
Multi-objective Deep Reinforcement Learning for
Mobile Edge Computing
Ning Yang, Junrui Wen, Meng Zhang*, Ming Tang

Abstract—Mobile edge computing (MEC) is essential for next-
generation mobile network applications that prioritize various
performance metrics, including delays and energy consumption.
However, conventional single-objective scheduling solutions cannot
be directly applied to practical systems in which the preferences
of these applications (i.e., the weights of different objectives)
are often unknown or challenging to specify in advance. In this
study, we address this issue by formulating a multi-objective
offloading problem for MEC with multiple edges to minimize
expected long-term energy consumption and transmission delay
while considering unknown preferences as parameters. To address
the challenge of unknown preferences, we design a multi-objective
(deep) reinforcement learning (MORL)-based resource scheduling
scheme with proximal policy optimization (PPO). In addition, we
introduce a well-designed state encoding method for constructing
features for multiple edges in MEC systems, a sophisticated
reward function for accurately computing the utilities of delay
and energy consumption. Simulation results demonstrate that
our proposed MORL scheme enhances the hypervolume of the
Pareto front by up to 233.1% compared to benchmarks. Our full
framework is available at https://github.com/gracefulning/mec
morl multipolicy.

Index Terms—Mobile edge computing, multi-objective rein-
forcement learning, resource scheduling.

I. INTRODUCTION

The rise of next-generation networks and the increasing
use of mobile devices have resulted in an exponential growth
of data transmission and diverse computing needs. With the
emergence of new computing-intensive applications, there is
a possibility that device computing capacity may not suffice.
Cloud computing is one solution that can provide the necessary
resources, but it may also result in latency issues.

To address this challenge, mobile edge computing (MEC)
has emerged as a promising computing paradigm that offloads
computing workload to edge or cloud networks and can achieve
low latency and high efficiency [1]–[3].

In MEC systems, task offloading is crucial in achieving low
latency and energy consumption [4]. By selectively offload-
ing computing tasks to edge or cloud users based on their
requirements, MEC systems can optimize resource utilization
and improve performance. For example, edge servers may be
effective for low-latency tasks that require real-time processing,

Ning Yang and Junrui Wen are with Institute of Automation, Chinese
Academy of Sciences, Beijing, 100190, China. (e-mail: ning.yang@ia.ac.cn,
yvwtogo@gmail.com).

Meng Zhang is with the ZJU-UIUC Institute, Zhejiang University, Zhejiang,
314499, China. (e-mail: mengzhang@intl.zju.edu.cn).

Ming Tang is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, 518055, China.
(e-mail: tangm3@sustech.edu.cn).

(*Corresponding author: Meng Zhang)

while cloud users may be more suitable for computationally
intensive tasks. Additionally, other factors, such as edge load
and transmission rate, need to be considered when designing
offloading schemes. Task offloading schemes in MEC systems
present two key challenges.

Challenge 1: The natural MEC network environments are
full of dynamics and uncertainty.

The scheduling of offloading in MEC systems is challenging
due to the dynamic and unpredictable nature of users’ work-
loads and computing requirements. The presence of stochastic
parameters in the problem poses challenges to the application
of traditional optimization methods. Myopically optimizing the
offloading decision of the current step is ineffective since it
cannot account for long-term utilities.

The application of deep reinforcement learning (DRL) has
shown substantial potential in addressing sequential decision-
making problems and is an attractive technique for dynamic
MEC environments [4], [5]. The existing works have demon-
strated the effectiveness of applying DRL in MEC systems
to address unknown dynamics. For instance, Cui et al. [6]
employed DRL to solve the user association and offloading
sub-problem in MEC networks. Lei et al. [7] investigated
computation offloading and multi-user scheduling algorithms in
edge IoT networks and proposed a DRL algorithm to solve the
continuous-time problem, supporting implementation based on
semi-distributed auctions. Jiang et al. [8] proposed an online
DRL-based resource scheduling framework to minimize the
delay in large-scale MEC systems. However, there is another
challenge that requires consideration.

Challenge 2: Users who initiate tasks may have diverse
preferences regarding delay and energy consumption.

In various mobile applications such as health care, trans-
portation, and virtual reality, among others, delay in processing
data can have serious consequences, particularly in emergency
situations. However, in industrial and unmanned aerial net-
works, energy consumption is subject to strict limits, and thus,
computing applications in these areas may prioritize energy
over delay. Therefore, offloading scheduling in MEC systems
requires a well-designed balance between delay and energy
consumption. Moreover, one of the most critical considerations
in designing an offloading scheme for MEC systems is that
target applications may not be known in advance.

Regretfully, existing studies on MEC (e.g., [4], [6]–[10]),
most of them have focused exclusively on single-objective
methods. In practice, many scheduling problems in MEC sys-
tems are in nature multi-objective. Since these studies have not
taken into account multi-objective methods, they cannot address

ar
X

iv
:2

30
7.

14
34

6v
1

 [
cs

.N
I]

 5
 J

ul
 2

02
3

https://github.com/gracefulning/mec_morl_multipolicy
https://github.com/gracefulning/mec_morl_multipolicy

the second challenge of MEC systems, which is dealing with
diverse and unknown preferences. The dynamic and uncertain
nature of the environments, the diversity of preferences, and the
computational infeasibility of classical methods motivate us to
seek out new methodologies to address these issues.

