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Abstract—We study joint downlink-uplink beamforming de-
sign for wireless federated learning (FL) with a multi-antenna
base station. Considering analog transmission over noisy channels
and uplink over-the-air aggregation, we derive the global model
update expression over communication rounds. We then obtain
an upper bound on the expected global loss function, capturing
the downlink and uplink beamforming and receiver noise effect.
We propose a low-complexity joint beamforming algorithm to
minimize this upper bound, which employs alternating opti-
mization to breakdown the problem into three subproblems,
each solved via closed-form gradient updates. Simulation under
practical wireless system setup shows that our proposed joint
beamforming design solution substantially outperforms the con-
ventional separate-link design approach and nearly attains the
performance of ideal FL with error-free communication links.

I. INTRODUCTION

Federated learning (FL) [1] is a widely recognized machine

learning method to process training data locally at multiple

worker nodes. In FL, a parameter server organizes the worker

nodes to train a machine learning (ML) model collaboratively

using their local datasets. In the wireless environment, the

parameter server can be taken up by a base station (BS),

which exchanges model parameters with participating devices

through wireless communication [2]. However, the fluctuation

of the wireless link and noisy reception bring distortion,

leading to degraded FL performance. Furthermore, practical

wireless systems are limited in transmission power and band-

width. This necessitates efficient communication design to

effectively support FL, which requires frequent exchange of

a massive number of parameters.

Many existing works have considered improving the com-

munication efficiency of FL over wireless channels [3]–[10].

Various digital transmission-then-aggregation schemes were

proposed for uplink acquisition of local parameters from

devices to the BS [3]. Such schemes use conventional dig-

ital transmission via orthogonal channels and can consume

a large bandwidth and incur high latency as the number

of devices becomes large. Later, analog transmission-and-

aggregation schemes were proposed for the uplink [4]–[8].

These schemes use analog modulation and superposition for

over-the-air aggregation of local parameters via the multiple

access channel, substantially saving radio resources over the

digital schemes. However, these works only focused on the

uplink, while assuming an error-free downlink. Subsequently,
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noisy downlink transmission for FL was studied in [9] with

error-free uplink, where it was shown that since gradient

descent in FL is noise resilient, analog transmission can be

more efficient than digital transmission, even for the downlink.

In reality, downlink and uplink transmissions are intertwined

for parameter exchange in FL. The quality of one link direc-

tion affects the other. Furthermore, the noise and distortion

in one communication round propagate to all subsequent

communication rounds, which brings challenges to tractable

design and analysis. The literature on joint downlink-uplink

communication design for FL is scarce. The convergence of FL

with non-i.i.d. local datasets over noisy downlink and uplink

channels was recently studied in [10], where a simple generic

signal-in-noise receiver model was used to facilitate analysis

without involving actual transmission modeling or design.

Analog design was proposed for noisy downlink and uplink in

single-cell [11] or multi-cell [12] cases. However, both works

considered only single-antenna BSs, and their solutions and

convergence analysis are not applicable to the more practical

scenario with a multi-antenna BS. For multi-antenna commu-

nication, transmit and receive beamforming are key techniques

to enhance the communication quality. While beamforming

was considered in [9] for FL downlink analog transmission and

in [4] for uplink over-the-air aggregation, there is no existing

work on joint downlink-uplink beamforming design.

In this paper, we study joint downlink-uplink beamforming

design to improve the performance of wireless FL with a

multi-antenna BS. We consider noisy analog transmission in

both directions and uplink over-the-air aggregation for band-

width efficiency. We obtain the overall FL global model update

over each communication round, capturing the impact of noisy

downlink-uplink transmission and local model updates on FL

model training. Aiming to maximize the training convergence

rate, we then derive an upper bound on the expected global

loss function after T rounds, and propose a low-complexity

joint downlink-uplink beamforming (JDU-BF) algorithm to

minimize the upper bound under transmit power constraints

at the BS and devices. JDU-BF employs the alternating opti-

mization (AO) technique to decompose the joint optimization

problem into three subproblems and solve each via projected

gradient descent (PGD) [13] with fast closed-form updates.

Our simulation results under typical wireless network settings

show that JDU-BF outperforms the conventional separate-link

design and provides learning performance close to ideal FL

with error-free communication links.
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II. SYSTEM MODEL

A. FL System

We consider FL in a wireless network consisting of a server

and K worker devices. Let K = {1, . . . ,K} denote the set of

devices. Each device k ∈ K holds a local training dataset of

size Sk, denoted by Sk = {(sk,i, vk,i) : 1 ≤ i ≤ Sk}, where

sk,i ∈ Rb is the i-th data feature vector and vk,i is the label for

this data sample. Using their respective local training datasets,

the devices collaboratively train a global model at the server,

represented by the parameter vector θ ∈ RD, which predicts

the true labels of data feature vectors, while keeping their local

datasets private. The local training loss function that represents

the training error at device k is defined as

Fk(θ) =
1

Sk

Sk∑

i=1

L(θ; sk,i, vk,i) (1)

where L(·) is the sample-wise training loss associated with

each data sample. The global training loss function is given

by the weighted sum of the local loss functions over all K
devices:

F (θ) =

K∑

k=1

Sk

S
Fk(θ) (2)

where S =
∑K

k=1 Sk is the total number of training samples

of all devices. The learning objective is to find the optimal

global model θ⋆ that minimizes F (θ).
The devices communicate with the server via noisy down-

link and uplink wireless channels to exchange the model

update information iteratively for model training. The iterative

FL model training procedure in each downlink-uplink commu-

nication round t is given as follows:

• Downlink broadcast: The server broadcasts the current

global model parameter vector θt to all K devices via

the downlink channels;

• Local model update: Each device k performs local train-

ing independently using its dataset Sk, based on the

received global model θt. In particular, the device uses

the mini-batch approach to divide Sk into mini-batches

for its local model update, where it performs J iterative

local updates and generates the updated local model θJ
k,t;

• Uplink aggregation: The devices send their updated local

models {θJ
k,t}k∈K to the server via the uplink channels.

