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Abstract—To study the overall connectivity in device-to-device
networks in cities, we incorporate a signal-to-interference-plus-
noise connectivity model into a Poisson-Voronoi tessellation model
representing the streets of a city. Relays are located at crossroads
(or street intersections), whereas (user) devices are scattered
along streets. Between any two adjacent relays, we assume data
can be transmitted either directly between the relays or through
users, given they share a common street. Our simulation results
reveal that the network connectivity is ensured when the density
of users (on the streets) exceeds a certain critical value. But
then the network connectivity disappears when the user density
exceeds a second critical value. The intuition is that for longer
streets, where direct relay-to-relay communication is not possible,
users are needed to transmit data between relays, but with
too many users the interference becomes too strong, eventually
reducing the overall network connectivity. This observation on
the user density evokes previous results based on another wireless
network model, where transmitter-receivers were scattered across
the plane. This effect disappears when interference is removed
from the model, giving a variation of the classic Gilbert model
and recalling the lesson that neglecting interference in such
network models can give overly optimistic results. For physically
reasonable model parameters, we show that crowded streets
(with more than six users on a typical street) lead to a sudden
drop in connectivity. We also give numerical results outlining a
relationship between the user density and the strength of any
interference reduction techniques.

I. INTRODUCTION

Imagine a city with phone relay stations, located at various
crossroads (or street intersections), and, scattered along each
street are people willing to relay data through their devices,
forming a large device-to-device network. Can we relay data
through such a network? What happens when the number of
people on the streets increases? How does the network connec-
tivity behave? Motivated by recent mathematical results [1],
we will present supporting numerical results that highlight how
increasing the user (or device) density can increase the overall
(or macroscopic) network connectivity, but too many users
will eventually destroy the connectivity due to interference.
We place a focus on network connectivity and the ability to
reduce interference in the network.
A. Percolation theory

For large networks, the above types of questions motivate
the field of probability known as percolation theory, which
has its historical origins in studying physical materials and
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wireless networks [2], [3]. Percolation theory studies systems
of infinitely large sets of elements, such as particles and
transmitter-receiver pairs, and how the system behaves when
connections (or bonds) are randomly formed between the
elements, creating so-called clusters or components. When
a connection exists between two elements, we say the con-
nection is open, otherwise it is closed. When an infinitely
large component arises, we say that percolation has occurred
or the system percolates. The mechanism through which the
random connections form depends on model parameters. For
a single parameter, its value when percolation occurs is called
the critical value or percolation threshold, while for multiple
parameters, we use the term percolation regime. When there
is no percolation, we say the system is in a subcritical state.
Conversely, when the system percolates, it is in a supercritical
state, which, for wireless network models, means that in theory
connectivity is assured across the network. Researchers have
used the tools from percolation theory to study and gain insight
into wireless networks [4]–[7].

B. Poisson-Voronoi tessellations as city street systems

A Voronoi (or Dirichlet) tessellation is a fundamental ge-
ometric object with countless applications. This tessellation
constructed from a Poisson point processes is highly studied
due to it being a tractable yet insightful model [8], [9]. Using
it, Le Gall, Błaszczyszyn, Cali and En-Najjary [10] recently
presented a new percolation model to study the communication
abilities of wireless device-to-device networks with relays
located at crossroads. They assumed the edges of all the
Voronoi cells represent streets in a large city, which is an
assumption supported by empirical work [11], [12]. On each
street, they assumed that the users are scattered according to
an independent Poisson point process. This percolation model
uses a line-of-sight requirement, where relays and users (or
devices) can only communicate with each other when they
share a street. The model also uses a connectivity requirement
that is purely geometric, where users and relays can only com-
municate with each other if they are within some fixed distance
of each other. This simple idea for wireless communication
builds off a classic model in (continuum) percolation theory
originating from the pioneering work by Gilbert [4].

The current paper is motivated by recent mathematical re-
sults in a yet-to-be-published paper [1] in which we enlarge the
above device-to-device percolation model [10] by introducing
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a connectivity model based on the signal-to-interference-plus-
noise ratio. This fundamental concept gives an upper bound
on the successful communication, hence forming the basis of
most recent wireless network models [5]–[7].

C. Contributions

In recent work [1] we show mathematically that percolation
is possible in our network model. But this work does not
include any numerical work nor indicate the critical parameter
regime for percolation. The current work fills that gap by
reporting on the results of simulating and studying our network
model.