Note that although some may argue that we can still directly
apply single-objective DRL by simply taking a weighted sum
(known as scalarization), this is, in fact, not true due to the
following issues [11]:

1) Impossibility: Weights may be unknown when designing
or learning an offloading scheme.

2) Infeasibility: Weights may be diverse, which is true when
MEC systems have different restrictive constraints on
latency or energy.

3) Undesirability: Even if weights are known, nonlinear
objective functions may lead to non-stationary optimal
policies.

To effectively address these challenges, we propose employ-
ing multi-objective reinforcement learning (MORL) to design a
task offloading method. We summarize our main contributions
as follows:

• Multi-objective MEC Framework: We formulate the multi-
objective MDP (Markov decision process) problem frame-
work. Compared with previous works, our framework
focuses on the Pareto optimal solutions, which characterize
the performance of the offloading scheduling policy with
multiple objectives under different preferences.

• Multi-objective Decision Model: We propose a novel
MORL method based on proximal policy optimization
(PPO) to solve the multi-objective problem. Our proposed
method aims to achieve the Pareto near-optimal solution
for diverse preferences. Moreover, we introduce a well-
designed encoding method to construct features for multi-
edge systems and a sophisticated reward function to com-
pute delay and energy consumption.

• Numerical Results: Compared to benchmarks, our MORL
scheme increases the hypervolume of the Pareto front up
to 233.1%.

II. SYSTEM MODEL

We consider a set of servers E = {0, 1, 2, ..., E} with one
remote cloud server (denoted by index 0) and E edge servers,
and consider a set of users U = {1, 2, ..., U} in a MEC system,
as shown in Fig. 1. We use index e ∈ E to denote a server. Index
u ∈ U denotes a user. Our model is a continuous-time system
and has discrete decision steps. Consider one episode consisting
of T steps, and each step is denoted by t ∈ {1, 2, ..., T}, each
with a duration of ∆t seconds.

Multiple users request MEC services from servers. At the
beginning of each step, the arrival time of a series of tasks
follows a Poisson distribution for each user, and the Poisson
arrival rate for each user is λp. The tasks are placed in a queue
with a first in, first out (FIFO) queue strategy. In each step,
the system will offload the first task in the queue to one of the
servers. Then the task is removed from the queue. Let M =
{1, 2, ...,M} denote the set of tasks in an episode. We use

Cloud

server

Edge

server E

Edge

server 2

Edge

server 1
Task 1

Task 2

Task M

.

.

.

.

.

.

Fig. 1: An illustrative example system model of MEC.

m ∈M to denote a task and use Lm to denote the size of task
m, which follows an exponential distribution [12] with mean
L̄.

We consider a Rayleigh fading channel model in the MEC
network. We denote h ∈ RU×(E+1) as the U×(E+1) channel
matrix. Thus, the achievable data rate from user u to server e
is

Cu,e = W log2

(
1 +

poff |hu,e|2

σ2

)
,∀u ∈ U , e ∈ E , (1)

where σ2 is additive white Gaussian noise (AWGN) power,
and W is the bandwidth. The offloading power is poff , and the
channel coefficient from user u to server e is hu,e.

Offloading: We denote the offloading decision (matrix) as
x = {xm,e}m∈M,e∈E , where xm,e ∈ {0, 1} is an offloading
indicator variable; xm,e = 1 indicates that task m is offloaded
to server e. If task m comes from user u. The offloading delay
for task m is given by [13]

T off
m =

∑
e∈E

xm,e
Lm

Cu,e
, ∀m ∈M. (2)

The offloading energy consumption for task m with offloading
power poff is

Eoff
m = poffT off

m , ∀m ∈M. (3)

Execution: Each server executes tasks in parallel. We denote
the beginning of step t as time instant τt, given by τt = t∆t.
The computing speed for each task in server e at time instant
τt is

qe(τt) =
fe

nexe
e (τt)η

, ∀e ∈ E , (4)

where fe is the CPU frequency (in cycles per second) of server
e, and η is the number of CPU cycles required for computing a
one-bit task. We define nexe

e (τt) as the number of tasks that are
being executed in server e at time τt. The nexe

e (τt) tasks share
equally the computing resources of server e. Thus, we give the
relation between task size Lm and execution delay T exe

m for

task m as

Lm = gm(T exe
m)

=
∑
e∈E

xm,e

∫ m∆t+T off
m +T exe

m

m∆t+T off
m

qe(τ) dτ, ∀m ∈M,
(5)

where τ is a time instant. The integral function gm(T exe
m)

denotes the aggregate executed size for task m from m∆t+T off
m

to m∆t + T off
m + T exe

m . Therefore, execution time delay T exe
m

of task m is

T exe
m = gm

−1(Lm),∀m ∈M. (6)

The total energy consumption of execution for task m is given
by [13]

Eexe
m =

∑
e∈E

xm,eκηf
2
eLm,∀m ∈M, (7)

where κ denotes an effective capacitance coefficient for each
CPU cycle.