The server aggregates θJ
k,t’s to generate an updated global

model θt+1 for the next communication round t+ 1.

B. Wireless Communication Model

We consider a practical wireless communication system

where the server is hosted by a BS equipped with N antennas,

and each device has a single antenna. The system operates in

the time-division duplex (TDD) mode, which is typical for

5G wireless systems. With multiple antennas, the BS uses

downlink beamforming to broadcast the global model update

θt and applies uplink receiver beamforming to process the

received signal from K devices for the global model update.

For the model updating between the BS and devices in

the FL system, we consider analog communication for trans-

mitting the updated global/local models. Specifically, the BS

and devices send the respective values of θt and {θJ
k,t}k∈K

directly under their transmit power budgets. Furthermore, for

the uplink aggregation of the local models, to efficiently

use the communication bandwidth, we consider over-the-air

computation via analog aggregation over the multiple access

channel. Specifically, the devices send their local model θJ
k,t’s

to the BS simultaneously over the same frequency resources,

and θ
J
k,t’s are aggregated over the air and received at the BS.

Note that the control and signaling channels of the system

are still communicated using digital transmissions and are

assumed to be perfect.

Due to the noisy communication channels, the received

model updates over downlink and uplink are the distorted

noisy versions of θt and {θJ
k,t}k∈K, respectively. The errors in

the model updates further propagate over subsequent commu-

nication rounds for FL model training, degrading the learning

performance. In this paper, we focus on the communication

aspect of FL model training. Specifically, our goal is to jointly

design downlink and uplink beamforming to maximize the

learning performance of FL over wireless transmissions.

III. DOWNLINK-UPLINK TRANSMISSIONS FOR FL

We now formulate the transmission and reception process

with downlink and uplink beamforming for the FL model up-

date in one communication round. As mentioned in Section II,

each communication round involves three steps. We present

each step in detail below.

A. Downlink Broadcast

At the start of round t, the BS has the current global

model, denoted by θt = [θ1,t, . . . , θD,t]
T . For efficient trans-

mission, we convert θt into a complex signal vector, whose

real and imaginary parts contain half of the elements in θt.

Specifically, we can re-express θt = [(θ̃re
t )

T , (θ̃im
t )T ]T , where

θ̃
re
t , [θ1,t, . . . , θD

2
,t]

T , and θ̃
im
t , [θD

2
+1,t, . . . , θD,t]

T . Let

θ̃t denote the equivalent complex vector representation of θt,

which is given by θ̃t = θ̃
re
t + jθ̃im

t ∈ C
D
2 .

For a TDD system, channel reciprocity holds for downlink

and uplink channels. Thus, let hk,t ∈ CN denote the channel

vector between the BS and device k ∈ K for both downlink

and uplink transmissions in round t. We assume {hk,t}k∈K

remain unchanged during round t and are known perfectly

at the BS and the respective devices. The BS sends the

complex global model parameter vector θ̃t to the K devices

via multicast beamforming. At round t, the received signal

vector at device k is given by

uk,t = (wdl
t )

Hhk,tθ̃t + ndl
k,t

where wdl
t ∈ CN is the downlink multicast beamforming

vector at round t, ndl
k,t ∈ C

D
2 is the receiver additive white

Gaussian noise (AWGN) vector with i.i.d. elements that are

zero mean with variance σ2
d . The beamforming vector is

subject to the BS transmit power budget. Let DP dl be the



transmit power budget at the BS for sending the global model

θ̃t in D channel uses, where P dl denotes the average transmit

power limit per channel use. Then, for transmitting θ̃t, w
dl
t is

subject to the transmit power constraint ‖wdl
t ‖2‖θ̃t‖2 ≤ DP dl.

The BS also sends the scaling factor
hH

k,tw
dl
t

|hH
k,t

wdl
t |

2
to device k

via the downlink signaling channel to facilitate the receiver

processing. Device k post-processes the received signal uk,t

using the received scaling factor and obtains

ˆ̃
θk,t =

hH
k,tw

dl
t

|hH
k,tw

dl
t |2

uk,t = θ̃t + ñdl
k,t (3)

where ñdl
k,t ,

hH
k,tw

dl
t

|hH
k,t

wdl
t |

2
ndl
k,t is the post-processed noise vector

at device k. By the equivalence of real and complex signal

representations between θt and θ̃t, device k obtains the

estimate of the global model θt, denoted by θ̂k,t, given by

θ̂k,t =
[
Re

{ˆ̃
θk,t

}T
, Im

{ˆ̃
θk,t

}T ]T
= θt + n̂dl

k,t (4)

where n̂dl
k,t , [Re{ñdl

k,t}T , Im{ñdl
k,t}T ]T .

B. Local Model Update

Based on θ̂k,t in (4), device k performs local model training.

