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Abstract—Information Elicitation Without Verification
(IEWV) refers to the problem of eliciting high-accuracy
solutions from crowd members when the ground truth is
unverifiable. A high-accuracy team solution (aggregated from
members’ solutions) requires members’ effort exertion, which
should be incentivized properly. Previous research on IEWV
mainly focused on scenarios where a central entity (e.g., the
crowdsourcing platform) provides incentives to motivate crowd
members. Still, the proposed designs do not apply to practical
situations where no central entity exists. This paper studies
the overlooked decentralized IEWV scenario, where crowd
members act as both incentive contributors and task solvers.
We model the interactions among members with heterogeneous
team solution accuracy valuations as a two-stage game, where
each member decides her incentive contribution strategy in
Stage 1 and her effort exertion strategy in Stage 2. We analyze
members’ equilibrium behaviors under three incentive allocation
mechanisms: Equal Allocation (EA), Output Agreement (OA),
and Shapley Value (SV). We show that at an equilibrium under
any allocation mechanism, a low-valuation member exerts no
more effort than a high-valuation member. Counter-intuitively,
a low-valuation member provides incentives to the collaboration
while a high-valuation member does not at an equilibrium under
SV. This is because a high-valuation member who values the
aggregated team solution more needs fewer incentives to exert
effort. In addition, when members’ valuations are sufficiently
heterogeneous, SV leads to team solution accuracy and social
welfare no smaller than EA and OA.

I. INTRODUCTION

A. Motivations

The Wisdom of Crowds refers to the fact that groups can of-
ten be collectively smarter than individual experts in decision-
making [1], which has been demonstrated by a series of studies
(e.g., [2]–[4]). In practical crowd decision applications such as
Amazon Mechanical Turk [5], a key challenge is to acquire
high-accuracy individual solutions (before they are aggregated
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into the group’s team solution), especially when the ground
truth is unavailable. This unverifiable scenario can happen,
for example, when the ground truth is related to subjective
evaluation (e.g., individuals’ preferences for a restaurant [6])
or is costly and time-consuming to obtain (e.g., verifying peer
assessment results in MOOCs [7]). Such problems are known
as Information Elicitation Without Verification (IEWV) [8].

To obtain high-accuracy individual solutions to IEWV prob-
lems, members need to exert effort (e.g., consumption of time,
energy, and computational resources), which can be costly and
should be compensated with proper incentives. There have
been increasing studies on IEWV incentive design over the
past decade (e.g., [9]–[12]). These studies focused on the
scenario where a central entity coordinates the task-solving
of crowd members. For example, in [12], the crowdsourcing
platform incentivizes members to exert efforts and truthfully
report their solutions.

However, there exist many other IEWV scenarios that do not
operate under the orchestration of a central entity. For example,
a team of students can work together on a course project with-
out a centralized teacher coordination [13]. Researchers from
different institutes can collaborate on a scientific project and
aim to publish high-impact papers based on the aggregation
of their research results [14], [15]. In both examples, people
team up to finish a task related to their own interests and act
in a decentralized manner without an external central entity
providing incentives for collaboration. This paper focuses on
this practical yet overlooked decentralized decision scenario.

It is challenging to elicit a high-accuracy team solution
(aggregated from heterogeneous members’ solutions) to an
IEWV problem in a decentralized fashion. First, obtaining a
high-accuracy team solution requires members’ effort exertion,
so members should be properly incentivized. However, in a
decentralized setting, there exists no central entity provid-
ing incentives to motivate members’ effort exertion. Second,
different from the verifiable cases (e.g., prediction markets
[16]) where members’ incentives are computed based on event
outcomes, the incentive design is more complex due to the
lack of ground truth verification in our setting. Furthermore,
no central entity coordinates the design and implementation of
incentive allocation. Hence, it is critical yet very challenging to
consider the framework where members act as both incentive
contributors and task solvers. Intuitively, more incentives will
motivate members’ effort exertion and lead to a high-accuracy
team solution. However, as each member also acts as an
incentive contributor, a high incentive contribution is possible
to hurt one’s payoff. Therefore, eliciting a high-accuracy team

ar
X

iv
:2

31
0.