To summarize, the overall delay and the overall energy
consumption for task m ∈M are

Tm = T off
m + T exe

m , Em = Eoff
m + Eexe

m , (8)

respectively.
The mean of task size L̄ represents the demand for tasks.

If the computational capability of the system exceeds the
demand, the scheduling pressure decreases. Conversely, if the
demand surpasses the capability, the system will continuously
accumulate tasks over time. Therefore, we consider a system
that balances computational capability and task demand. The
mean of task size L̄ satisfies

∆t

(∑
e∈E

fe
η

)
= λpL̄U, (9)

.

A. Problem Formulation
Based on different application scenarios, MEC networks

have diverse preferences over energy consumption and delay.
Therefore, we aim to design a scheduling policy to achieve
the Pareto optimal solution between energy consumption and
delay. We cannot directly apply single-objective DRL by simply
taking a weighted sum due to impossibility (i.e., weights may
be unknown), infeasibility (i.e., MEC systems have different
restrictive constraints on latency or energy), and undesirability
(i.e., non-stationary optimal policies). This motivates us to use
MORL to achieve Pareto optimal solution for any potential
preference. We introduce the preference vector ω = (ωT, ωE)
to weight delay and energy consumption, which satisfies ωT +
ωE = 1. The subscript T denotes delay about, while the
subscript E denotes energy consumption about in our study.

A (stochastic) policy is a mapping π : S×A → [0, 1], where
S is the state space of the system and A is the offloading
action space, we will formally define them in next section.
For any given task m and system state, policy π selects an
offloading decision xm,e according to a certain probability
distribution. Given any one possible ω, the multi-objective

resource scheduling problem under the policy π is given by

min
π

Ex∼π

[∑
m∈M

γm (ωTTm + ωEEm)

]
(10a)

s.t. xm,e ∈ {0, 1}, ∀m ∈M,∀e ∈ E , (10b)∑
e∈E

xm,e ≤ 1, ∀m ∈M, (10c)

where constraint (10b) restricts task offloading variables to be
binary, and constraint (10c) guarantees that each task can be
only offloaded to one server. A discount factor γ characterizes
the discounted objective in the future. The expectation E
accounts for the distribution of the task size Lm, the arrival
of users , and stochastic policy π.

B. Multi-objective Metrics

To facilitate multi-objective analysis, we further intro-
duce the following notions. Consider a preference set Ω =
{ω1,ω2, ...,ωn} with n preferences. A scheduling policy set
Π = [π1, π2, ..., πn] with n policies solving problem (10a)
given corresponding preferences in Ω. Let y denote the per-
formance, given by

y = {yT, yE} =

{ ∑
m∈M

Tm,
∑

m∈M
Em

}
. (11)

A performance of Π is denoted as Y = {yπ1 ,yπ2 , ...,yπn}.
We consider the following definition to characterize the optimal
trade-offs between two performance metrics:

Definition 1 (Pareto front [11]): For a policy set Π, Pareto
front PF (Π) is the undominated set :

PF (Π) = {π ∈ Π | ∄π′ ∈ Π : yπ′
≻P yπ}, (12)

where ≻P is the Pareto dominance relation, satisfying

yπ ≻P yπ′ ⇐⇒
(∀i : yπi ≥ yπ

′

i) ∧ (∃i : yπi > yπ
′

i), i ∈ {T,E}.
(13)

We aim to approximate the exact Pareto front [11] by searching
for policies set Π. The following hypervolume metric can
measure the quality of an approximation:

Definition 2 (Hypervolume metric [14]): In the multi-
objective MEC scheduling problem, as a Pareto front approxi-
mation PF (Π), the hypervolume metric is

V(PF (Π)) =
∫
R2 IVh(PF (Π))(z)dz, (14)

where Vh(PF (Π)) = {z ∈ Z|∃π ∈ PF (Π) : yπ ≻P

z ≻P yref}, and yref ∈ R2 is a reference performance point.
Function IVh(PF (Π)) is an indicator function that returns 1 if
z ∈ Vh(PF (Π)′) and 0 otherwise.

The multi-objective resource scheduling problem is still a
challenge for MEC networks for the following reasons:

• The natural MEC network environments are full of dy-
namics and uncertainty, leading to unknown preferences
of MEC systems.

• The computation complexity of the conventional optimiza-
tion method is demanding since the goal is to get a vector

reward instead of a reward value. The objective function
(10a) and the feasible set of constraints (10b) and (10c)
are non-convex due to binary variables x.

The aforementioned problems motivate us to design a MORL
scheme to solve (10).

III. MORL SCHEDULING SOLUTION

This section considers the situation of multiple preferences.
We consider that a (central) agent makes all offloading de-
cisions in a fully-observable setting. We model the MEC
environment as a MOMDP framework. In the subsection, we
first introduce the MOMDP framework, which includes a well-
designed state encoding method and a sophisticated reward
function. Then, we present our algorithm by introducing aspects
including the neural network architecture and policy update
method.

