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Abstract—Enhancing information freshness in wireless net-
works has gained significant attention in recent years. To optimize
or analyze information freshness, which is often characterized
by the age of information (AoI) metric, extensive theoretical
studies have been conducted on various wireless networks. Early
research has demonstrated the significance of last-come-first-
served (LCFS) packet scheduling and controlled status sampling
(i.e., packet generation) in improving information freshness.
These mechanisms have been widely adopted in subsequent
studies. However, the effective implementation of these mech-
anisms in commercial off-the-shelf (COTS) wireless devices has
not been thoroughly investigated, which could limit the practical
application of information freshness-oriented protocols in real-
world systems. Our work aims to address the gap by explor-
ing the effective implementation of the information freshness-
oriented mechanisms mentioned above in COTS WiFi devices
that use the Linux operating system. Our attempts reveal that
implementing these mechanisms in COTS systems is not a
straightforward task. Specifically, we found that the physical
layer queue of WiFi devices operates on a first-come-first-served
(FCFS) basis, and the packet generation process cannot be
precisely controlled by default. To overcome these challenges,
we develop Fresh-Fi, an information freshness-oriented protocol
stack that involves careful customization to the lower layers of the
Linux networking protocol stack. Fresh-Fi mainly incorporates
a mac80211 subsystem-based LCFS queue and a real-time
kernel-based cross-layer tunnel between the mac80211 subsystem
and the application layer for triggered packet generation. Our
experiments show that implementing Fresh-Fi can significantly
improve AoI performance. Specifically, we observed that Fresh-
Fi improved AoI performance by over 13 times when compared
to a baseline design that relies on an LCFS queue implemented
in the application layer of the standard Linux.

Index Terms-Information freshness, age of information, com-
mercial off-the-shelf WiFi devices, Linux kernel, mac80211 sub-
system.

I. INTRODUCTION

The emergence of the Internet of Things (IoT) has of-
fered a promising paradigm in supporting massive connec-
tions among devices in various networks, including but not
limited to the IEEE 802.11 standard (WiFi) [1], [2]. Gen-
erally, IoT involves the networked interconnection of ob-
jects/things/sensors/devices to achieve performance increment
[3], [4]. In time-sensitive IoT applications, the freshness of
the information between the source node and destination node
has become a primary concern. To solve this concern, the age
of information (AoI) is proposed as a metric to characterize
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information freshness. It is defined as the time elapsed since
the generation time of the latest successfully received status
update at the destination node [5].

To optimize AoI performance, it is important for the source
node to deliver its status updates to the destination node as
timely as possible [6]. This cannot be achieved by simply
minimizing the transmission delay for each status update, since
AoI continues to rise between the arrival of two consecutive
status updates. Meanwhile, timely status updating is not the
same as generating the status update as frequently as possible.
This is because in real-world wireless networks, the source
node stores the newest status update in a transmission queue
awaiting transmission until all previous packets have been
successfully delivered. The backlogging time suffered by the
stream of status updates increases with the accumulation of
packets in the queue.

To avoid the long waiting time in the queue, prior research
suggests two effective mechanisms. First, as an alternative to
the first-come-first-served (FCFS) policy [6], the last-come-
first-served (LCFS) policy can be applied to manage the trans-
mission queue for enhancing AoI performance. It improves
AoI performance by discarding the stale status updates stored
in the transmission queue, ensuring that the latest status update
can be transmitted first [7], [8]. Second, integrating a proactive
status sampling policy that controls the generation of status
update packets is another option [9]. This policy is based on
the assumption of a zero-delay acknowledgment (ACK) sent
from the destination node, which informs the status sampling
policy about the transmission completion of the previous status
update [10], [11]. It ensures that the source node schedules
the next status update generation only after the previous one
has been delivered. The simplest yet most widely used policy
is the zero-wait policy proposed in [10] wherein the source
node generates and sends a status update immediately after
ACK reception. As a result, the backlogging time for status
updates is significantly reduced by keeping the number of
packets stored in the transmission queue no greater than one
and controlling the generation of the next status update once
one is delivered.