More specifically, for a device-to-device network, we ex-
amine the connectivity effects induced by increasing the in-
tensity or (average) density of users λ. Provided small enough
transmission ranges between relays, due to noise and signal
attenuation (or path loss), we numerically demonstrate that the
network does not percolate for low user densities, as there are
not enough users on the streets. But as we increase the user
density λ, we observe that the network percolates when the
density reaches a certain critical value λ∗

1. If we continue to
increase the user density beyond this first critical value, we
observe that the network eventually stops percolating as the
user density exceeds a second critical value λ∗

2. Put another
way, our simulation results strongly suggest that the density
λ for connectivity is located in a parameter window such that
0 ≤ λ∗

1 ≤ λ ≤ λ∗
2 < ∞.

We also study the network model for a range of interference
reduction values. We highlight the sharp sensitivity of the
critical values with respect to the model parameters such as
length scale and noise. Using physically reasonable parameter
values, we show for which user densities a network with such
parameters stops percolating.

D. Related work

1) Percolation models

To study wireless networks, Gilbert created the field of
continuum percolation with his pioneering paper [4] by intro-
ducing a novel random spatial model. It used a (homogeneous)
Poisson point process for the locations of transmitters and
receivers. The Poisson case has now been extensively studied;
see the monograph by Meester and Roy [3]. Using a (homoge-
neous) Poisson point process, Dousse, Baccelli, and Thiran [5]
did the first work to incorporate interference into a percolation
model, which was developed further mathematically in another
paper [6]. These seminal papers [5], [6] demonstrated the
balance between interference reduction and network density.
Meester and Franceschetti [7] detailed this line of work in
their monograph, which gives a good introduction to signal-
to-interference percolation.

We present here a continuum percolation model that is
based on a Cox point process, which effectively adds a layer
of randomness to the standard Poisson model by making
its density (measure) also random. To study this type of
percolation, Hirsch, Jahnel and Cali [13] introduced a general
framework requiring two properties in a Cox percolation
model. (The first property requires a degree of (decaying)

spatial dependence, whereas the second property requires a
degree of connectedness.) Tóbiás [14], [15] studied percolation
of a Cox model based on the signal-to-interference. Tóbiás and
Jahnel [16] studied signal-to-interference percolation for Cox
point processes with random (signal) powers. They showed
mathematically that percolation was possible in their model
provided certain moment conditions on signal powers.

Le Gall, Błaszczyszyn, Cali and En-Najjary wrote papers on
device-to-device networks [10], [17], [18] and used the Cox
framework to prove percolation results for a zero-interference
(geometric) Gilbert-type model coupled with the line-of-sight
assumption [10]. In addition to the mathematical results, Le
Gall, Błaszczyszyn, Cali and En-Najjary used simulations to
study percolation in their Gilbert model, producing a paper
[17], which shares a similar spirit to our current paper.

2) Poisson-Voronoi tessellations

There is an abundance of literature on the Poisson-Voronoi
tessellation [8], [9]. There are efficient algorithms for simulat-
ing a single Voronoi cell to study its properties. Although not
suitable for our purposes, since the cells of our tessellation
influence one another, this approach gives a fast way to
generate a single Voronoi cell; see Møller [8, Section 4.58].
There are also fast simulation methods for generating Poisson-
Voronoi tesselations on a torus, giving tessellations with so-
called periodic boundary conditions; see the method compar-
ison by Su and Drysdale [19]. But, again, these approaches
are not suitable for our purposes because they introduce a
distance distortion when mapping the plane to a torus, thus
they would introduce a bias into our model. We use a more
straight forward simulation method, which we briefly describe
in Section III. Gafur et al. [20] observed that this method can
be as fast and accurate for studying percolation thresholds.

3) Simulating percolation models

Newman and Ziff wrote an influential paper [21] in which
they presented a fast method for simulating discrete percola-
tion systems. They demonstrated their method by producing
numerical results for a square lattice and a spin-glass model
in physics. Mertens and Moore [22] adapted this approach
to the relevant case of continuum percolation for the Gilbert
model based on a Poisson point process. Observing that
percolation components are simply unions, a principal part of
the Newman-Ziff approach relies upon using (fast) union-find
algorithms, which have been studied extensively [23]

Unfortunately, union-find algorithms assume monotonic
connectivity (adding new objects never breaks up existing
sets of objects), whereas signal-to-interference models lack
this complexity-reducing property because adding a user can
both break or create links; discussed further in Section II-D1.
Instead of finding unions of objects and tracking disjoints
sets, we need to track disjoint sets that can merge or break
when adding new objects. This a more recent research topic
known as dynamic connectivity [24]–[26], which we consider
too involved for our current purposes. (There is also a dearth
of numerical libraries using these methods.) But perhaps there
is potential in simplifying these approaches when factoring in



the underlying geometry of signal-to-interference-plus-noise
models.