A. The MOMDP Framework

Definition 3 (MOMDP [11]): A MOMDP is a tuple
⟨S,A, T , γ, µ,R⟩ that contains state space S, action space
A, probabilistic transition process T : S ×A → S, discount
factor γ ∈ [0, 1), a probability distribution over initial
states µ : S → [0, 1], and a vector-valued reward function
R : S ×A → R2 that specifies the immediate reward for the
delay objective and the energy consumption objective.

For a decision step t, an agent offloads task m from user u.
It has m = t for task index m and step-index t. We specify the
MOMDP framework in the following:

State S: We consider E + 1 servers (E edge servers and a
cloud server). Hence, the state st ∈ S at step t is a fixed length
set and contains E+1 server information vectors. We formulate
state st as st = {st,e|e ∈ E}. The information vector of server
e at step t is

st,e = (Lm, Cu,e, fe, n
exe
e (τt), E,Be), ∀e ∈ E . (15)

State st,e contains task size Lm, data rate Cu,e, CPU frequency
fe, the number of execution task nexe

e (τt), the number of edge
server E, and task histogram vector Be, which is the residual
size distribution for tasks executed in server e at time instant
τt. That is,

Be(τt) = (bexe1,e (τt), b
exe
2,e (τt), ..., b

exe
N,e(τt)). (16)

Histogram vector Be has N bins. We denote one of previous
tasks as m′ and denote the execution residual size of task m′ at
time instant τt as Lres

m′(τt). In Eq. (16), the i-th value bexei,e (τt)
in Be denotes the number of tasks with execution residual size
Lres
m′(τt) within the range of [i−1, i) Mbits. Specifically, the last

element bexeN,e(τt) denotes the number of tasks with execution
residual size Lres

m′(τt) within the range of [N − 1,+∞) Mbits.
The execution residual size Lres

m′(τt) is given by

Lres
m′(τt) = Lm′ −min (gm′ ((τt −m′∆t) , Lm′) ,

∀τt ∈ [t∆t, T∆t],m′ ∈ {1, 2, . . . ,m− 1}. (17)

Action A: The action at ∈ A denotes that offloading task
m to which server. The action space is A = {0, 1, 2, . . . , E}.
Hence, the action at step t is represented by the following

at =
∑
e∈E

exm,e(t). (18)

Transition T : It describes the transition from st to st+1

with action at, which is denoted by P (st+1|st, at).

Reward R: Unlike a classical MDP setting in which
each reward is a scalar, a multi-objective setting requires a
vector. Therefore, our reward (profile) function is given by
R : S ×A → R2. We denote the reward of energy consump-
tion and delay as rE and rT. If the agent offloads task m to
server e at step t, the reward of energy consumption for state
st and action at is

rE(st, at) = −Êm, (19)

where Êm is the estimated energy consumption of task m.
Through (8), we can compute the energy consumption of task
m. The MORL algorithm maximizes the reward, which is thus
the negative of energy consumption. For one episode, the total
reward for energy consumption is given by

RE =

T∑
t=1

rE(st, at) = −
∑

m∈M
Êm. (20)

The reward for the delay is

rT(st, at) = −

T̂m +
∑

m′∈Me(τt)

∆T̂ at

m′

 , (21)

where T̂m is the estimated delay for task m, and Me(τt) is a
set of tasks, which are executed in server e at time instant τt.
The estimated correction of delay ∆T̂ at

m′ describes how much
delay will increase to task m′ with action at. For one episode,
the total reward of delay has

RT =

T∑
t=1

rT(st, at) = −
∑

m∈M
Tm. (22)

To compute reward rT , we rewrite Eq.(21) as

rT(st, at) = −T̂m −
∑

m′∈Me(τt)

(T̂ at

m′ − T̂
a∗(t)
m′), (23)

where T̂ at

m′ denotes the estimated residual delay of task m′ with
taking action at at step t. The residual delay of task m′ without
taking action at is T̂ a∗(t)

m′ , which is the estimated residual delay
at the end of step t−1. Next, we introduce the computation of
the two cases.

(1) The case without taking action at: For task set Me(τt)
with nexe

e (τt) tasks, the execution residual size is a set
Lres
Me(τt)

= {Lres
m′(τt)|m′ ∈Me(τt)}. We sort residual task size

set Lres
Me(τt)

in the ascending order and get a vector Lsort
Me(τt) =

(Lsort
1,e (τt), L

sort
2,e (τt), ..., L

sort
nexe
e (τt),e

(τt)), where Lsort
i,e (τt) is the

i-th least residual task size in Lres
Me(τt)

. Specifically, we define

Lsort
0,e (τt) = 0. Then, we have

∑
m′∈Me(τt)

T̂
a∗(t)
m′ =

nexe
e (τt)∑
i=1

(nexe
e (τt)− i+ 1)T̂ dur

i,e

=

nexe
e (τt)∑
i=1

η

fe
(nexe

e (τt)− i+ 1)2(Lsort
i,e (τt)− Lsort

i−1,e(t)),

(24)

where T̂ dur
i,e denotes the estimated during of time from the

completing instant of residual task Lsort
i−1,e(τt) to the completing

instant of residual task Lsort
i,e (τt).