11
75

1v
1 

 [
cs

.G
T

] 
 1

8 
O

ct
 2

02
3



solution without ground truth verification from a decentral-
ized crowd involves highly coupled and complicated member
interactions.

Fig. 1. Two-stage interaction: In Stage I, heterogeneous members choose
whether to contribute incentives to the incentive pool. In Stage II, members
first decide whether to exert effort in solving the task. Then, members report
their solutions (xH , xL), which will be aggregated into a team solution (xT ).
Finally, incentives are allocated to the members from the pool according to
the predefined incentive allocation mechanism.

To understand how decentralized members make decisions,
we formulate the interaction among members with heteroge-
neous valuations on the team solution as a two-stage game,
where each member decides her incentive contribution strategy
in Stage I and her effort exertion strategy in Stage II (see also
Fig. 1). Members’ incentive contributions in Stage I will be
pooled together and allocated in Stage II based on a predefined
incentive allocation mechanism. Their reported solutions will
be aggregated into a team solution via the widely adopted
majority rule [12]. The team performance is assessed by: 1)
team solution accuracy: the probability that the aggregated
team solution is consistent with the unknown ground truth. 2)
social welfare: members’ overall payoffs.

In this paper, we focus on three incentive allocation mech-
anisms (which can be implemented without a centralized
entity): 1) Equal Allocation (EA), which is a benchmark
where members equally split the pooled incentives. 2) Output
Agreement (OA), which is a widely adopted method in cen-
tralized IEWV problem [17]. Under OA, a member obtains
a reward if the reported solution agrees with the majority.
3) Shapley Value (SV), which allocates the pooled incentives
among members based on their contributions characterized
by the Shapley values [18]. More specifically, each member
receives an incentive proportional to her average marginal
contribution to the team solution accuracy under SV.

In this paper, we aim to address the following key questions.

Key Question 1. Given an incentive allocation mechanism
(EA, OA, or SV), how should the decentralized members decide
their equilibrium incentive contribution and effort exertion
strategies?

Key Question 2. Which allocation mechanism achieves the
highest team solution accuracy and highest social welfare?

B. Key Contributions

The key contributions of this paper are as follows.
• Decentralized IEWV Problem: To the best of our knowl-

edge, this is the first attempt to study the critical yet
under-explored decentralized IEWV scenario. Such a
scenario frequently arises in real-world settings where
multiple members collaborate to solve a task without the
coordination of a central entity, such as completing a joint
research project.

• Decentralized Incentive Design: We propose a decentral-
ized incentive framework where members act as both
incentive contributors and task solvers. We formulate the
highly coupled interactions among members as a two-
stage game. The incentives will be first pooled from mem-
bers and then allocated back to members to encourage
effort exertion. Our design provides practical guidance
for the decentralized IEWV problem.

• Equilibrium Analysis: We characterize the equilibria un-
der three incentive allocation mechanisms, i.e., EA, OA,
and SV. Our analysis reveals that under these mecha-
nisms, the low-valuation member exerts no more effort
than the high-valuation member in all equilibria. Counter-
intuitively, a low-valuation member provides incentives
to the collaboration while a high-valuation member does
not at an equilibrium under SV. This is because a high-
valuation member who values the team solution accuracy
more needs fewer incentives to exert effort.

• Performance Comparison: When members have suffi-
ciently heterogeneous valuations on team solution ac-
curacy, SV leads to team solution accuracy and social
welfare no smaller than EA and OA because SV can
better incentivize effort exertion. Specifically, a member
under SV can always obtain a larger proportion of the
incentive amount by exerting effort, while a member
under EA or OA may not achieve the same outcome.

The remainder of this paper is organized as follows. In
Section II, we introduce the model. In Section III, we an-
alyze members’ equilibrium decisions under three allocation
mechanisms. We theoretically and numerically compare the
three allocation mechanisms in Section IV and Section V,
respectively. We conclude the paper in Section VI.

II. MODEL

In this paper, we focus on a stylized yet important scenario
of two-member cooperation (see also Fig. 1).1 This scenario
is typical in education and academic contexts, when two
members work together on course projects, patent applications,
or paper publication tasks.