We assume each device adopts the mini-batch stochastic gra-

dient descent (SGD) algorithm to minimize the local training

loss function Fk(θ) [14]. The mini-batch SGD is a widely

adopted training method for ML tasks. It uses a subset of the

training dataset to compute the gradient update at each itera-

tion and achieves a favorable tradeoff between computational

efficiency and convergence rate. In particular, assume that each

device applies J mini-batch SGD iterations for its local model

update in each communication round. Let θ
τ
k,t be the local

model update by device k at iteration τ ∈ {0, . . . , J − 1},
with θ

0
k,t = θ̂k,t, and let Bτ

k,t denote the mini-batch, i.e., a

subset of Sk , at iteration τ +1. Then, the local model update

is given by

θ
τ+1
k,t = θ

τ
k,t − ηt∇Fk(θ

τ
k,t;Bτ

k,t)

= θ
τ
k,t −

ηt
|Bτ

k,t|
∑

(s,v)∈Bτ
k,t

∇L(θτ
k,t; s, v) (5)

where ηt is the learning rate at communication round t, and

∇Fk and ∇L are the gradient functions w.r.t. θτ
k,t. After J

iterations, device k obtains the updated local model θJ
k,t.

C. Uplink Aggregation

The devices send their updated local models {θJ
k,t}k∈K to

the BS over their uplink channels and perform over-the-air

aggregation. For efficient transmission similar to the downlink,

we represent θ
J
k,t using a complex vector, with the real

and imaginary parts of the vector containing the first and

second half of the elements in θ
J
k,t, respectively. Specifically,

we re-write θ
J
k,t = [(θ̃J,re

k,t )
T , (θ̃J,im

k,t )T ]T , where θ̃
J,re
k,t ,

[θJk1,t, . . . , θ
J
kD

2
,t
]T and θ̃

J,im
k,t , [θJ

k(D
2
+1),t

, . . . , θJkD,t]
T .Then,

we have the equivalent complex vector representation of θJ
k,t,

defined by θ̃
J
k,t = θ̃

J,re
k,t + jθ̃J,im

k,t ∈ C
D
2 .

Transmitting θ̃
J
k,t from device k to the BS over its uplink

channel requires D
2 channel uses, one for each element in

θ̃
J
k,t. At channel use l, the received signal vector at the BS,

denoted by vl,t, is given by

vl,t =

K∑

k=1

hk,tak,tθ̃
J
kl,t + uul

l,t

where ak,t ∈ C is the transmit beamforming weight at

device k, and uul
l,t ∈ CN is the receiver AWGN vector with

i.i.d. elements that are zero mean with variance σ2
u . The BS

applies receive beamforming to the received signal vl,t over

N antennas, for l = 1, . . . , D2 , to obtain a weighted sum of

θ̃
J
k,t’s from all k ∈ K. Let wul

t ∈ CN be the unit-norm receive

beamforming vector at the BS at round t, with ‖wul
t ‖2 = 1.

The post-processed received signal vector over all D
2 channel

uses is given by

zt =

K∑

k=1

(wul
t )

Hhk,tak,tθ̃
J
k,t + nul

t (6)

where nul
t ∈ C

D
2 is the post-processed receiver noise with

the l-th element being (wul
t )

Huul
l,t, for l = 1, . . . , D2 . Define

αul
k,t , (wul

t )
Hhk,tak,t, which represents the effective channel

from device k to the BS after applying transmit and receive

beamforming. Following this, we re-write (6) as

zt =
K∑

k=1

αul
k,tθ̃

J
k,t + nul

t . (7)

We consider uplink joint transmit and receive beamforming,

where {ak,t}k∈K and wul
t are designed jointly. For over-the-

air aggregation, the local models θ̃
J
k,t’s need to be added up

coherently. Thus, the transmit and receive beamforming design

should ensure that the resulting effective channels, αul
k,t’s, are

phase aligned. For this purpose, the transmit beamforming

weight at device k is set to ak,t =
√
pk,t

hH
k,tw

ul
t

|hH
k,t

wul
t |

, where pk,t

is the transmit power scaling factor for device k at round t.
Following this, the effective channels of all devices are phase

aligned to 0 after receive beamforming, i.e., αul
k,t is real-valued:

αul
k,t = (wul

t )
Hhk,tak,t =

√
pk,t|hH

k,tw
ul
t |, k ∈ K.

Furthermore, each device is subject to transmit power budget.

Let DP ul
k be the transmit power budget at device k for sending

each local model in D channel uses, where P ul
k denotes

the average transmit power budget per channel use. Then,

for transmitting θ̃
J
k,t, we have the transmit power constraint

pk,t‖θ̃J
k,t‖2 ≤ DP ul

k .

At the BS receiver, after receive beamforming, the BS

further scales zt in (7) to obtain the complex equivalent

global model update for the next round t+ 1:

θ̃t+1 =
zt

∑K
k=1 α

ul
k,t

=
K∑

k=1

ρk,tθ̃
J
k,t + ñul

t (8)

where ρk,t,
αul

k,t∑
K
j=1

αul
j,t

,
∑K

k=1ρk,t=1, and ñul
t ,

n
ul
t∑

K
k=1

αul
k,t

.

From the local model update in Section III-B, let ∆θ̃k,t =
θ̃
J
k,t − θ̃

0
k,t denote the equivalent complex representation of



the local model change after the local training at device k
in round t. Based on this and (3), we can express the global

model θ̃t+1 in (8) in terms of θ̃t in round t as

θ̃t+1 = θ̃t +
K∑

k=1

ρk,t∆θ̃k,t +
K∑

k=1

ρk,tñ
dl
k,t + ñul

t . (9)

Finally, the real-valued global model update θt+1 for

round t + 1 is recovered from θ̃t+1 as θt+1 =
[Re{θ̃t+1}T , Im{θ̃t+1}T ]T .