(2) The case with action at: The MEC system completes
offloading task m at time instant τ ′t = τt+T off

m . We consider a
high-speed communication system that offloading delay T off

m is
short than the duration of one step ∆t and satisfies T off

m < ∆t.
For task setMe(τ

′
t) with nexe

e (τ ′t) tasks, the execution residual
size is a set Lres

Me(τ ′
t)

= {Lres
m (τ ′t)|m ∈ Me(τ

′
t)}. We sort set

Lres
Me(τ ′

t)
in the ascending order and get a vector Lsort

Me(τ ′
t)

=

(Lsort
1,e (τ ′t), L

sort
2,e (τ ′t), ..., L

sort
nexe
e (τ ′

t),e
(τ ′t)), where Lsort

i,e (τ ′t) is the
i-th least residual task size in Lres

Me(τ ′
t)

. Then, it satisfies

T̂m +
∑

m′∈Me(τ ′
t)

T̂ at

m′

=

nexe
e (τt)∑
i=1

(nexe
e −i+1)min

T̂ dur
i,e ,max

T̂ off
m −

i−1∑
j=1

T̂ dur
j,e , 0

+

nexe
e (τ ′

t)∑
i=1

η

fe
(nexe

e (τ ′t)−i+1)2(Lsort
i,e (τ ′t)−Lsort

i−1,e(τ
′
t)) + T̂ off

m ,

(25)

where T̂ off
m is the estimated offloading delay for task m with

Eq.(2). In Eq.(25), the first term to the right of the equation
estimates the sum of delay for tasks Me(τt) from time instant
τt to τ ′t . The second term to the right of Eq.(25) estimates the
sum of delay for tasks Me(τ

′
t) from time instant τ ′t to infinity.

The expression η
fe
(Lsort

i,e (τ ′t)−Lsort
i−1,e(τ

′
t) in Eq. (25) represents

the required time from completing residual size Lsort
i−1,e(τ

′
t) to

completing residual size Lsort
i,e (τ ′t). To simplify the calculation

of Lsort
1,e (τ ′t)− Lsort

0,e (τ ′t), we define Lsort
0,e (τ ′t) = 0 specifically.

To summarize, if the agent offloads task m to server e at
step t, the reward of delay is

rT(st, at) = −T̂ off
m +

nexe
e (τt)∑
i=1

(nexe
e (τt)− i+ 1)T̂ dur

i,e

−
nexe
e (τt)∑
i=1

(nexe
e −i+ 1)min

T̂ dur
i,e ,max

T̂ off
m −

i−1∑
j=1

T̂ dur
j,e , 0

−

nexe
e (τ ′

t)∑
i=1

η

fe
(nexe

e (τ ′t)− i+ 1)2(Lsort
i,e (τ ′t)− Lsort

i−1,e(τ
′
t)).

(26)

To achieve the MORL algorithm, we compute a scalarized

reward given preference ω:

rω(st, at) = ωT × (αTrT(st, at), αErE(st, at)), (27)

where αT and αE are coefficients for adjusting delay rT(t) and
energy consumption rE(t) to the same order of magnitude. The
total reward of one episode is

Rω =

T∑
t=1

rω(st, at). (28)

B. MORL Scheduling

We train DRL-based scheduling policies based on a PPO
algorithm [15], which is a family of policy gradient (PG)
methods. The PPO algorithm can sample the data from the
transition several times instead of one time within each episode.
It improves the sampling efficiency than traditional PG meth-
ods. The neural networks with parameters θ contain an actor
network and a critic network. In the training phase, the MORL
algorithm trains a parametric network for each preference.
In the evaluation phase, the parametric network evaluates the
Pareto front of energy consumption and delay for multi-edge
servers in the MEC environment.

We use generalized advantage estimator (GAE) technology
to reduce the variance of policy gradient estimates [16]. The
GAE advantage function for objective i ∈ {T,E} is

Âi(t)=
T−1∑
t′=t

γλ (αiri(st′ , at′)+γVi,θ(st′+1)−Vi,θ(st′)), (29)

where λ is a GAE discount factor within [0, 1], and Vi,θ(s(t))
denotes the value of state s(t). Value function Vi,θ(·) is
estimated by a critic network.

In the PPO algorithm, the gradient direction of objective i ∈
{T,E} is given as

∇θL
clip
i (θ)=Et[min (rprt (θ), clip(rprt (θ), 1−ϵ, 1+ϵ))

Âi(t)∇ log πθ(at|st)],
(30)

where ϵ is a clip hyperparameter. The probability ratio is
rprt (θ) = πθ(at|st)

πθold
(at|st)

. The surrogate objective is rprt (θ)Ât,
which corresponds to a conservative policy iteration. The ob-
jective is constrained by clip(rprt (θ)Ât, 1−ϵ, 1+ϵ), to penalize
the policy move outside interval [1− ϵ, 1 + ϵ].

Given the gradient directions of the two objectives, a policy
can reach the Pareto front by following a direction in ascent
simplex [17]. An ascent simplex is defined by the convex com-
bination of single–objective gradients. As shown in Fig. 2, the
green arrow and blue arrow denote the gradient directions of the
delay objective and energy consumption objective, respectively.
The light blue area stands for an ascent simplex.