In Section II-A, we introduce members’ decisions and
payoffs in a decentralized IEWV problem. We formulate the
two-stage game in Section II-B and discuss three incentive
allocation mechanisms in Section II-C.

1The analysis of the two-member scenario is complex and challenging, as
we will demonstrate in this paper. Nonetheless, the insights gained from this
analysis will serve as a crucial foundation for understanding more general
multi-member scenarios.



A. Members’ Decisions and Payoffs

In this subsection, we first define the task and members.
Then, we introduce each member’s strategies and payoff.

1) Task and Members: Consider two members M =
{H,L} who work on a binary-solution problem, e.g., two
students need to report a team solution to an art appraisal
project about whether the painting is Real or Fake.2 Define:

• X = {1,−1}: the solution space, where 1 represents Real
and −1 represents Fake.

• x ∈ X : the true underlying solution (ground truth)
unknown to the team members.

• xm ∈ X : member m’s reported solution.
• xT ∈ X : the aggregated team solution of this task.

Each member needs to identify the ground truth x and then
report her solution xm to this task.3 Then, the reported
solutions are aggregated into a team solution xT based on
the widely applied majority rule as follows [10].

xT =


1, if xH + xL > 0,

−1, if xH + xL < 0,

1 or − 1 with prob. 0.5, if xH + xL = 0.

(1)

Members benefit from generating a high-accuracy team
solution, since the final score of a course project positively
correlates with the team solution accuracy, i.e., Pr(xT = x).
We use Vm to denote member m’s valuation on the team
solution accuracy. Without loss of generality, we consider that
member H has a high valuation VH and member L has a low
valuation VL, and VH > VL > 0.

2) Member’s Incentive Contribution Strategy: In a decen-
tralized scenario, no central entity provides incentives to mem-
bers. Without proper incentives, members may be unwilling
to exert effort, resulting in a low-accuracy team solution.
To address this issue, we consider a setting where each
member can contribute incentives to the team to encourage
effort exertion. Define D > 0 as the incentive volume.
Let dm ∈ Dm = {0, D} denote member m’s incentive
contribution strategy, where dm = 0 means no incentive
contribution, and dm = D means contribution with a fixed
volume D. 4 We use a vector d = (dm, ∀m ∈ M) to denote
members’ incentive contribution profile. The incentives will
be gathered in an incentive pool and reallocated to members.

Our model is flexible enough to accommodate different
forms of incentives. In the context of a course project, the
total amount of points (that depend on the accuracy of the team
solution) will be distributed among the team members (hence
serving as the incentives). Similarly, in a paper publication
(or a patent application), the ranking of the authorship (or
inventors) serves as the indication of incentive.

2This painting judgment problem is unverifiable due to insufficient evidence
of authorship (e.g., [19]).

3We consider truthful reporting, as we have proved that all the incentive
allocation mechanisms in this paper satisfy the truthful property defined in
[20]. We provide the proof in Section VIII of the online appendix [21]).

4Binary-contribution setting is widely adopted in theoretical analysis (e.g.,
[22]), since one can always find an equilibrium in a finite game. We plan to
study the more general incentive contribution setting in future work.

3) Member’s Effort Exertion Strategy: Each member can
decide whether to exert effort em ∈ Em = {0, 1} [23] to
finish the task, where em = 0 means that she puts in no effort,
and em = 1 means that she exerts effort with a cost c (e.g.,
consumption of time, energy, or computational resources).
Exerting effort improves the accuracy of a member’s solution.
Let qm(em) denote member m’s solution accuracy, i.e., the
probability that the reported solution is correct (i.e., xm = x).
More specifically,

qm(em) =

{
0.5, if em = 0, with no cost,
a ∈ (0.5, 1], if em = 1, with a cost c > 0,

(2)
where a is member m’s probability of generating a correct
solution if she puts in effort.5

We further define e = (em, ∀m ∈ M), and PT (e) =
Pr(xT = x), i.e., the probability that the team solution is
consistent with the ground truth.

Lemma 1 (Team Solution Accuracy). The probability that the
team solution is consistent with the ground truth is

PT (e) =


1
2 , if eH + eL = 0,
2a+1

4 , if eH + eL = 1,

a, if eH + eL = 2.

