taking the expectation of the original Lagrangian in
Proposition 6 with respect to τ̃ , we obtain

Eτ̃ [vS(µ)]+ψEτ̃ [f(µ)] ≤ ρ+φλ⇔ ρ̃+φ̃λ+ψg(λ) ≤ ρ+φλ
(20)

Combining (20) and (19) leads to ψg(λ) ≤ 0.
The rest of the proof establishes that g(λ) ≥ 0 for λ ∈

(0, λ̄]. Note that the sender’s expected utility vS(µ) = 2µ2−
µ is convex in µ. The standard persuasion analysis gives
that the unique optimal signaling is the fully informative
one [8, Section 3], implying that supp(τ̃) = {0, 1}, and
τ̃(0) = 1 − λ, τ̃(1) = λ. Direct calculation yields f(µ) =
µ(µ−λ)
λ(1−λ) −∇c(λ). Hence, g(λ) = Eτ̃ [f(µ)] = 1−∇c(λ) ≥ 0,
for λ ∈ (0, λ̄], implying that ψ ≤ 0.

Even though it seems that ∂2L
∂µ2 is not necessarily non-

negative, the following proposition asserts that the La-
grangian must be a convex function of µ, which leads
to the main conclusion of this work: the sender’s optimal
signaling is the fully informative one, under which the agent
is incentivized not to create misinformation to the best effort.

Proposition 8: The Lagrangian function is convex with
respect to µ, and hence, the optimal signaling is fully
informative and implements λ̄.

Proof: Suppose, for the sake of contradiction, that
the multiplier ψ associated with the solution is such that
∂2L
∂µ2 < 0. This contradiction indicates the convexity of
the Lagrangian. Notice that ∇2vS(µ) = 4, and that ∂2L

∂µ2

is a constant, then one can see that the Lagrangian func-
tion is strictly concave everywhere. Therefore, the sender’s

optimal signaling is degenerate (only one belief) and is
strictly dominated (see Proposition 4), which contradicts
the optimality. Consequently, the standard argument from
Bayesian persuasion literature [8, Section 3] also applies to
the proposed model, leading to the statement above.

Corollary 3: A viable “prevent than cure” solution to
misinformation is simply the most straightforward tagging
policy: revealing the truth to the user.

Lastly, we discuss the impact of the cost function c(λ) on
the agent’s reputation 1−η∗, from which we further elaborate
on how the sender provides the agent incentive to spend
effort. Assume the cost function c(λ) takes the quadratic
form: c(λ) = kλ2, and k > 1

2 so that ∇c(1) > 1.
Proposition 9: Under the hybrid tagging, the equilibrium

trend Eτ [η∗(µ)] admits the following characterizations, de-
pending on the Hessian parameter k: 1) for k ≥ 1, λ̄ ≤ 1/2.
Eτ [η∗(µ)] = 1−λ ≥ 1/2, for λ ∈ (0, λ̄]; 2) for 1/2 < k < 1,
λ̄ > 1/2, Eτ [η∗(µ)] = 1− λ < 1/2, for λ ∈ (1/2, λ̄).

Remark 2 (Indirect Incentive Provision): k = 1, λ̄ = 1/2
is a turning point of the equilibrium trend. When it is costly
for the agent to produce trustworthy content (k ≥ 1), the
average comment turns against themselves. The best the
agent can hope is to exert the highest effort λ̄ and to keep
the user in the neutral position (E[η∗(µ)] = 1 − λ̄ = 1/2).
In contrast, the agent can earn a reputation for being a
reliable information source when λ̄ > 1/2, as the equilibrium
trend under the maximum effort is in favor of themselves
E[η∗] = 1− λ̄ < 1/2. To sum up, the agent is always willing
to exert the highest effort, whatever the cost is; and the sender
achieves such an incentive provision through the receiver’s
action.

V. NUMERICAL STUDIES

This section studies the proposed Bayesian persuaded
branching processes model in three different tagging poli-
cies: fully informative, uninformative, and hybrid informative
tagging policy. For each experiment, the branching setup is
given by X0 = Y0 = 50,mN = 50, q = 0.5, and τn = τ1500.
The numerical results in this section are the average of 1000
independent simulations.

a) Fully Informative Tagging Policy: In this scenario,
the policy for the OSP is to tag the post with its true state,
i.e., s = ω. For the authentic post, ω = 1, s = 1,Eµs [ω] = 1,
and thus αyx = αxx = 1 − Eµs

[ω] = 0. The result for the
proportion of negative comments η∗ is shown in Figure 2a.
On the other hand, for misinformation post, ω = 0, s =
0,Eµs [ω] = 0 and thus αyx = αxx = 1 − Eµs [ω] = 1.
Under this tagging policy, each tag carries no ambiguity;
consequently, the receiver is certain about the content’s
accuracy and comment on the post accordingly. As a result,
the fully informative tagging leads to a positive trend for
the authentic post [see Figure 2a], while a negative one for
misinformation [see Figure 2b]. The shaded yellow region in
the figure indicates the standard deviation of η∗, while the
blue line represents the mean.



(a) The authentic post yields a positive trend
under the fully informative policy: η = 0
when ω = 1.

(b) The post with misinformation yields
a negative trend under the Fully informa-
tive/uninformative policy: η = 1 when ω =
0.

(c) Trends under hybrid policies with dif-
ferent k (former in the label) in the cost
function and effort λ (latter in the label).

Fig. 2: Simulations of online misinformation circulation under three representative tagging policies.

b) Uninformative Tagging Policy: Under the uninfor-
mative tagging, the OSP tags the post randomly, i.e., choos-
ing s = 0 and s = 1 with probability 1

2 regardless of ω.
According to Proposition 4, λ = 0 and Eµs

[ω] = 0, which
leads to αyx = αxx = 1 − Eµs

[ω] = 1 and η∗ = 1. The
trend evolution is the same as in Figure 2b.

c) Hybrid Tagging Policy: We finally consider the
hybrid tagging policy in Proposition 3. The cost function
is of the quadratic form as in Proposition 9. For k = 1, the
maximum feasible effort is λ̄ = 1

2 , under which the trend
is neural: η∗ = 0.5. For any other λ ∈ (0, λ̄), however, the
resulting η∗ is strictly greater than half, as demonstrated in
the upper side of Figure 2c. The numerical results coincide
with the analysis in Proposition 9, showing that the agent
needs to exert the best effort to investigate the truth so as
not to hurt their reputation. For 1

2 < k < 1, we take k = 3
5

as an example. In this case, the maximum effort is λ̄ = 5
6 ,

and any implementable λ > 1
2 leads to positive trends as

shown in the lower part of Figure 2c. The more effort the
agent spends, the more positive the trend is; hence, the higher
reputation the agent earns.

VI. CONCLUSION

This work has investigated a preemptive approach to mit-
igate misinformation spread on OSP by disincentivizing the
content creator to create misleading content in the first place.
We have developed a three-player persuasion game to model
the strategic interaction among the OSP, the content creator,
and the user. By transforming the perfect Bayesian equilib-
rium into the posterior belief space, we have reformulated
the OSP’s equilibrium problem as an equality-constrained
nonlinear programming (with a convex objective), which
admits a concise Lagrangian characterization. The convexity
of the Lagrangian implies that the OSP can solicit the best
effort from the content creator in reducing misinformation,
even though the OSP exerts no direct control over the content
creator. One direction of the future work would be to inves-
tigate other mitigation mechanisms, including verification of
the accuracy of the content and the accountability of the
content creators.
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