II. MODEL

A. Communication
Signal-to-interference-plus-noise

We consider a finite collection of transmitter-and-receivers
{z1, . . . , zn} located in the plane R2. We denote Pi,j as
the power of the signal received at zj originating from a
transmitter at zi. We define the signal-to-interference-plus-
noise ratio (SINR) at zj with respect to the incoming signal
from a transmitter at zi as

SINR(zi, zj) =:
Pi,j

N + θIi,j
, zi ̸= zj , (1)

where N ≥ 0 is just a noise constant, Pi,j is the power of a
signal received at zj originating from a transmitter at zi, and
θ is a technology-dependent parameter, which we can call the
interference reduction parameter, and

Ii,j =
∑
k ̸=i,j

Pk,j (2)

is the interference, meaning the sum of signals from transmit-
ters {z1, . . . , zn} \ {zi, zj}. For brevity, we sometimes write
just signal-to-interference, but we are still assuming a non-zero
noise term N > 0.
Path loss

Consider a transmitter at zi ∈ R2 and receiver at zj ∈ R2.
The standard path loss model assumes the signal power Pi,j

takes the form Pi,j = Piℓ (∥zi − zj∥). Here Pi is the power
of the transmitted signal at the source zi. We assume that all
transmitters share a fixed power P , meaning Pi = P for all
zi. Then we see in the signal-to-interference model that we
can replace P with unit power and replace N with N̄ =:
N/P . (Often propagation models also include an additional
random variable Fi representing propagation phenomena such
as fading, but we do not include it in this work.)

We assume the following properties for our path loss model
ℓ(d), where the distance d ≥ 0.

1) ℓ(d) is a non-negative function
2) ℓ(d) is a continuous, decreasing path loss function in r.

The above properties are physically intuitive. Additionally,
Dousse et al. [6] showed for their signal-to-interference per-
colation model that the property below is needed for proving
that the network percolates.

3) ℓ(0) > τN/P .
B. Network model
Street system S

We assume a homogeneous Poisson point process XS with
(spatial) intensity λS > 0 existing in the plane R2. We
interpret the Voronoi tessellation S constructed from this
Poisson point process as a street system (or layout). For our
Poisson-Voronoi street system S, we write E =: (ei)i≥1 and
V =: (vi)i≥1 to denote the respective sets of edges and
vertices. Of course, in everyday language, the edge-set E and
the vertex-set V are respectively the streets and crossroads (or
street intersections) in our street system S. We have illustrated
a part of this model in Figure 1.

X1
Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Fig. 1: A subsection of a Voronoi street system S with ten relays Y1, . . . , Y10

and a single user X1. A relay occupies a crossroads with probability p, while
users are located on streets to according to homogeneous Poisson point process
with (linear) intensity λ. In this example the street system (or graph) has
relays Y1, . . . , Y10 at all its crossroads (or vertices). When we incorporate
interference into the connectivity model, we see that adding a single user X1

to the street (or edge) e1,4 may open the street, if it had been previously
closed, in terms of multi-hop communication. But then the same user X1

will also increase the interference at crossroads Y1 and Y4, which may or
may not result in closing some or all of the other streets e1,3, e1,2, e4,5 and
e4,6. But the connectivity of the other streets will not be affected by user X1.

Users Xλ and Relays Y

We scatter users (with a single operator) on each street
according to a one-dimensional Poisson point process. More
specifically, for a given street system S with edges E, on each
edge e ∈ E there exists an independent homogeneous Point
process of users with (linear) intensity λ. The (fixed) relays
(belonging to a single operator) are randomly placed at the
crossroads independently with probability p. More precisely,
for the (fixed) relays, we introduce a (doubly stochastic)
Bernoulli point process Y on the crossroads V with parameter
p. We assume the users Xλ and relays Y are conditionally
independent. We write Z =: Xλ ∪ Y to refer to the superpo-
sition of users and relays. It is this point process for which
we will study percolation under our proposed connectivity (or
communication) model.
C. Connectivity model

Under our connectivity model, two distinct points (users or
relays) Zi, Zj ∈ Z, where i ̸= j, are connected provided the
following two conditions. Line-of-sight: Points Zi and Zj are
on the same street, meaning there exists an edge e ∈ E such
that Zi ∈ e and Zj ∈ e. Sufficient signal-to-interference: The
respective signal-to-interference values of the two points Zi

and Zj are larger than some threshold τ , meaning for Zi ̸= Zj ,
the condition

SINR(Zi, Zj) ≥ τ and SINR(Zj , Zi) ≥ τ , (3)

where
SINR(Zi, Zj) =

Pi,j

N + θIj,i
, (4)

and the interference term

Ij,i =
∑

Zk∈Z|e\{Zj}

Pk,j − Pi,j , (5)

and similarly for SINR(Zi, Zj). Here Z|e = Z∩e denotes the
users and relays Z located only on street e.