(3)

Proof sketch. We first calculate the probabilities of all possible
reporting results. Next, for each reporting profile, we calculate
PT (e) based on (1).

We provide the proof for Lemma 1 in Section I of the online
appendix [21]. The intuition behind Lemma 1 is that more
members exerting effort improves the team solution accuracy.
Therefore, we need to design proper incentives to motivate
members’ effort exertion.

4) Incentive Allocation: To encourage effort exertion, one
needs a proper incentive allocation mechanism. Let the map-
ping A : {em}m∈M 7→ {pz

m(e)}m∈M denote a general
allocation mechanism z (which we will explain in Section
II-C), where pz

m(e) ∈ [0, 1] is the expected proportion of the
total incentives that member m can get from the incentive
pool.

5) Member’s Payoff: We define member m’s payoff as

Um(d, e) = Vm · PT (e) + pz
m(e) ·

∑
n∈M

dn − dm − c · em.

(4)

The term Vm · PT (e) captures the utility of member m,
which is positively correlated with the team solution accuracy
and depends on both members’ effort exertion decisions. The
term pz

m(e) ·
∑

n∈M dn captures the expected incentive that
member m can get from the incentive pool under the allocation
mechanism z, dm captures member m’s contributed incentives,
and c · em captures the cost for effort exertion.

5We assume that members have homogeneous effort cost and homogeneous
ability to generate a correct solution with effort exertion. Although the setting
is relatively simple, analyzing members’ behaviors is challenging due to
members’ different valuations and coupled decisions.



B. Two-Stage Game Formulation

In this subsection, we introduce the two-stage interactions
among members. With decentralized information elicitation,
members can improve the team performance by contributing
incentives in Stage I, since the contribution will motivate
members’ effort exertion in Stage II under a proper incentive
allocation.

1) Incentive Contribution in Stage I: As each member’s
incentive contribution strategy affects every member’s payoff,
members play a game defined as follows.

Game 1 (Incentive Contribution Game in Stage I). The
incentive contribution game is a tuple Ω = (M,D,U) defined
by:

• Players: The set M of members.
• Strategies: Each member m chooses an incentive contri-

bution strategy dm ∈ Dm. The feasible set of all strategy
profiles is D =

∏
m∈M Dm.

• Payoffs: The vector U = (Um, ∀m ∈ M) contains each
member’s payoff as defined in (4).

In Game 1, given the other member’s decision d−m, mem-
ber m solves the following problem to find her best response.

Problem 1 (Member m’s Best Response Problem in Stage I).

max Um(dm, d−m)

s.t. dm ∈ Dm.
(5)

2) Effort Exertion in Stage II: As a member’s effort
exertion affects the team solution accuracy and hence the
other member’s payoff, members play an effort exertion game
defined below.

Game 2 (Effort Exertion Game in Stage II). The effort exertion
game is a tuple Γ = (M, E ,U) defined by:

• Players: The set M of members.
• Strategies: Each member m chooses an effort exertion

strategy em ∈ Em. The feasible set of all strategy profiles
is E =

∏
m∈M Em.

• Payoffs: The vector U = (Um, ∀m ∈ M) contains each
member’s payoff as defined in (4).

In Game 2, given the other member’s decision e−m, member
m solves the following problem to find her best response.

Problem 2 (Member m’s Best Response Problem).

max Um(em(d), e−m(d))

s.t. em(d) ∈ Em.
(6)

We aim to derive the Nash equilibrium as defined below.
We use s = (sm, ∀m ∈ M) to denote a generic strategy
profile and Sm to denote a generic strategy space of member
m in Game 1 and Game 2.

Definition 1 (Nash Equilibrium). A strategy profile s∗ =
(s∗m, s∗−m) constitutes a Nash Equilibrium (NE), if for each
m ∈ M and each s′m ∈ Sm,

Um(s∗m, s∗−m) ≥ Um(s′m, s∗−m), (7)

TABLE I
KEY NOTATIONS.