Remark 1. The global model updating equation in (9) is

derived from the entire round-trip FL procedure, including

downlink-uplink transmission and the local model update at

devices. The second term represents the aggregated update

from the local training at K devices obtained via uplink

transmission. The third and fourth noise terms reflect how

the noisy downlink and uplink transmissions affect the global

model update. Overall, the updating equation (9) shows how

local model updates contribute to the global model update

under the noisy communication channel and transmitter and

receiver processing.

IV. JOINT DOWNLINK-UPLINK BEAMFORMING DESIGN

In this paper, we consider the design of the communication

aspect of the FL system, aiming to maximize the training

convergence rate. In particular, we jointly design the downlink

and uplink beamforming to minimize the expected global

loss function after T rounds. Let T = {0, . . . , T − 1}. The

optimization problem is formulated as

Po : min
{wdl

t ,w
ul
t ,pt}t∈T

E[F (θT )] (10)

s.t. ‖wdl
t ‖2‖θt‖2 ≤ DP dl, t ∈ T , (11)

pk,t‖θJ
k,t‖2 ≤ DP ul

k , k ∈ K, t ∈ T , (12)

‖wul
t ‖2 = 1, t ∈ T (13)

where E[·] is the expectation taken w.r.t. receiver noise and

mini-batch sampling in local training at each device, and

pt , [p1,t, . . . , pK,t]
T contains the uplink transmit power

scaling factors of all K devices at round t. Constraints in

(11) and (12) are the transmit power constraints at the BS and

each device k, respectively, and constraint in (13) specifies the

receive beamforming vector at the BS to be unit-norm.

Problem Po is a finite-horizon stochastic optimization prob-

lem, which is challenging to solve. To tackle this problem,

we develop a more tractable upper bound on E[F (θT )] by

analyzing the convergence rate of the global loss function,

and then we develop a joint downlink-uplink beamforming

algorithm to minimize this upper bound.

A. Convergence Analysis on Global Training Loss

Let F ⋆ denote the minimum global loss under the optimal

model θ
⋆. To examine the expected global loss function

E[F (θT )] in the FL system described in Section II, we can

equivalently analyze E[F (θT )]−F ⋆, i.e., the expected gap of

the global loss function at round T to the minimum global

loss, based on the global model updates {θt} obtained in

Section III. We first make the following three assumptions on

the local loss functions, the SGD, and the difference between

the global and weighted average of the local loss functions.

These assumptions are commonly adopted for the convergence

analysis of the FL model training [9], [11], [12].

Assumption 1. The local loss functions Fk(·)’s are differen-

tiable and are L-smooth: Fk(y) ≤ Fk(x)+(y−x)T∇Fk(x)+
L
2 ‖y − x‖2, ∀ k ∈ K, ∀ x,y ∈ RD. Also, Fk(·)’s are λ-

strongly convex: Fk(y) ≥ Fk(x)+(y−x)T∇Fk(x)+
λ
2 ‖y−

x‖2, ∀ k ∈ K, ∀ x,y ∈ RD.

Assumption 2. The mini-batch SGD is unbiased:

EB[∇Fk(θ
τ
k,t;Bτ

k,t)] = ∇Fk(θ
τ
k,t), ∀ k ∈ K, ∀ τ, t. The

variance of the mini-batch stochastic gradient is bounded by µ:

For ∀ k ∈ K, ∀ τ, t, E[‖∇Fk(θ
τ
k,t;Bτ

k,t)−∇Fk(θ
τ
k,t)‖2] ≤ µ.

Assumption 3. The gradient divergence is bounded by δ: For

∀ k ∈ K, ∀ τ, t, E[‖∇F (θt) −
∑K

k=1 φk∇Fk(θt)‖2] ≤ δ,

where φk ∈ R, φk ≥ 0, and
∑K

k=1 φk = 1.

We now evaluate the expected gap E[F (θT )]−F ⋆ through

the training loss convergence rate analysis. We point out that

although different bounds on this expected gap have been

derived in the literature, they are based on either idealized or

simplified communication link models without multi-antenna

processing effects. Based on the global model update obtained

in (9), we first bound the expected change of the global loss

function in two consecutive rounds as

E[F (θt+1)− F (θt)] =

K∑

k=1

Sk

S
E[Fk(θt+1)− Fk(θt)]

(a)

≤ E[(θt+1 − θt)
T∇F (θt)] +

L

2
E[‖θt+1 − θt‖2] (14)

(b)
= Re{E[(θ̃t+1 − θ̃t)

H∇F̃ (θt)]} +
L

2
E[‖θ̃t+1 − θ̃t‖2]

(c)
=Re

{

E

[( K∑

k=1

ρk,t∆θ̃k,t+

K∑

k=1

ρk,tñ
dl
k,t+ñul

t

)H

∇F̃ (θt)

]}

︸ ︷︷ ︸

,A1,t

+
L

2
E

[∥
∥
∥
∥

K∑

k=1

ρk,t∆θ̃k,t+

K∑

k=1

ρk,tñ
dl
k,t+ñul

t

∥
∥
∥
∥

2]

︸ ︷︷ ︸

,A2,t

. (15)

where (a) follows the L-smoothness of Fk(·)’s in Assump-

tion 1 and the fact that ∇F (θ) = ∑K
k=1

Sk

S
∇Fk(θ) following

(2), (b) is the equivalent expression of (14) by using the

equivalent complex representation θ̃t of θt, where ∇F̃ (θt)
denotes the equivalent complex representation of the global

loss gradient ∇F (θt) in round t, and (c) is obtained following

the global model update in (9). The upper bound in (15)

clearly shows the effects of noisy channels and multi-antenna

transmit/receive beamforming processing at both downlink and

uplink on the loss function. Note that A1,t and A2,t defined

in (15) are functions of the aggregated local model change,

the downlink-uplink transmission processing, and the receiver

noise at round t. Next, we bound A1,t and A2,t separately.