Our connectivity model will generate a graph G of streets
and crossroads, which is clearly a subgraph of the Poisson-



Voronoi street system S, meaning G ⊂ S. In the zero-
interference case θ = 0, our model reduces to the Gilbert-type
Poisson-Voronoi model proposed by Le Gall et al. [10], where
the Gilbert radius r = ℓ−1(Nτ/P ) . Clearly its connectivity
graph Gr is a subset of G, meaning the Gilbert-type Poisson-
Voronoi model is more percolatable, it percolates more easily
than our model.
D. Model considerations
1) Non-monotonic connectivity

What makes a signal-to-interference model challenging in
general is its inherent non-monotonic nature. For example,
given some receiver, increasing the signal strength of a
single transmitter will increase the value of the signal-to-
interference in relation to that transmitter, but it will decrease
the corresponding values of all the other transmitters. In other
words, if a signal-to-interference-based network is altered to
create a new connection, other connections may be broken
in the process. Creating a new connection in the network
may not increase the overall connectivity, whereas in more
purely geometric models new connections generally increase
the overall network connectivity.
2) Adding relays and users

Another important aspect of our model is the effects due to
the interference at crossroads coming from adjacent streets. In
terms of connectivity, adding a relay can open a crossroads,
thus potentially opening a previously closed street. However,
even if a street becomes open with this newly added relay,
the new relay can still create too much interference, closing
previously open streets. Adding a relay can open streets, close
streets, or have no effect on street connectivity.

There is a noteworthy distinction between placing additional
relays and users in a street system. Adding a user to a street
e can either open or close street e, or have no effect. But the
signal from the newly added user will increase interference
at the crossroads at both ends of the street e, and these street
ends are crossroads; see Figure 1. Adding a user to street e can
open or close street e, but it can only close the immediately
adjacent streets of street e, in addition to having no effect on
street connectivity.
3) Poisson-Voronoi statistics

Researchers have derived analytic expressions for many of
the statistics of the Voronoi tessellation (or mosaic) based on
a homogeneous Poisson point process. For a Poisson-Voronoi
tessellation on the plane R2, the intensity (or the average
density) of vertices is λ0 = 2λS , where λS is the (spatial)
intensity of the underlying Poisson point process.

When we consider a single Voronoi cell, we speak of the
typical cell, where typical is made formal by the concept of
the Palm distribution in point process theory. The average
length of the typical edge in the Poisson-Voronoi tessellation
is ℓ1 = 2/(3

√
λS) . The line intensity is the average total

edge length per unit area, given by γ = 2
√
λS , which implies

ℓ1 = 4/(3γ) . A more mathematically precise definition of γ
is given by Le Gall et al. [17, Section II.C.1]. We also refer
to the standard texts in stochastic geometry by Schneider and

Weil [27, pages 461 and 477 ] or Chiu, Stoyan, Kendall, and
Mecke [28, pages 357, 368 and 377].
4) Scaling and model parameters

Our street system S coupled with the users and re-
lays exhibits scale invariance. This invariance inspired re-
searchers [10], [17] to introduce the dimensionless parameter

U =
4

3

λ

γ
= λℓ1 , (6)

which is the average number of users on a typical street in our
street system S. In the zero-interference case θ = 0, another
dimensional parameter appears H = (4/3)/(rγ) = ℓ1/r,
which is the average number of hops to traverse a typical
street with length ℓ1 under the Gilbert-type model with radius
r.
5) Losing scale invariance

The noise term in the signal-to-interference-plus-noise ex-
pression (1) removes scale invariance in our model, as the
noise is being compared to the signal attenuation through
addition. (The noise N term can be calculated on different
length scales because energy or power scales according to
length squared. ) The scale invariance also disappears through
the path loss function. Although much research has used the
singular and scale invariant path loss model ℓ(d) = 1/(d)−β ,
we need the emitting power to equal the received power
at d = 0, meaning ℓ(0) = 1 (and we cannot enforce a
lower bound on possible distances d between receivers and
transmitters). We use a non-singular path loss model such as
ℓ(d) = 1/(1+d)−β , which is not scale invariant as the distance
d is now being added to one.