While the effectiveness of the above two mechanisms
for improving AoI performance has been well-proven in
the theoretical literature, their implementation and evaluation
in commercial off-the-shelf (COTS) communication systems
have been limited. A few studies have attempted to improve
AoI performance by modifying the application layer or the
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transport layer on COTS WiFi devices [12]–[14]. Nevertheless,
their experimental results are far from optimal due to the
untouched lower layers in the protocol stack, which act as
a bottleneck for further improving the AoI performance. This
has been confirmed by our experiments presented in Sec. V.
Another line of research [15]–[18] implemented the infor-
mation freshness-oriented lower layer protocols on software-
defined radio (SDR) platforms, which avoids the complexity
of customizing protocol layers on actual hardware. While
these studies offer valuable insights for optimizing information
freshness in practical networks, their designs are not directly
applicable in practice due to the high cost of SDR platforms
and the resultant limited scalability in large-scale systems.
To our best knowledge, there is a lack of comprehensive
research on customizing lower protocol stack layers in COTS
WiFi devices, which are typically integrated into the operating
system kernel, to incorporate mechanisms aimed at improving
information freshness. We note that making modifications to
the kernel networking stack is not a trivial task because of its
integrity and complexity.

To address this gap, we introduce Fresh-Fi, a customized
protocol stack designed to enhance information freshness in
COTS WiFi systems that use the Linux operating system.
We chose to focus on optimizing the AoI in Linux-based
COTS WiFi systems due to their widespread adoption in time-
sensitive industrial sectors and the open-source nature of the
Linux kernel. Fresh-Fi consists of two main components: 1)
an LCFS queue that prioritizes the status update transmis-
sions, and 2) a cross-layer tunnel that is designed to relay
the transmission completion notification from the mac80211
subsystem to the status sampling policy in the application
layer for scheduling the next status generation. To evaluate
the efficacy of Fresh-Fi, we compare the AoI performance of
Fresh-Fi against two baseline designs. The experiment results
indicate that the implementation of Fresh-Fi improves AoI
performance by over 20-fold when compared to the simple
design that uses the standard user datagram protocol (UDP) for
delivering status updates. Furthermore, implementing Fresh-Fi
improves AoI performance by over 13 times when compared
to the design proposed in [12], which relies on an application-
layer LCFS queue and a destination-based polling mechanism.
We remark that since Fresh-Fi does not touch the driver layer,
it is compatible with any WiFi network interface cards that
are supported by the Linux mac80211 subsystem. In addition,
while Fresh-Fi is primarily designed to optimize the AoI of
COTS WiFi systems by modifying the Linux protocol stack,
its design principles can be extended to other COTS wireless
devices that use different operating systems.

II. PRELIMINARIES AND MOTIVATIONS

A. A Primer on AoI

The AoI is defined as the time elapsed since the generation
time of the most recently received status update [6]. At the
time t, the destination node receives the ith status update
generated at time τi(t). Then the AoI at the destination node is
calculated as A(t) := t−τi(t). Let Di denote the time at which

t

AoI
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Fig. 1. An AoI evolution for a source node sending status updates to the
destination node.

the ith status update is received. The service time of the ith
status update packet is defined as Si = Di−τi. The interval be-
tween two consecutive receptions is denoted by Yi, and can be
calculated as Yi = Di−Di−1. According to [19], the average
AoI can be expressed as A = 1

E[Yi]
(E[Si−1Yi] +

E[Y 2
i ]−E[Yi]

2 ).
Fig. 1 presents an example of the instantaneous AoI evolution.
From this figure, we can see that the AoI only decreases at
the moments when the destination node receives a new status
update. During the interval between two consecutive status
update generations and the status update service time, the AoI
keeps increasing. It reveals that the average AoI is affected by
both the status update generation and transmission processes.