For A1,t, since the receiver noise at the devices and the BS

are zero mean and independent of ∇F̃ (θt), we have

A1,t = Re

{

E

[( K∑

k=1

ρk,t∆θ̃k,t

)H

∇F̃ (θt)
]}

(16)

= E

[( K∑

k=1

ρk,t∆θk,t

)T

∇F (θt)
]

(17)

where ∆θk,t , θ
J
k,t − θ

0
k,t is the real-valued local model

change after the local training at device k in round t, and

(17) is the equivalent expression of (16) by using the real-

value parameters. Based on the mini-batch SGD from (5), we

have ∆θk,t = −ηt
∑J−1

τ=0 ∇Fk(θ
τ
k,t;Bτ

k,t).
Based on Assumptions 1–3, we provide an upper bound on

A1,t, which is stated in the following lemma. Detailed proof

is omitted. Part of our proof has used some techniques in [11,

Th. 1] (similarly for the proof of Lemma 2).

Lemma 1. Consider the FL system described in Section III

and Assumptions 1–3. Let Qt , 1 − 4η2t J
2L2 and assume

ηtJ <
1
2L , ∀ t ∈ T . Then, A1,t is upper bounded as

A1,t ≤ ηtJ
(

2

Qt

− 5

2

)

E
[
‖∇F (θt)‖2

]

+
D(1 −Qt)

4ηtJQt

K∑

k=1

ρk,tσ
2
d

|hH
k,tw

dl
t |2

+
ηtJ

2

(
δ + µ

Qt

+
δ − µ
2

)

. (18)

Note that for the bound in (18), ηt and J are parameters

set in the SGD for the local model update at each device, and

L, µ, δ are parameters specified in Assumptions 1–3.

For A2,t, since the receiver noise at the BS is zero mean

and independent of
∑K

k=1 ρk,t(∆θ̃k,t + ñdl
k,t), we have

A2,t = E

[∥
∥
∥
∥

K∑

k=1

ρk,t(∆θ̃k,t+ñdl
k,t)

∥
∥
∥
∥

2]

+E[‖ñul
t ‖2]

= E

[∥
∥
∥
∥

K∑

k=1

ρk,t(∆θ̃k,t+ñdl
k,t)

∥
∥
∥
∥

2]

+
Dσ2

u

2(
∑K

k=1 α
ul
k,t)

2
. (19)

Based on Assumptions 1–3, we can upper bound A2,t as

shown in the following lemma. Detailed proof is omitted.

Lemma 2. Consider the FL system described in Section III

and Assumptions 1–3 and assume ηtJ <
1
2L , ∀ t ∈ T . Then,

A2,t is upper bounded as

A2,t≤
2

L2

(
1−Qt

Qt

)

E[‖∇F (θt)‖2]

+D

(
1−Qt

Qt

K∑

k=1

ρk,tσ
2
d

|hH
k,tw

dl
t |2

+

K∑

k=1

ρ2k,tσ
2
d

|hH
k,tw

dl
t |2

)

+
Dσ2

u

2(
∑K

k=1α
ul
k,t)

2
+

1−Qt

2L2Qt

((

1−Qt +
Qt

J

)

µ+ 4δ

)

. (20)

We now analyze the expected gap E[F (θT )]−F ⋆ at round

T . From (15), the expected gap at round t+ 1 is bounded as

E[F (θt+1)]− F ⋆ ≤ E[F (θt)]− F ⋆ +A1,t +
L

2
A2,t. (21)

Using Lemmas 1 and 2, we can further bound the right hand

side (RHS) of (21). Summing up both sides over t ∈ T
and rearranging the terms, we can obtain the upper bound

on E[F (θT )]− F ⋆, which is stated in Proposition 1 below.

Proposition 1. For the FL system described in Section III,

under Assumptions 1–3 and for 1
10L ≤ ηtJ < 1

2L , ∀ t ∈ T , the

expected gap E[F (θT )] − F ⋆ after T communication rounds

is upper bounded by

E[F (θT )]− F ⋆≤ Γ

T−1∏

t=0

Gt+ Λ+

T−2∑

t=0

H(wdl
t ,w

ul
t ,pt)

T−1∏

s=t+1

Gs

+H(wdl
T−1,w

ul
T−1,pT−1) (22)

where Γ , E[F (θ0)] − F ⋆, Λ ,
∑T−2

t=0 Ct

(∏T−1
s=t+1Gs

)
+

CT−1 with

Gt ,
1−Qt

4ηtJλQt

(
5(1−Qt) + 4

√

1−Qt − 1
)
+ 1,

Ct ,
ηtJ

2

(δ + µ

Qt

+
δ−µ
2

)

+
1−Qt

2L2Qt

((

1−Qt+
Qt

J

)

µ+4δ
)

,

and H(wdl
t ,w

ul
t ,pt) is defined in (23).

Proof: See Appendix A.

Note that the upper bound for E[F (θT )] − F ⋆ in (22)

reflects how the downlink-uplink transmission and the local

training affect the convergence of the global model update.

In particular, the first term shows the impact of the initial

starting point θ0. The second term Λ is a weighted sum of

Ct’s, each accounting for the gradient divergence of the local

loss function from the global loss function using the mini-

batch SGD during the local model updates amongK devices in

round t.1 The third term is a weighted sum of H(wdl
t ,w

ul
t ,pt),

where H(wdl
t ,w

ul
t ,pt) in (23) is in the form of a weighted sum

of the inverse of SNRs (i.e., noise-to-signal ratio). Two types of

SNRs are shown: the terms with σ2
d reflect the post-processing

SNR at the BS receiver due to the downlink device receiver

noise (after downlink and uplink beamforming and receiver

processing), and the term with σ2
u shows the post-processing

SNR at the BS receiver due to the BS receiver noise in the

uplink after receiver beamforming and processing.