Variables
dm Member m’s incentive contribution strategy
em Member m’s effort exertion strategy
xm Member m’s reported solution
xT Aggregated team solution

Parameters
M Set of members
x The underlying ground truth

VH(VL) Member H (L)’s valuation on team solution accuracy
D Incentive volume
c Effort exertion cost
a Solution accuracy with effort exertion

Functions
qm(em) The accuracy of member m’s solution
PT (e) The accuracy of aggregated team solution

pz
m(e)

Member m’s expected proportion from the incentive pool
under incentive allocation mechanism z

Um(d, e) Member m’s expected payoff

where s∗−m is the equilibrium strategy profile of the other
member.

Intuitively, an NE is a stable strategy profile where no
member can increase her payoff by unilaterally changing her
strategy.

We list the key notations in Table I for ease of reading.

C. Incentive Allocation Mechanisms

The equilibrium crucially depends on the incentive alloca-
tion mechanism. In this paper, we consider three incentive
allocation mechanisms. The three mechanisms differ in the
proportion of total incentives that each member can obtain
from the incentive pool, and we use pz

m(e) to denote the
proportion allocated to member m under mechanism z.

1) Equal Allocation (EA): EA is a benchmark mechanism
where members equally split the incentive pool, i.e.,

pEA
m (e) =

1

|M|
, ∀m ∈ M. (8)

2) Output Agreement (OA): Output agreement [17] is a
popular method in IEWV problems, where a member receives
incentives if her reported solution is consistent with the major-
ity. In this decentralized crowd decision setting, members split
the pooled incentives if their reported solutions are consistent.
Otherwise, they will not get any incentives. The allocation
under OA is shown in Lemma 2.

Lemma 2 (Allocated Proportion under OA). The expected
proportion of the total incentives that member m can obtain
from the incentive pool under OA is

pOA
m (e) =

{
2a2−2a+1

2 , if eH + eL = 2,
1
4 , otherwise.

(9)

Proof sketch. We derive the expected proportion pOA
m (e) by

first calculating the probability that one’s reported solution
matches the other’s and then distributing the incentive pool
evenly to the members with consistent solutions.

We provide the proof for Lemma 2 in Section II of the
online appendix [21]. An essential implication of Lemma 2



TABLE II
COMPARISON IN TERMS OF MECHANISM PROPERTIES.

Incentive Individual Budget
Allocation Mechanism Rational (IR) Balanced (BB)
Equal Allocation (EA) ✓ ✓

Output Agreement (OA) ✓ Weakly
Shapley Value (SV) ✓ ✓

is that the expected proportion of the incentive amount can
only be improved by both members’ effort exertion. If only
one member puts in the effort, the probability of two reported
solutions matching is 1/2 since the other member’s report is
random. Therefore, if at most one member exerts effort, they
can only expect to receive a quarter of the incentive amount.

3) Shapley Value (SV): The Shapley value is a solution
concept in cooperative game theory [18], and it is widely
applied in resource allocation and cost-sharing (e.g., [24] [25]).
In our setting, a member’s Shapley value ϕm(e) is defined
as her average marginal contribution to the team solution
accuracy, i.e.,

ϕm(e) =
∑

C⊆M\{m}

1

2
[pT ({en}n∈C∪{m})− pT ({en}n∈C)].

(10)

Then, the proportion pSV
m (e) that member m can get from

incentive pool is

pSV
m (e) =

ϕm(e)∑
n∈M ϕn(e)

. (11)

4) Mechanism Properties: To facilitate a better understand-
ing of the three mechanisms, we first define two properties in
mechanism design and present the results in Table II.

• Individually Rational (IR): An incentive allocation mech-
anism is IR if each member receives a non-negative
payoff, i.e., Um(e,d) ≥ 0, ∀m ∈ M.

• Budget Balanced (BB): An incentive allocation mech-
anism is BB if the sum of each member’s allocated
incentives equals the amount of incentive contributions,
i.e.,

∑
m∈M pm(e) ·

∑
n∈M dn =

∑
m∈M dm. Similarly,

an incentive allocation mechanism is weakly Budget
Balanced (weakly BB) if

∑
m∈M pm(e) ·

∑
n∈M dn ≤∑

m∈M dm.

We discuss the intuition of Table II as follows.
• All three mechanisms satisfy the IR property, since each

member has the option to exert no effort and contribute
no incentive, ensuring a non-negative payoff.