To optimize AoI performance, ideally, the source node
should schedule the next status generation immediately after
completing the transmission of the previous status update.
Additionally, it is vital to reduce the service time of the
latest delivered status update as much as possible. However, in
practice, the default Linux networking protocol stack cannot
meet these requirements. In the next subsection, we discuss
the Linux networking protocol stack in detail and explain its
limitations that have to be addressed to facilitate timely status
updates from the source node to the destination node.

B. A Primer on the Linux Networking Protocol Stack

As one of the most widely deployed wireless LAN protocols
in the family of IEEE 802 Local Area Network standards
[20], IEEE 802.11 standard specifies the data link layer and
the physical layer protocols that facilitate wireless commu-
nications. In order to comply with this standard, the Linux
operating system has implemented the Linux networking
protocol stack, which is a set of software components that
enables the interactions among the user, kernel, and physical
spaces. Fig. 2 depicts the architecture of the Linux networking
protocol stack [21]. To improve clarity, we describe how each
component delivers a data packet in a top-down manner, to
better understand their functionalities.

The user space data application generates a data packet and
sends it to the kernel space socket interface subsystem via
system socket calls. The socket interface subsystem executes
the transport layer functionalities by offering the transmission
control protocol (TCP) and UDP sockets for packet transmis-
sions. Once the transport layer header is included in the packet,
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Fig. 2. The diagram of the Linux networking protocol stack architecture.

the network routing subsystem, which is designed according
to the network layer protocols, determines the suitable WiFi
network interface card (WNIC) to transmit this packet to its
destination node. The packet is then received by the mac80211
subsystem, which is a generic framework implemented in
the data-link layer that facilitates communication between the
kernel and physical spaces [22]. It offers crucial functions for
the WNIC driver to perform communication operations such as
packet transmission, and registers the WNIC driver callback
functions for making specific configurations on the physical
layer processes. Eventually, the mac80211 subsystem passes
the packet to the WNIC driver for physical layer transmission.

The FCFS queue mechanism with multiple priorities imple-
mented in the WNIC has a significant impact on the order
in which packets are transmitted [23]. At first, packets are
placed into different queues based on their priority levels.
An FCFS queue with a higher priority will be processed by
the WNIC earlier than FCFS queues with lower priorities to
ensure its timeliness in packet transmissions. Additionally, the
WNIC employs the carrier sense multiple access with collision
avoidance (CSMA/CA), which applies a random delay before
packet transmission, to prevent collisions between devices
communicating on the same channel. At the destination node,
the WNIC deploys a receive interruption mitigation mecha-
nism [24] to prevent the central processing unit (CPU) from
getting overwhelmed during processing the incoming traffic.
This mechanism generates only one interruption signal to
the CPU for processing multiple packets received in a pre-
defined time period. This causes the user space packet receiver
program to receive packets in bursts, which harms AoI per-
formance. Although the majority of WNICs and their drivers
are not open-source, the mac80211 subsystem in the Linux
networking protocol stack allows customization of the physical
layer transmission process by making specific configurations.

The inner structure of the mac80211 subsystem is
presented by depicting its workflow in the packet
transmission process, as illustrated in Fig. 3. The
ieee80211_subif_start_xmit() function locates at
the entrance of the mac80211 subsystem. It is responsible for
receiving the packets handover from the upper layers. The

ieee80211_subif_start_xmit()
(tx.c)

ieee80211_xmit()
(tx.c)

ieee80211_tx()
(tx.c)

Packets handover to Mac80211

drv_tx()
(driver-ops.h)

WNIC driver

ieee80211_get_tx_rates()
(rates.c)

Mac80211

ieee80211_tx_status()
(status.c)

Fig. 3. The packet transmission workflow in mac80211 subsystem.

ieee80211_xmit() function then writes the data-link
layer and the physical layer information to the headroom of
the received packet. Next, the ieee80211_tx() function
passes the received packet to the FCFS queue belonging
to the WNIC selected by the network routing subsystem.
Finally, once the WNIC is ready for the next transmission,
the mac80211 subsystem calls the drv_tx() function to
retrieve the first packet from the FCFS queue and forward it
to the WNIC driver.