III. SIMULATION METHODS

Our model has several components depending on different
parameters. The street system depends on the parameter λS .
The user locations depend on the parameters λS and λ. The
relay locations depend on the parameters λS and p. The
signal-to-interference connectivity depends on the path-loss
model ℓ (which contains parameters such as β and κ) and
the parameters θ and τ , and the noise term N . Percolation
occurring depends on all these model components and their
aforementioned parameters. These observations leads to our
simulation method consisting of several steps.
A. Generating a Poisson-Voronoi tessellation

There are simulations methods for generating Poisson-
Voronoi cells without edge effects. But in our percolation
model, we want to examine truncated Voronoi tessellations,
as we want to study connectivity across a square simulation
window. Using such window crossings is one of the standard
approaches for studying percolation via simulations [21].

For our square simulation window W1, we surround it
with eight translated windows W2, . . . ,W9 of equal size,
creating one large square simulation window W = ∪9

i=1Wi

. We generate a Poisson point process of density λS on this
simulation window W . We find the corresponding Voronoi
diagram using a standard library function such as voronoin
in MATLAB or scipy.spatial.Voronoi in Python, noting that
both use the same underlying algorithm. We then truncate the



streets, leaving only streets completely inside W1 or truncated
streets that intersect with W1 in an effort to reduce edge
effects. (Interference contributions may come from relays and
users located outside of W1, while such edge effects are not
an issue in the zero-interference Gilbert model.)
B. Positioning relays and users

This is the most straightforward step. Every crossroads (or
vertex) is a potential relay with probability p, so we simple
simulate Bernoulli variable (that is, perform a coin toss) for
each crossroads. The users are positioned by simply simulating
a one-dimensional homogeneous Poisson point process on
every street. Users can be located on streets that extend beyond
the simulation window W .
C. Finding open and closed streets

To find which streets are open and closed, we first need
to calculate the signal-to-interference-plus-noise ratio at all
relays, where the interference comes from both relays and
users on common streets. Checking direct relay-to-relay com-
munication is then straightforward.

If direct relay-to-relay communication is not possible, then
we need to check if communication is possible through users.
But for users on any street, there are combination of ways
data can be relayed from one street end (or transmitting relay)
to the other street end (or receiving relay). The number of
combinations soon becomes unwieldy.

But we can use the fact that if data cannot be transmitted
from one relay to another relay on a shared street by trans-
mitting through every user on the street (using the maximum
number of hops), then it is impossible for the data to be
relayed between the two relays by transmitting through some
subset of users (using fewer hops). This claim is only true
provided, crucially, the path loss model is monotonic. (This
claim is no longer true, of course, if we were to include random
signal fading.) The reasoning is that, because all transmitters
have the same power, if a signal coming from an immediate
neighbour has an insufficiently strong signal-to-interference,
then another signal coming in the same direction from a more
distant neighbour cannot have a stronger signal-to-interference.
D. Tracking connectivity of the street system

We recall that the connectivity in our signal-to-interference
model is not monotonic. Other percolation models, such as the
Gilbert model, are monotonic, which allows the use of union-
find methods to quickly keep track of (connected) components.
In lieu of this, we can simply use in-built functions, such as
conncomp in MATLAB or connected components in Python
(NetworkX library), to find the largest component of the
network, which fortunately can be done quickly on a standard
desktop machine.
E. Determining if percolation occurs

There are a few ways to estimate when percolation occurs
in simulations. Researchers detailed three of them in a related
paper on device-to-device networks by Garfur et al. [20].
For our work, we will use the popular crossing method, as
detailed in the paper by Newman and Ziff [21]. (One of the
original appeals of this method is that for a specific percolation

problem, closed-form solutions exist for the so-called winding
probabilities on a torus.) We assume that percolation occurs
when there is a vertical or horizontal crossing (or both)
between one side of the square simulation window to another.

More precisely, we find the streets that intersect with
the four sides of the square simulation window (say, north,
east, south, and west). Then for, say, a vertical crossing, we
simply check if both the north and south sides intersect with
streets that form part of the (same) connected component,
and similarly for a horizontal crossing. If so, we then say
percolation has occurred in that simulation, as it is possible to
cross from north to south or east to west (or both).

For each simulation, we note if any crossings occur, and
then take the average to obtain the percolation probability. If
this connected probability is close to zero (for some tolerance),
we say no percolation occurs for given the parameter regime.
Conversely, if the connected probability is close to one (for
some tolerance), we say percolation has occurred. As we
expand the simulation window, the (empirical) connected
probabilities will approach zero and one, respectively.
F. Finding critical values of system parameters

Using the above approach, we can estimate when perco-
lation occurs for certain parameter regimes. We simply vary
a system parameter and observe when percolation occurs in
the network model. Mathematically, when percolation occurs,
there will be a sharp change from zero to one (or one to zero)
in the phase transition curve, formed from the parameter values
and connection probabilities, resembling a step function.