The upper bound given in Proposition 1 is in a more

tractable form for the expected gap E[F (θT )]−F ⋆ that we can

use for the optimization design. In the following, we directly

minimize this upper bound to obtain a joint downlink and

uplink beamforming solution.

B. Joint Downlink-Uplink Beamforming Algorithm

We now replace the objective function in Po with the upper

bound in (22). Define

Ψ({wdl
t ,w

ul
t ,pt})

,

T−2∑

t=0

H(wdl
t ,w

ul
t ,pt)

T−1∏

s=t+1

Gs +H(wdl
T−1,w

ul
T−1,pT−1).

1Recall that λ in the expression of Gt is specified in Assumption 1.



H(wdl
t ,w

ul
t ,pt) ,

LD

2

(

1−Qt+
√
1−Qt

Qt

)

σ
2

d

(

K
∑

k=1

√
pk,t|hH

k,tw
ul
t |

|hH
k,tw

dl
t |2

)

K
∑

k=1

√
pk,t|hH

k,tw
ul
t |

+
LD

2

σ
2

d

(

K
∑

k=1

pk,t|hH
k,tw

ul
t |2

|hH
k,tw

dl
t |2

)

+
σ2

u

2

( K
∑

k=1

√
pk,t|hH

k,tw
ul
t |
)

2
(23)

Omitting the constant terms Γ
∏T−1

t=0 Gt + Λ in (22), we

can equivalently minimize Ψ({wdl
t ,w

ul
t ,pt}). Thus, instead

of Po, we consider the following joint downlink and uplink

beamforming optimization problem

P1 : min
{wdl

t ,w
ul
t ,pt}

T−1

t=0

Ψ({wdl
t ,w

ul
t ,pt}) s.t. (11)(12)(13).

Problem P1 is a T -horizon joint optimization problem that

includes T communication rounds of the model update. Note

that in Proposition 1, for 1
10L ≤ ηtJ <

1
2L , we have Gt > 0,

∀ t ∈ T , and thus,
∏T−1

s=t+1Gs > 0 in Ψ({wdl
t ,w

ul
t ,pt}).

Thus, P1 can be decomposed into T subproblems, one for

each round t given by

Pt
2 : min

wdl
t ,w

ul
t ,pt

H(wdl
t ,w

ul
t ,pt)

s.t. ‖wdl
t ‖2‖θt‖2 ≤ DP dl, (24)

pk,t‖θJ
k,t‖2 ≤ DP ul

k , k ∈ K, (25)

‖wul
t ‖2 = 1. (26)

Note that H(wdl
t ,w

ul
t ,pt) in (22) is an involved non-convex

function of (wdl
t ,w

ul
t ,pt). It is difficult to find the optimal

solution to Pt
2 directly. Instead, we propose to use the AO

approach to solve Pt
2 w.r.t. the downlink beamforming wdl

t ,

and uplink beamforming (wul
t ,pt) alternatingly. Furthermore,

we propose to solve each AO subproblem via PGD [13].

To facilitate the computation in our algorithm, we express

all the complex quantities in Pt
2 using their real and imag-

inary parts. Define xdl
t , [Re{wdl

t }
T
, Im{wdl

t }
T
]T , xul

t ,

[Re{wul
t }

T
, Im{wul

t }
T
]T , and

Hk,t ,

[
Re{hk,th

H
k,t} −Im{hk,th

H
k,t}

Im{hk,th
H
k,t} Re{hk,th

H
k,t}

]

, k ∈ K, t ∈ T .

Then, we have ‖wdl
t ‖2 = ‖xdl

t ‖2, ‖wul
t ‖2 = ‖xul

t ‖2,

|hH
k,tw

dl
t |2 = (xdl

t )
THk,tx

dl
t , and |hH

k,tw
ul
t |2 = (xul

t )
THk,tx

ul
t .

Thus, we can express H(wdl
t ,w

ul
t ,pt) in (23) using the

corresponding real-valued vectors (xdl
t ,x

ul
t ,pt) by replacing

|hH
k,tw

dl
t | and |hH

k,tw
ul
t | in (23) with ((xdl

t )
THk,tx

dl
t )

1

2 and

((xul
t )

THk,tx
ul
t )

1

2 , respectively. Let Φ(xdl
t ,x

ul
t ,pt) denote this

resulting equivalent converted function from H(wdl
t ,w

ul
t ,pt).

Then, Pt
2 can be equivalently transformed into the following

problem with all real-valued optimization variables:

Pt
3 : min

xdl
t ,x

ul
t ,pt

Φ(xdl
t ,x

ul
t ,pt)

s.t. xdl
t ∈ X dl

t ,x
ul
t ∈ X ul

t ,pt ∈ Yt
where X dl

t , {xdl
t : ‖xdl

t ‖2‖θt‖2 ≤ DP dl}, X ul
t , {xul

t :
‖xul

t ‖2 = 1}, and Yt , {pt : pk,t‖θJ
k,t‖2 ≤ DP ul

k , k ∈ K}.
We use the AO approach to compute a solution to Pt

3 at

Algorithm 1 The JDU-BF Algorithm for P1

Initialization: Set t = 0.

repeat

Initialization: Set x
dl(0)
t ,x

ul(0)
t ,p

(0)
t ; Set i = 0.