For reward function rω(·), the gradient direction of prefer-
ence ω is

∇θL
clip
ω (θ)=Et[min (rprt (θ), clip(rprt (θ), 1−ϵ, 1+ϵ))

ωT(Â1(t), Â2(t))∇ log πθ(at|st)]
= ωT(∇θL

clip
1 (θ),∇θL

clip
2 (θ)).

(31)

▽θLT(θ)

▽θLE(θ)

Ascent simplex

▽θLω(θ)

Fig. 2: The ascent simplex in a 2–objectives problem.

Network 1

State

Convolution
layers

Intermediate
feature

x3

Reshape
&

Concatenate

Network 2

Network 3

Network n

Ω

ω1

ω2

ω3

ωn

Policy set Preference set
st,0 st,1 st,2 ... st,Est,3

Residual convolution block
with point-wise convolution kernel

Ft,0 Ft,1 Ft,2 ... Ft,EFt,3

Ft,0 Ft,1 ...Ft,2 Ft,E

Residual full connection block
Softmax(Actor) FC(Critic)

Probability Value

MLP
layers

x3

Fig. 3: The neural network framework of a scheduling policy.

The vector∇θL
clip
ω (θ) is a gradient direction in ascent simplex.

It makes a policy to the Pareto front by optimizing neural
network parameters θ.

As an example shown in Fig. 3, a neural network contains
convolution layers and multi-layer perceptron (MLP) layers.
The convolution layers encode the input state with point-wise
convolution kernel and turn information vector st of each server
to feature vector F . We reshape all feature vectors and concate-
nate them to get the total feature vector. The MLP layers encode
the total feature vector to get the output. For an actor-network,
the output is probability πθ(at|st) of each action. For a critic
network, the output is estimated value ωT[VT,θ(st), VE,θ(st)]
for preference ω. Additionally, we apply deep residual learning
technology [18] to build the neural network architecture to
address the problem of vanishing/exploding gradients.

We present the proposed MORL algorithm in Algorithm
1. For each preference ω in set Ω, we train a policy with
PPO method to maximize reward Rω and approximate Pareto
front PF (Π). To improve the training efficiency achieved
by [19], we reuse trained neural network parameters θωi

(i ∈ {1, 2, . . . , n− 1}) to initialize the next parameters θωi+1 ,
with a similar preference.

IV. SIMULATION RESULTS

In this section, we evaluate the performances of the MORL
scheduling scheme and compare it with benchmarks. We in-
troduce the simulation setup and evaluation metrics. Then,
we analyze the Pareto fronts and compare them with the
benchmarks.

Algorithm 1 MORL-based Scheduling

1: Initialize replay memory buffer Dω , policy parameters θω

for each preference ω
2: Initialize the learning rate α and the number of episodes

T epi for training.
3: Set policies set Π← ∅
4: for each preference ω do
5: for each episode T epi do
6: for each step t do
7: at ∼ πθω (st)
8: st+1 ∼ T (st+1|st,)
9: Dω=Dω ∪ {(st, at, rω(st, at), st+1}

10: end for
11: θω ← θω + α∇θωL

clip
ω (θω)

12: end for
13: Π← Π ∪ πθω

14: end for
15: Compute Pareto front PF (Π)

20 25 30
Task delay (Minute)

4

5

6

E
ne

rg
y

co
ns

um
pt

io
n

(J
ou

le
)

MORL

(a)

20 25 30
Task delay (Minute)

4

5

6

E
ne

rg
y

co
ns

um
pt

io
n

(J
ou

le
)

Trained
Untrained

(b)

Fig. 4: The Pareto front of the MORL scheme.

A. Simulation Setup

We set the preference set as Ω with an equal interval 0.02 and
obtain 50 preferences to fit the Pareto front. Each preference’s
performance contains total delay and energy consumption for
all tasks in one episode. We evaluate a performance (delay
or energy consumption) with an average of 1000 episodes.
Furthermore, we analyze the Pareto front of the proposed
scheme and compare it with benchmarks. A disk coverage has
a radius of 1000m to 2000m for a cloud server and 50m to
500m for an edge server. Each episode needs to initial different
radiuses for the cloud and edge servers. We set the mean of
task size L̄ according to Eq. (9).

B. Evaluation Metrics

We consider the following metrics to evaluate the perfor-
mances of the proposed algorithms.

• Energy Consumption: The total energy consumption of

one episode given as
M∑

m=1
Eoff

m +Eexe
m , and average energy

consumption per Mbits task of one episode given by
M∑

m=1

Eoff
m +Eexe

m

ML̄
.

TABLE I: Model Parameters

Resource Scheduling Hyperpa-
rameters Values

The number of steps for one
episode T

100

Step duration ∆t 1 s

The number of users U 10

The number of tasks M 100

System bandwidth W 16.6MHz [20]
Offloading power poff 10 mW

The number of CPU cycles η for
one-bit task

103

Effective capacitance coefficient κ 5× 10−31

CPU frequency of cloud server f0 4.0 GHz

CPU frequency of edge server fe 2.0 GHz

Poisson arrival rate λp for each
user

0.1

DRL Hyperparameters Values
The episodes for training T epi 1.92× 106

Replay memory 1× 105

Batch size 4096

Learning rate 1× 10−6

Discount factor γ 0.9

GAE discount factor λ 0.95

Clip parameter ϵ 0.2

20 30 40 50 60
Task delay (Minute)

4

5

6

E
ne

rg
y

co
ns

um
pt

io
n

(J
ou

le
)

MORL
LinUCB
Heuristics
Random
Reference
point

Fig. 5: The Pareto fronts of MORL scheme and other schemes.