• Both EA and SV mechanisms are BB since the incentive
pool is fully allocated to both members. Under OA,
however, if members’ reported solutions are inconsistent,
they will receive nothing from the pool. Hence the OA
mechanism is weakly BB.

We discuss the social welfare under each mechanism in
Section IV and V. In the following, we derive the Nash
equilibria under these three mechanisms and compare their
mechanism performances.

Fig. 2. Illustration of the NE under EA: The horizontal axis represents the
effort exertion cost c and the vertical axis represents the incentive contribution
volume D. Regions of different colors represent different equilibrium profiles,
and the legend shows the incentive contribution and effort exertion strategies
at equilibrium. We illustrate the (c,D) condition for the existence of each
equilibrium profile.

III. EQUILIBRIUM ANALYSIS

In this section, we analyze members’ equilibria under EA,
OA, and SV, respectively. For ease of presentation, we will
use a tuple (d∗ = (d∗H , d∗L), e

∗ = (e∗H , e∗L)) to characterize
the two-stage NE.

In this paper, we focus on the case where VH/VL >
max{ 14a−5

6a−1 , 2a+1
3−2a}, i.e., members hold diverse valuations

toward the team solution. For example, in a course project,
a student values the team solution accuracy more since a high
score is helpful for her postgraduate application. In contrast,
the other student only needs a ’pass’ and would rather spend
more time on other issues (such as an industry internship).

For the completeness of our results, we have also analyzed
the case where 1 < VH/VL ≤ max{ 14a−5

6a−1 , 2a+1
3−2a}. Interested

readers can refer to online appendix [21] for details.

A. Equilibrium under Equal Allocation

We solve members’ equilibrium strategies under EA in
Theorem 1.

Theorem 1 (Equilibrium under EA). Define cL ≜ 2a−1
4 VL

and cH ≜ 2a−1
4 VH . Then

(d∗, e∗) =


((0, 0), (1, 1)), if c ∈ (0, cL], D ∈ (0,∞),

((0, 0), (1, 0)), if c ∈ (cL, cH ], D ∈ (0,∞),

((0, 0), (0, 0)), if c ∈ (cH ,∞), D ∈ (0,∞).
(12)

We provide the proof in Section III of the online appendix
[21]. An illustration of NE under EA is shown in Fig. 2.
According to Theorem 1, we find that under all possible equi-
librium profiles, neither member contributes any incentives,
i.e., d∗ = (0, 0). Under EA, each member always wants to
free-ride on the other one’s incentive contribution because
she will always get half of the incentive pool regardless of
her effort exertion strategy. This implies that EA fails to
incentivize members to exert effort.

Furthermore, their effort exertion only depends on the effort
cost, as shown in Fig. 2. Specifically, when the effort cost



Fig. 3. Illustration of the NE under OA: We illustrate the (c,D) condition for
the existence of each equilibrium profile. D̂OA

low(c) and D̂OA
high(c) exist in the

orange part and are two incentive volume thresholds for members’ equilibrium
strategies given an effort exertion cost c.

is low (the green part), both members will exert effort to
improve the team solution accuracy. When the cost is moderate
(the blue part), only member H will exert effort, since she
values the team solution accuracy more than member L. When
the cost is high (the red part), both of them will randomly
report since the benefit from the improvement of team solution
accuracy cannot compensate for the cost of effort exertion.

In summary, neither member will contribute incentives
under EA to encourage members’ effort exertion. To address
this issue, we resort to the widely adopted mechanism in
IEWV, i.e., Output Agreement (OA) (see (9)). We show the
equilibrium results under OA in subsection III-B.

B. Equilibrium under Output Agreement

Output agreement scores members’ solutions based on the
solution similarity [17]. OA can motivate effort exertion since
a member will get a larger reward from the incentive pool if
she puts in effort (given the other one puts in effort as well)
(see Lemma 2). We solve members’ equilibrium strategies
under OA in Theorem 2.

Theorem 2 (Equilibrium under OA). Depending on the values
of cost c and incentive D, there exist four possible equilibria
under OA, which are illustrated in Fig. 3.