repeat

1) Update downlink transmit beamforming vector

x
dl(i+1)
t =argmin

xdl
t ∈X dl

t

Φ(xdl
t ,x

ul(i)
t ,p

(i)
t ). (27)

2) Update uplink receive beamforming vector

x
ul(i+1)
t =argmin

xul
t ∈X ul

t

Φ(x
dl(i+1)
t ,xul

t ,p
(i)
t ). (28)

3) Update uplink device transmit power

p
(i+1)
t =argmin

pt∈Yt

Φ(x
dl(i+1)
t ,x

ul(i+1)
t ,pt). (29)

4) Set i← i+ 1.

until convergence // solve Pt
3

Set t← t+ 1.

until t = T

each round t ∈ T . Our proposed JDU-BF algorithm for P1

is summarized in Algorithm 1. Note that subproblem (27)

is a downlink beamforming problem, subproblem (28) is an

uplink receive beamforming problem, and subproblem (29) is

an uplink transmit power minimization problem. Thus, our

proposed algorithm solves downlink and uplink beamforming

problems alternatingly.

For each subproblem in (27)–(29), the objective function is a

complicated non-convex function of the optimization variable.

Thus, we adopt PGD to solve each subproblem. PGD [13]

is an iterative first-order algorithm that uses gradient updates

to solve a constrained minimization problem: minx∈X f(x),
where X is the convex feasible set for x. PGD has the

following updating procedure: At iteration j,

xj+1 = ΠX

(
xj − β∇xf(xj)

)
(30)

where β > 0 is the step size and ΠX (x) denotes the projection

of point x onto set X . Note that due to the inherent structure

of our problem, PGD is particularly suitable for solving

subproblems (27)–(29) at each AO iteration. In particular, the

projection ΠX (x) operation can be expressed in closed-form

for each of subproblems (27)–(29):

• For subproblem (27):

ΠX dl
t
(xdl

t ) =

{√
DP dl

‖xdl
t ‖

2‖θt‖2
xdl
t xdl

t /∈ X dl
t ,

xdl
t xdl

t ∈ X dl
t .

• For subproblem (28): ΠX ul
t
(xul

t ) =
xul
t

‖xul
t ‖

.



• For subproblem (29): ΠYt
(pt) is given by

pk,t =







DP ul
k

‖θJ
k,t

‖2
pk,t >

DP ul
k

‖θJ
k,t

‖2
,

pk,t pk,t ≤ DP ul
k

‖θJ
k,t

‖2
.
∀ k ∈ K

Thus, the computation using PGD via (30) has low complexity.

Also, PGD is guaranteed to find an approximate stationary

point for each subproblem in polynomial time [15]. We

summarized our proposed JDU-BF algorithm in Algorithm 1.

C. Separate Downlink and Uplink Beamforming Design

In the above, we have proposed joint downlink-uplink

beamforming design for the FL system, which is based on the

global model update in (9) derived from each communication

round. For comparison purpose, we also consider the conven-

tional approach where downlink and uplink transmission are

designed separately for the communication system.

Downlink: We formulate the problem of downlink beam-

forming and the uplink beamforming separately. At the com-

munication round t, since the BS broadcasts the global model

to all devices, the downlink beamforming problem is to

maximize the minimum received SNR, which is a single-group

multicast beamforming max-min fair problem:

max
wdl

t

min
k∈K

|hH
k,tw

dl
t |2 s.t. ‖wdl

t ‖2‖θt‖2 ≤ DP dl. (31)

The solution to this problem can be efficiently computed using

the projected subgradient algorithm proposed in [16] based on

the optimal multicast beamforming structure [17].

Uplink: For uplink over-the-air aggregation, the transmit

beamforming weight at device k is set to ak,t =
√
pk,t

hH
k,tw

ul
t

|hH
k,t

wul
t |

to phase-align the transmissions from all devices. Each device

uses the maximum transmit power; thus, the power scaling

factor is pk,t =
DP ul

k

‖θJ
k,t

‖2
, ∀ k ∈ K. Then, we design uplink

receive beamforming to maximize the received SNR (from

the aggregated signal) at the BS:

max
wul

t :‖w
ul
t ‖

2=1

K∑

k=1

pk,t|hH
k,tw

ul
t |2. (32)

This problem can be solved using PGD via (30). We name this

approach as the separate downlink and uplink beamforming

(SDU-BF) algorithm.

V. SIMULATION RESULTS

1) Simulation Setup: We consider the real-world dataset

for image classification under an LTE wireless system setting.

Following the typical LTE specifications, we set system band-

width 10 MHz and carrier frequency 2 GHz. The maximum

BS transmit power is 47 dBm. The maximum device transmit

power is 23 dBm, and we assume the devices use 1 MHz

bandwidth for uplink transmission. The path gain between the

BS and device k is Gk[dB] = −139.2 − 35 log10 dk − ψk,

where dk ∈ (1 km, 1.5 km) is the BS-device distance in

kilometers, and ψk is the shadowing random variable with

standard deviation 8 dB. The channel vector is generated as

hk,t =
√
Gkh̄k,t with h̄k,t ∼ CN (0, I). Noise power spectral

density is N0 = −174 dBm/Hz, and noise figure NF = 8 dB

and 2 dB at the device and BS receivers, respectively.