• Task Delay: The total task delay given as
M∑

m=1
T off
m +T exe

m

and average delay per Mbits task of one episode given by
M∑

m=1

T off
m +T exe

m

ML̄
.

• Pareto Front: PF (Π)={π∈Π | ∄π′ ∈ Π : yπ′≻Py
π},

where the symbols are defined by Eq. (12).
• Hypervolume metric:
V(PF (Π)) =

∫
R2 IVh(PF (Π))(z)dz, where the symbols

are defined by Eq. (14).

C. Simulation results

1) Pareto Front Analysis: Fig. 4a presents the Pareto front
of the proposed MORL scheme. In this scenario, the number of

edge servers is E = 8, and the mean of task size L̄ = 20 Mbits.
The Pareto front shows that minimizing the delay (the leftmost
point) increases energy by 67.3%, but minimizing energy (the
rightmost point) increases the delay by 77.6%. Fig. 4b shows
the points of the Pareto front with trained and untrained
preferences. Each untrained preference lies intermediate to the
adjacent trained preferences. The result shows that by reusing
trained parameters to the most similar preference, our MORL
scheme has generalization for new preferences.

2) Performance Comparison with Benchmarks: We evalu-
ate the performance of the proposed MORL algorithms and
compare it with a linear upper confidence bound (LinUCB)-
based scheme [21], a heuristics-based scheme, and a random-
based scheme. LinUCB algorithms belong to contextual multi-
arm bandit (MAB) algorithms, widely used in task offloading
problems [22], [23]. Some work [24], [25] apply heuristic
methods to schedule for offloading.

• LinUCB-based scheme: Offloading scheme based on a
kind of contextual MAB algorithm. This scheme uses
states as MAB contexts and learns a policy by exploring
different actions.

• Heuristics-based scheme: Heuristic methods greedily se-
lect the server with the optimal weighted sum of estimated
running speed and energy consumption for the current
step.

• Random-based scheme: The agent offloads a task to a
cloud server or a random edge server according to proba-
bility. We adjust the probability to compute a Pareto front.

Fig. 5 illustrates the Pareto front comparison of the proposed
MORL scheme with other schemes. In this scenario, the system
has E = 8 and L̄ = 20 Mbits. We select the position
which denotes the maximum delay and energy consumption
of the performance profiles in Fig. 5 as the reference point to
compute the hypervolumes. The hypervolume of the proposed
MORL scheme is 80.7, the LinUCB-based scheme is 69.9, the
heuristics-based scheme is 63.9, and a random-based scheme is
24.2. Compared with a LinUCB-based scheme and a random-
based scheme, the proposed MORL scheme increases the
hypervolume of the Pareto front by 80.7−69.9

69.9 = 15.5% and
80.7−24.2

24.2 = 233.1%. As shown, the proposed MORL scheme
significantly outperforms other schemes. The MORL scheme
has dynamic adaptability to learn the dynamics of task arrival
and server load, which enables it to achieve better scheduling.

3) Pareto Front Analysis in Multi-edge Scenarios: We eval-
uate the Pareto front of the proposed MORL algorithm in sce-
narios with different edge server quantities. Fig. 6a illustrates
the Pareto fronts of the proposed MORL algorithm in the case
of edge quantity E ∈ {4, 6, 8, 10}. The mean of task size,
represented by L̄, is determined by Eq. (9) to balance the supply
and demand of computational capability. The result shows that,
in the balance case, the Pareto front of fewer edge servers and
less demand case can dominate the more one. It means that
while more edge servers may increase computational capability,
matching them with more task demands may result in increased
total energy consumption and task delay. The performances are
computed per 1 Mbits task in Fig. 6b for a fair comparison.

20 30 40
Task delay (Minute)

2

4

6

E
ne

rg
y

co
ns

um
pt

io
n

(J
ou

le
)

4 edges
6 edges
8 edges
10 edges

(a) Pareto fronts of total delay and
energy consumption

0.01 0.02 0.03
Task delay (Minute/Mbits)

2.0

2.5

3.0

3.5

E
ne

rg
y

co
ns

um
pt

io
n

(J
/M

bi
ts

) ×10 3

4 edges
6 edges
8 edges
10 edges

(b) Pareto fronts of total delay and energy
consumption per Mbits task

Fig. 6: Pareto fronts of the proposed MORL algorithm.

As the number of edge servers increases, the Pareto front of a
more edge servers case can dominate the less one. The result
shows that though more edge servers match more task demands,
deploying more edge servers can significantly improve delay
and energy consumption per Mbits tasks for each preference.

V. CONCLUSION

In this work, we investigated the offloading problem in
MEC systems and proposed a MORL-based algorithm that can
achieve Pareto fronts. A key advantage of the proposed MORL
method is that it employs a MORL framework to offload tasks
adopting various preferences, even untrained preferences.