But this is not the case for simulations, where the phase
transition curve resembles a sigmoid curve (from zero to one),
such as that of the logistic function, or a reverse sigmoid
curve (from one to zero). We use this fact to estimate critical
values of the parameter of some statistic f(µ) (the percolation
probability in our case) that is some function of a system
parameter µ. We assume that the sigmoid curve of f(µ) allows
us to fit a statistical model based on the logistic function,
whose inverse is the logit function h(t) =: log[1/(1 − t)],
yielding the statistical fitting problem h[f(µ)] = aµ+ b . We
fit this logisitic model to the phase transition curve (using
standard fitting methods). We then say that the estimated
critical value µ∗ occurs at the inflection point of the fitted
curve (when the second derivative is zero), which happens
when t = 0.5, meaning h′′(0.5) = 0. In terms of the fitted
model’s parameters a and b, the critical value is estimated as
µ∗ = −b/a

G. Simulation code
The simulation code is online [29]. All simulations were

performed on a desktop computer, often using multi-core
processing. Simulation times ranged from a few minutes to
a couple of hours.

IV. RESULTS

We ran various simulations of our signal-to-interference-
plus-noise model based on a Poisson-Voronoi street system.
Naturally, when we set θ = 0, giving the zero-interference
case, we can completely reproduce the results of the Gilbert-



Fig. 2: p = 1 and θ = 0.004. The double criticality phenomenon appears
clearly here. The plateau between the two critical points is not very large :
percolation disappears due to interference for a moderate intensity of users

type model with the line-of-sight assumption, such as those
given by Gafur et al. [30, Table I] and Le Gall et al. [10] for
the Poisson-Voronoi street system.
A. Parameter values

For our simulation results, we seek to use parameter values
that reflect those used in models of real-world networks. We
choose the street intensity γ = 2

√
λS by setting the length of

a typical street ℓ1 = 4/(3γ) = 2/(3
√
λS). We set the mean

street length to be ℓ1 = 100 metres, which corresponds to
the city center of a medium sized city. We set the signal-to-
interference-plus-noise threshold τ = 1, giving a threshold of
zero decibels. We set the noise N = 10−8 milliwatts (or about
−81 dBm) and the signal power P = 1 milliwatt, giving the
dimensionless noise term N̄ = 10−8. We place a relay at each
crossroads by setting p = 1. We use the interference reduction
factor θ = 0.004.

We use the path loss function ℓ(d) = 1/(1 + κd)β , which
was also used by Dousse, Baccelli and Thiran [5]. For the
parameters β and κ, we can use the free-space path loss model,
due to the line-of-sight assumption, giving the values β = 2
and κ = (4π/λf )

2, where λf is the signal wavelength. For
fifth-generation (5G) networks, the scaling parameter κ will
range in the vicinity of one to two hundred inverse metres.
For the zero-interference case (θ = 0), our model becomes the
Gilbert-type model, which can be interpreted as a signal-to-
noise model such that ℓ(r) = N̄τ . If we set the Gilbert radius
r = ℓ1, then typically some users are needed to relay data
between two adjacent relays. (The average number of hops
will be H = 1.) Given N̄ = 10−8 and ℓ1 = 100 metres, the
scaling distance κ is essentially one hundred inverse metres,
because ℓ(100) = 1/(1 + 100κ)2 = N̄τ = 10−8, so we set
κ = 100 inverse metres.
B. Numerical results

Our parameter values gives us the curve in Figure 2, show-
ing connected probabilities plotted as a function of the user
numbers U on a typical street. There is no percolation when
there are no users, as the adjacent relays are too far apart to
transmit data. Adding users gives us our first (upward) sigmoid
curve, showing a sudden jump in connectivity as percolation
occurs in the network model. The critical value U∗

1 for this
percolation is about two users on a typical street of length one
hundred metres. This curve features a plateau corresponding
to a percolation regime. After percolation occurs, a second
(downward) sigmoid appears, indicating the sudden loss of

Fig. 3: Decreasing interference reduction factor θ from θ = 0.003 (on the
left) to θ = 0.002 (on the right), we see that the plateau enlarges, due to the
reduction in interference.