We adopt the MNIST dataset [18] for model training and

testing. MNIST consists of 6×104 training samples and 1×104
test samples from 10 different classes. Each sample is a labeled

image of size 28×28 pixels, i.e., s ∈ R784 and v ∈ {0, . . . , 9}
indicating the class. We consider training a convolutional

neural network with an 8 × 3 × 3 ReLU convolutional layer,

a 2× 2 max pooling layer, a ReLU fully-connected layer, and

a softmax output layer, resulting in D = 1.361× 104 model

parameters in total. We use the 1×104 test samples to measure

the test accuracy of the global model update θt at each round

t. The training samples are randomly and evenly distributed

over devices, and the local dataset at device k has Sk = 6×104

K

samples. For the local training via the SGD at each device, we

set L = 10, J = 30, mini-batch size |Bτ
k,t| = 2×103

K
, ∀k, τ, t,

and the learning rate ηt =
1

10JL , ∀t.
2) Performance Comparison: For the comparison purpose,

we consider the following three schemes: i) Ideal FL [1]:

Perform FL via the global model update in (9), assuming

error-free downlink and uplink and perfect recovery of model

parameters at the BS and devices, i.e., receiver noise ñdl
k,t =

ñul
t = 0, receiver post-processing weight ρk,t = 1

K
, ∀k, t.

This benchmark provides the performance upper bound for all

schemes. ii) SDU-BF: the separate SNR-maximizing design

scheme described in Section IV-C. iii) Random beamforming

(RBF): Perform FL via (9) with randomly generated downlink

and uplink beamforming vectors wdl
t and wul

t . The devices

use the maximum transmit power and do not perform transmit

beamforming phase alignment.

Fig. 1 shows the test accuracy performance by the consid-

ered methods over communication round T for three system

settings for (N,K). All curves are obtained by averaging over

20 channel realizations. The shadowed area over each curve

indicates the 90% confidence interval of the curve. Fig. 1-Left

shows the test accuracy performance for (N,K) = (64, 20).
Our proposed JDU-BF outperforms other alternative schemes:

it nearly attains the upper bound under the Ideal FL after 40
communication rounds and achieves an accuracy of ∼ 91%
at ∼ 100 rounds. SDU-BF has a much slower model training

convergence rate. After 100 rounds, it only nearly reaches 80%
test accuracy. RBF exhibits the worst performance, where no

training convergence is observed, and the accuracy is ∼ 10%
for all rounds. This is because that RBF provides no beam-

forming gain, leading to highly suboptimal communication

performance, which affects the learning performance. Fig. 1-

Middle shows the test accuracy for (N,K) = (64, 40). We

see that as the number of devices K increases from 20 to 40,

the learning performance and, thus, the test accuracy of JDU-

BF and SDU-BF improves. JDU-BF nearly attains the optimal

performance after 30 rounds, while SDU-BF approaches the

upper bound slowly and is slightly worse than JDU-BF after

100 rounds. The gain comes from the improved uplink over-

the-air aggregation as the result of (distributed) transmit beam-

forming gain by more devices (i.e., phase alignment via ak,t).



Fig. 1. Test accuracy vs. communication round T . Left: N = 64,K = 20. Middle: N = 64,K = 40. Right: N = 16,K = 20.

In particular, the improvement of SDU-BF over K is more

noticeable. RBF is still the worst among all methods, with the

test accuracy remaining at 10%, as it does not benefit from

more devices since no beamforming gain can be collected.

Fig. 1-Right shows the case for (N,K) = (16, 20), where

N < K . Compared with Fig. 1-Left, both JDU-BF and SDU-

BF perform worse as N reduces. This is expected due to

reduced downlink and uplink beamforming gain with fewer

antennas, impacting the overall learning performance of FL

via wireless communication. Nonetheless, JDU-BF still nearly

attains the upper bound after 100 rounds. In summary, our

proposed JDU-BF is an effective communication scheme to

facilitate FL in a wireless system for achieving fast training

convergence and high test accuracy.

VI. CONCLUSION

In this paper, we have formulated the downlink-uplink

transmission process for FL in a wireless system. We obtain

the global model update in each round, capturing the impact

of transmitter/receiver processing, receiver noise, and local

training on the model update. Aiming to optimize downlink-

uplink beamforming to maximize the FL training performance,

we have derived an upper bound on the expected global loss

after T rounds, and proposed an efficient JDU-BF algorithm to

minimize this upper bound. JDU-BF is a low-complexity algo-

rithm that uses the AO approach along with PGD to minimize

the bound on the loss function per round. Simulation results

show that JDU-BF outperforms other alternative schemes and

provides a near-optimal learning performance for wireless FL.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: Substitute ρk,t =
αul

k,t∑
K
j=1

αul
j,t

with αul
k,t =

√
pk,t|hH

k,tw
ul
t | into (18)(20). We apply Lemmas 1 and 2

to (21). Let Mt = ηtJ
2Qt

(
5(1 − Qt) + 4

√
1−Qt − 1

)
and

Rt = H(wdl
t ,w

ul
t ,pt) + Ct. For 1

10L ≤ ηtJ < 1
2L , we have

Qt > 0 and 5(1 − Qt) + 4
√
1−Qt − 1 > 0. Thus, Mt > 0

and Rt > 0. Then, after combining Lemmas 1 and 2 and (21),

we have

E[F (θt+1)]−F ⋆ ≤ E[F (θt)]−F ⋆+MtE[‖∇F (θt)‖2]+Rt

(a)

≤ E[F (θt)]−F ⋆+L2MtE[‖θt − θ
⋆‖2]+Rt

(b)

≤ E[F (θt)]−F ⋆+
2L2Mt

λ
(E[F (θt)]− F ⋆)+Rt (33)

where (a) and (b) follow from (2) and the L-smoothness

and λ-strong-convexity of Fk(·) in Assumption 1, respectively.

Summing up both sides of (33) over t ∈ T and rearranging

the terms, we have (22).
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