One can find a detailed proof and the complete closed-form
characterizations of the boundaries among various equilibria
in Section IV of the online appendix [21]. Next, we discuss
the intuitions behind Theorem 2 using Fig. 3.

a) (d∗ = (0, 0), e∗ = (1, 1)) (the green part): When the
effort exertion cost c is lower than cL, both members contribute
none but exert effort. In this case, no incentives are needed as
the utility of improving team solution accuracy exceeds the
cost of effort.

b) (d∗ = (0, 0), e∗ = (1, 0)) (the blue part): When the
cost c is moderate, i.e., cL < c ≤ cH , there exist two cost-
dependent incentive thresholds, D̂OA

low(c) and D̂OA
high(c). When

the incentive volume D is either below D̂OA
low(c) or above

D̂OA
high(c), neither members contribute incentives, and only

member H exerts effort. Specifically, an incentive smaller than

D̂OA
low(c) cannot incentivize member L’s effort exertion, while

an incentive larger than D̂OA
high(c) hurts member H’s payoff. As

a result, no member chooses to contribute incentives. However,
member H chooses to exert effort under a moderate cost as
she has a higher valuation towards the team solution accuracy.

c) (d∗ = (0, 0), e∗ = (0, 0)) (the red part): When the
cost c is higher than cH , neither members contribute incentives
nor exert effort. With a high cost, one needs large incentives
to motivate effort exertion. However, a large incentive volume
will also hurt the contributor as she may not be able to get
enough incentive allocation back to her. As a result, neither
member contributes incentives nor exerts effort.

d) (d∗ = (D, 0), e∗ = (1, 1)) (the orange part):
When the cost c is moderate, i.e., cL < c ≤ cH and
the incentive volume D is both above D̂OA

low(c) and below
D̂OA

high(c), member H is willing to provide a moderate amount
of incentive to member L. This will motivate member L to
exert effort (together with member H), which will generate a
team solution with higher accuracy.

Different from EA, OA can motivate members’ effort ex-
ertion (see the orange part in Fig. 3, which does not exist
under EA in Fig. 2). However, from Lemma 2, we find that
under OA, a member cannot get a larger expected incentive
proportion by exerting effort if the other one does not put in the
effort. This property may not best incentivize effort exertion
from members, which motivates us to use the Shapley value
mechanism below.

C. Equilibrium under Shapley Value

In collaboration settings, it is common for a member to
be able to observe each other’s effort exertion, especially in
groups with close interactions. For example, peer evaluation is
widely adopted to assess the effort exertion in a project [26].
With this information, we resort to the Shapley Value (SV)
(see (11)), which is built on a classical concept in cooperative
game theory.

Members’ equilibrium strategies under SV are shown in
Theorem 3.

Theorem 3 (Equilibrium under SV). Depending on the values
of cost c and incentive D, there exist five possible equilibria
under SV, which are illustrated in Fig. 4.

We provide a detailed proof and the closed-form solutions
to the equilibria in Section V of the online appendix [21]. We
find that four (out of five) equilibrium profiles under SV are
identical to those under OA, and their intuitions are similar.
Hence, we focus on the additional NE profile and explain its
intuition as follows (illustrated in Fig. 4).
• (d∗ = (0, D), e∗ = (1, 0)) (the yellow part): Surpris-

ingly, there exists an NE where the low-valuation member
incentivizes the high-valuation member to exert effort. When
the cost c is higher than cH , but the incentive volume D is
small, member L is reluctant to exert effort herself. However,
she can contribute a small incentive so that member H finds it
beneficial to exert effort and generate a better team solution.



Fig. 4. Illustration of the NE under SV.

In all the mechanisms, we observe that whenever the low-
valuation member exerts effort, the high-valuation member
also exerts effort at the equilibrium. We formalize this result
in Corollary 1.

Corollary 1. At an equilibrium under any allocation mecha-
nism, we have e∗H ≥ e∗L.

Corollary 1 is proved by contradiction in Section VI of the
online appendix [21]. The reason behind Corollary 1 is that as
long as the low-valuation member can benefit from her own
effort exertion, the high-valuation member can always improve
her payoff by exerting effort since she values the team solution
more.

Next, we compare the equilibrium results under the three
incentive allocation mechanisms.