Fig. 4: Decreasing the threshold τ from τ = 0.829 (on the left) to τ = 0.658
(on the right), we see that the plateau grows in size because is now a weaker
requirement on the signal-to-interference-plus-noise.

percolation (and hence connectivity) due to interference from
users. This happens when the critical value U∗

2 ≈ 6, meaning
there are about six users (with the same operator) on a typical
street.

In Figure 3 we see that decreasing θ decreases the interfer-
ence. On the one hand, this slightly helps percolation to happen
(indicated by U∗

1 decreasing). But on the other hand delays,
decreasing θ also delays the disappearance of percolation, as
the value of U∗

2 increases. Hence, decreasing θ enlarges the
plateau the on both sides.

We also observe the effect of varying the the signal-to-
interference-plus-noise threshold τ . In Figure 4, we see that
decreasing the threshold τ allows for connections with weaker
signals, which helps the network model percolate. We can
compare these results with those in Figure 2, indicating that
U∗
1 decreases and U∗

2 increases as the threshold τ decreases.
We also observe other effects from varying the model

parameters. Figure 5 shows decreasing p slows the appearance
of percolation, as there are fewer relays.

Figure 6 shows that increasing the (path loss) scaling

Fig. 5: As we decrease relay probability p from p = 0.9 (on the left) to
p = 0.8 (on the right), percolation in the network almost disappears, as there
are fewer relays.



Fig. 6: Decreasing the scaling parameter κ from κ = 75.25 (on the left) to
κ = 50.50 (on the right) helps percolation to occur.

Fig. 7: Decreasing the noise ratio N̄ from N̄ = 0.7510−8 (on the left) to
N̄ = 0.510−8 (on the right).

parameter κ helps percolation. Indeed, decreasing κ increases
the Gilbert radius r0, so that percolation becomes easier,
compared to the percolation curve Figure 2. As we increase
κ, see that U∗

1 decreases and U∗
2 increases.

We see in Figure 7 that increasing P (by decreasing the
dimensionless noise term N̄ ) also helps percolation. Again,
compare this percolation curve to that in Figure 2, we see that
U∗
1 decreases and U∗

2 increases.
In Figure 8 we observe that very small changes in the path

loss exponent β have tremendous effects. Increasing β means
decreasing ℓ(d), which means at the same time decreasing the
effects of interference and decreasing the received power. But
there are fewer interferers present, because U is low, and their
distances to a receiver is greater than that of any transmitter,
such that the decrease in the received power is the main effect,
tending to break percolation as β increases. Since β = 2 seems
very near to the β threshold for percolation, the parameters
should be tuned thoroughly to study a given real situation.

From another point of view, for fixed U , we can look for
the θ values that allow percolation. We see in Figure 9 that
for U = 3.6 (a value generally near the middle of the plateau
in the preceding figures), a critical value of θ appears around

Fig. 8: β = 1.95 and β = 2.05. Two very different profiles for very close
values of β

Fig. 9: For U = 3.6, we can vary θ to find its critical value.

Fig. 10: By plotting θ as a function of U∗
1 and U∗

2 , we create a phase diagram
for our percolation model. For our network model, percolation occurs under
the curve, whereas percolation does not occur above the curve.

0.007.
Using the above approach of finding θ values, we can study

how the critical thresholds U∗
1 and U∗

2 evolve as we vary θ, as
illustrated in Figure 10. We see a curve very similar to the one
presented by by Dousse, Baccelli and Thiran [5, Figure 3].
Above the curve is the subcritical regime, where percolation
does not occur, whereas under the curve is the supercritical
regime, where percolation does occur. But the critical values
that make up the critical regime also depend on the parameters
p, β and κ, as we showed above.
C. Pole capacity and a bound on U∗

2

We can derive an upper bound on the second critical value
U∗
2 , which in turn gives an approximate upper bound on the

θ(U) curve plotted in Figure 10. The number of connections
received simultaneously on any receiver cannot be greater than
M =: 1 + 1/(θτ). Owing to the definition of the signal-to-
interference-plus-noise ratio and simple algebra, this simple
bound holds true regardless of any other parameter values,
including those of the path loss model. This observation is
sometimes called the pole capacity; for example, see the
monograph [31, Lemma 5.1.2], as well as its application in
the aforementioned percolation work by Dousse, Baccelli and
Thiran [5, Theorem 1].