We present a novel MOMDP framework for the multi-
objective offloading problem in MEC systems. Our framework
includes two key components: (1) a well-designed encoding
method to construct features of multi-edge MEC systems. (2) a
sophisticated reward function to evaluate the immediate utility
of delay and energy consumption. Simulation results demon-
strate the effectiveness of our proposed MORL scheme, which
achieves Pareto fronts in various scenarios and outperforms
benchmarks by up to 233.1%.

ACKNOWLEDGMENTS

The research leading to these results received funding from
“Research on Combinatorial Optimization Problem Based on
Reinforcement Learning” supported by Beijing Municipal Nat-
ural Science Foundation under Grant Agreement Grant No.
4224092. This work was supported in part by the National
Natural Science Foundation of China under Grants 62202427
and Grants 62202214. In addition, it received funding from
National Key R&D Program of China (2022ZD0116402).

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 3, pp. 1628–1656, 2017.

[2] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for
mobile-edge computing with energy harvesting devices,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–3605,
2016.

[3] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2016.

[4] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for mec,” in 2018 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE,
2018, pp. 1–6.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
arXiv preprint arXiv:1312.5602, 2013.

[6] G. Cui, X. Li, L. Xu, and W. Wang, “Latency and energy optimization for
mec enhanced sat-iot networks,” IEEE Access, vol. 8, pp. 55 915–55 926,
2020.

[7] L. Lei, H. Xu, X. Xiong, K. Zheng, W. Xiang, and X. Wang, “Multiuser
resource control with deep reinforcement learning in iot edge computing,”
IEEE Internet of Things J., vol. 6, no. 6, pp. 10 119–10 133, 2019.

[8] F. Jiang, K. Wang, L. Dong, C. Pan, and K. Yang, “Stacked autoencoder-
based deep reinforcement learning for online resource scheduling in large-
scale mec networks,” IEEE Internet of Things J., vol. 7, no. 10, pp. 9278–
9290, 2020.

[9] N. Yang, H. Zhang, and R. Berry, “Partially observable multi-agent deep
reinforcement learning for cognitive resource management,” in GLOBE-
COM 2020-2020 IEEE Global Communications Conference. IEEE,
2020, pp. 1–6.

[10] H. Zhang, N. Yang, W. Huangfu, K. Long, and V. C. Leung, “Power
control based on deep reinforcement learning for spectrum sharing,” IEEE
Transactions on Wireless Communications, vol. 19, no. 6, pp. 4209–4219,
2020.

[11] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey of
multi-objective sequential decision-making,” Journal of Artificial Intelli-
gence Research, vol. 48, pp. 67–113, 2013.

[12] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang, “Joint computation
offloading and multiuser scheduling using approximate dynamic program-
ming in nb-iot edge computing system,” IEEE Internet of Things J., vol. 6,
no. 3, pp. 5345–5362, 2019.

[13] K. Wang, F. Fang, D. Costa, and Z. Ding, “Sub-channel scheduling, task
assignment, and power allocation for oma-based and noma-based mec
systems,” IEEE Trans. Commun., vol. PP, no. 99, pp. 1–1, 2020.

[14] E. Zitzler and L. Thiele, “Multi-objective evolutionary algorithms: A
comparative case study and the strength pareto approach,” IEEE trans.
Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[16] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[17] S. Parisi, M. Pirotta, N. Smacchia, L. Bascetta, and M. Restelli, “Policy
gradient approaches for multi-objective sequential decision making,” in
2014 International Joint Conference on Neural Networks (IJCNN). IEEE,
2014, pp. 2323–2330.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[19] S. Natarajan and P. Tadepalli, “Dynamic preferences in multi-criteria rein-
forcement learning,” in Proceedings of the 22nd International Conference
on Machine learning, 2005, pp. 601–608.

[20] “Ieee standard for telecommunications and information exchange between
systems - lan/man specific requirements - part 11: Wireless medium
access control (mac) and physical layer (phy) specifications: High speed
physical layer in the 5 ghz band,” IEEE Std 802.11a-1999, pp. 1–102,
1999.

[21] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th international conference on World wide web, 2010, pp. 661–
670.

[22] L. Chen and J. Xu, “Task replication for vehicular cloud: Contextual
combinatorial bandit with delayed feedback,” in IEEE INFOCOM 2019-
IEEE Conference on Computer Communications. IEEE, 2019, pp. 748–
756.

[23] H. Zhao, X. Li, S. Han, L. Yan, and J. Yu, “Collaboration-aware relay
selection for auv in internet of underwater network: Evolving contextual
bandit learning approach,” IEEE Internet of Things Journal, 2022.

[24] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp. 4177–
4190, 2018.

[25] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.

	Introduction
	System Model
	Problem Formulation
	Multi-objective Metrics

	MORL Scheduling Solution
	The MOMDP Framework
	MORL Scheduling

	Simulation Results
	Simulation Setup
	Evaluation Metrics
	Simulation results
	Pareto Front Analysis
	Performance Comparison with Benchmarks
	Pareto Front Analysis in Multi-edge Scenarios

	Conclusion
	References