IV. MECHANISM PERFORMANCE COMPARISON

In this section, we compare the team performance at equilib-
rium under the three incentive allocation mechanisms in terms
of

• Team solution accuracy p∗T (see (3)).
• Social welfare w∗ = U∗

H + U∗
L, i.e., the summation of

members’ payoffs.

Theorem 4 (Team Equilibrium Performance Comparison).
SV has the best team performance in terms of team solution
accuracy and social welfare, i.e.,

p∗SV
T ≥ p∗OA

T ≥ p∗EA
T ,

w∗SV ≥ w∗OA ≥ w∗EA.
(13)

The detailed comparison is illustrated in Fig. 5.

One can find the closed-form comparison results in Section
VII of the online appendix [21]. Next, we explain the intuition
behind Theorem 4. As mentioned in Section III-A, EA fails
to incentivize effort exertion since no one will contribute
incentives. Hence, EA has the worst team solution accuracy
and social welfare performance.

Next, we discuss the team performance under OA and SV.
First, recall the BB property in Table II. Given the same
effort exertion profile, the social welfare under SV is no
smaller than that under OA (see Region 1 in Fig. 5) since
the incentives can be fully allocated to the team members

Fig. 5. Team equilibrium performance comparison at NE.

Fig. 6. Impact of c on the team performance.

under SV. Second, a member under SV will always receive a
non-negative payoff gain via her effort exertion. However, the
consistency probability will not increase with one member’s
effort exertion alone under OA. Intuitively, given the effort
exertion cost, it is easier to incentivize members under SV than
OA to exert effort, which leads to better team performance (see
Region 2 in Fig. 5).

To conclude, we have shown that SV performs the best
regarding both team solution accuracy and social welfare.

V. NUMERICAL RESULTS

In this section, we conduct numerical experiments to vali-
date our theoretical results and identify new insights. For the
experiment setting, we set a = 0.8, VL = 1, and VH = 2.

Fig. 6 shows how the team solution accuracy and social
welfare depend on the effort exertion cost c when D = 0.15.
From Fig. 6, we observe:

Observation 1 (Impact of Effort Exertion Cost on Team Equi-
librium Performance). Both the social welfare and the team
solution accuracy are non-increasing in the effort exertion cost
c under three mechanisms.

As the effort exertion cost increases, members become more
reluctant to exert effort, making it more difficult to incentivize
them. Consequently, there is a decrease in the team solution
accuracy and social welfare.

Fig. 7 shows how the team solution accuracy and social
welfare depend on the incentive volume D when c = 0.18.
From this figure, we observe:



Fig. 7. Impact of D on the team performance.

Observation 2 (Impact of Incentive Volume on Team Per-
formance). Under SV and OA, both the social welfare and
team solution accuracy first increase and then decrease in the
incentive volume D.

When the incentive volume is too small to incentivize
effort exertion (e.g., 0 < D < 0.12), no one will contribute
incentives, and only member H can benefit from exerting
effort. When the incentive volume is enough to motivate
member L’s effort exertion (e.g., 0.33 < D < 0.45), member
H will contribute incentives, and both members will exert
effort to improve the team performance. Finally, when the
incentive volume is too large (e.g., D > 0.6), both members
will choose not to contribute any incentives, and thus the team
solution accuracy and social welfare decrease.

Fig. 6 and Fig. 7 also validate Theorem 4 by showing that
SV leads to team solution accuracy and social welfare no
smaller than EA and OA.

VI. CONCLUSION

In this paper, we present the first theoretical study re-
garding incentive design in a decentralized IEWV problem
where no central entity exists. We propose a decentralized
incentive framework where members act as both incentive
contributors and task solvers. We show the counter-intuitive
result that there exists an equilibrium under SV where the
low-valuation member contributes incentives while the high-
valuation member does not. We further compare the three
incentive allocation mechanisms via theoretical analysis and
numerical experiments. We show that SV outperforms EA and
OA in terms of both team solution accuracy and social welfare.

For future work, we plan to consider a more general multi-
member scenario. Moreover, we will consider the interaction
between members with multi-dimensional heterogeneity, such
as accuracy levels and effort exertion costs. The analysis for
bounded rational members in a decentralized IEWV scenario
also deserves further research attention.
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