For our device-to-device network model, this bound implies
that a user, say, x can connect up to M/2 users behind user x
and up to M/2 users in front of user x, while trying to relay
data between some of the users. On average, these M/2 users
give user x a communication range of 1/λ × M/2 distance
(behind and in front). Users on every street form a Poisson
point process with intensity λ, so we can on average find a
user over a distance 1/λ. When the user density λ increases,
the communication range 1/λ×M/2 decreases to zero. This
relationship captures the decrease in communication range due
to the increasing interference as the user numbers increase.
However, if there are too many users, the communication range
becomes so small that even the (more percolatable) Gilbert-



type Poisson-Voronoi model (θ = 0) does not percolate.
For this Gilbert-type model, let r∗ = r∗(λ) denote the

critical range for the user density λ. We have a necessary
condition, such that that λ is not too large to make the range
too small, a requirement that is roughly expressed above as
r∗(λ) > 1/λ × M/2. We can reformulate this condition in
terms of the number of users U per typical street and the
number of hops H needed to traverse the typical street with
Gilbert radius r. We write U∗ = U∗(H) to denote the critical
number of users per typical street needed for percolation in
the Gilbert-type Poisson-Voronoi model, which is a function
of H . This leads to the bound

U∗(H) <
HM

2
=

H

2
(1 + 1/(θτ))) . (7)

For small values of the product θτ , we obtain the bound
U∗(H) < (θτ)−1/2H . The function U∗(H) is plotted in
the related work by Le Gall et al. [17, Figure 5a]. This
function can be used to derive a bound on the relation
between θτ and U for the percolation. Our necessary condition
U∗(H) < Hθτ/2 is equivalent to U∗(H) being below the
linear function H(θτ)−1/2. For example, for τθ = 6/1000
we obtain the linear function 1000/(2×6) = 83, giving gives
a line for Hθτ/2 that is too steep to be able to observe it
intersecting with the curve U∗(H) given in the aforementioned
work [17, Figure 5a]. The linear function 10/3.5H = 2.8H
intersects with U∗(H) at H = 3.5, predicting the maximum
U∗(3.5) = 10 users per street for percolation with the value
(1 + 1/τθ)/2 = 2.8, resulting in θτ = 0.217. This line of
inquiry deserves further attention beyond the scope of the
current work.

V. CONCLUSION

We presented a new model by incorporating interference
into the line-of-sight (continuum) percolation model presented
by Le Gall, Błaszczyszyn, Cali and En-Najjary [10]. Given
interference, we observed the double phenomenon of both
percolation appearance and disappearance in our network
model when varying the user density. Users are needed to
relay data along longer streets, but too many users decreases
connectivity due to increased interference.

We also showed that percolation depends mainly on the in-
terference reduction parameter θ whose critical value depends
on the other model parameters. However, the parameters can
vary greatly due to, for example, the wide frequency range of
fifth-generation networks. We note that network researchers
and operators should study the network with the relevant
parameters to determine the maximum value of the interfer-
ence reduction parameter θ for enabling network percolation
and, hence, network connectivity. One natural line of inquiry
is to adapt the street models, such as a Poisson-Delaunay
tessellation or Poisson line process, for different city types.

REFERENCES

[1] B. Błaszczyszyn, E. Cali, and H. P. Keeler, “Signal-to-interference
percolation on Poisson–Voronoi tessellations,” Manuscript, 2023.

[2] G. Grimmett, Percolation. Springer, 1999.
[3] R. Meester and R. Roy, Continuum percolation. Cambridge University

Press, 1996, vol. 119.

[4] E. N. Gilbert, “Random plane networks,” Journal of the society for
industrial and applied mathematics, vol. 9, no. 4, pp. 533–543, 1961.

[5] O. Dousse, F. Baccelli, and P. Thiran, “Impact of interferences on con-
nectivity in ad hoc networks,” IEEE/ACM Transactions on networking,
vol. 13, no. 2, pp. 425–436, 2005.

[6] O. Dousse, M. Franceschetti, N. Macris, R. Meester, and P. Thiran,
“Percolation in the signal to interference ratio graph,” Journal of applied
probability, vol. 43, no. 2, pp. 552–562, 2006.

[7] M. Franceschetti and R. W. Meester, Random networks for communica-
tion. Cambridge University Press, 2007.

[8] J. Møller, Lectures on Poisson-voronoi tessellations. Springer, 1994.
[9] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations:

Concepts and Applications of Voronoi Diagrams. Wiley Online Library,
2000.

[10] Q. Le Gall, B. Błaszczyszyn, E. Cali, and T. En-Najjary, “Continuum
line-of-sight percolation on poisson–voronoi tessellations,” Advances in
Applied Probability, vol. 53, no. 2, pp. 510–536, 2021.

[11] C. Gloaguen and E. Cali, “Cost estimation of a fixed network deploy-
ment over an urban territory,” Ann. des Télécommunications, vol. 73,
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