When a packet is received for delivery, the WNIC driver
relies on several functions defined in the mac80211 sub-
system to execute the packet transmission process. To en-
hance wireless transmission reliability, the WNIC driver uses
the adaptive data rate adjustment algorithm by calling the
ieee80211_get_tx_rates() function. This algorithm
generates a re-transmission table for each packet based on the
current channel condition measured by the WNIC. This table
provides a range of available data rates, and sets the maximum
re-transmission times under each data rate. According to the
re-transmission table, the WNIC repeatedly sends the same
packet from the highest to lowest data rate until it receives a
physical layer ACK from the destination node. If the WNIC
has tried all the available data rates but still cannot receive the
physical layer ACK, it tags this transmission as unsuccessful in
the transmission status. Otherwise, this transmission is tagged
as successful. Once the packet transmission completes, the
WNIC calls the ieee80211_tx_status() function to
generate an interrupt to report the transmission status to the
mac80211 subsystem.

C. Motivations to Design Fresh-Fi and to Implement it in the
Mac80211 Subsystem

Previous literature has suggested that implementing either
the LCFS queue policy or the status sampling policy can
considerably enhance AoI performance. Unfortunately, the
Linux networking protocol stack does not support either of
these policies by default. The LCFS queue policy requires
that in the event of a transmission opportunity, only the most
recently injected packet can be transmitted and the other
stale packets are discarded. Nevertheless, the WNIC only



possesses FCFS queues and it does not permit any packet
drop during transmissions. The status sampling policy works
by assuming that it will receive a zero-delay ACK to detect
the previous status updating completion. However, this form
of delay-free ACK transmission is unfeasible in real-world
wireless networks. Specifically, the transport layer provides
TCP and UDP for packet transmission. Upon receiving a
packet, TCP controls the destination node to send a TCP
ACK to the source node. However, the re-transmission and in-
order delivery mechanisms of TCP cause longer transmission
delays, which have a negative impact on AoI performance [14].
Compared with TCP, UDP achieves shorter transmission delay
by ignoring transmission errors and continuing to transmit
subsequent packets. Nevertheless, UDP does not offer an ACK
for the status sampling policy to notify the completion of the
previous status updating.

To bridge the gap between theoretical designs and practical
implementations in COTS WiFi devices, in this paper, we
propose Fresh-Fi, an information freshness-oriented protocol
stack that customizes the Linux networking protocol stack.
Fresh-Fi mainly comprises two components: a mac80211
subsystem-based LCFS queue that specifically serves the sta-
tus update transmissions and a real-time kernel-based cross-
layer tunnel between the mac80211 subsystem and the appli-
cation layer for triggering status generations. Implementing
Fresh-Fi in the mac80211 subsystem provides the following
advantages:

1) Good capability. The mac80211 subsystem is designed
to support various WNICs and their corresponding
drivers sold on the market. By integrating the Fresh-
Fi architecture into the mac80211 subsystem, Fresh-Fi
can utilize this compatibility.

2) Re-transmission control. The adaptive data rate adjust-
ment algorithm is deployed in the mac80211 subsystem.
By implementing here, Fresh-Fi can directly modify the
source code of this algorithm to prohibit the WNIC
from repeatedly delivering the stale status update to the
destination node.

3) Access to physical layer configurations. Although the
WNIC and its driver are not open-source, they still
register numerous callback functions and configurations
to the mac80211 subsystem. As a result of utilizing these
properties, Fresh-Fi can indirectly control the packet
transmission process in the WNIC.

4) Access to transmission status. The mac80211 subsys-
tem is able to receive the transmission status from the
WNIC, which indicates the success or failure of the
previous packet transmission. Fresh-Fi can utilize this
message to inform the status sampling policy about the
completion of the previous status update transmission.

III. MAC80211 SUBSYSTEM-BASED LCFS QUEUE IN
FRESH-FI

This section discusses the design and implementation details
of Fresh-Fi in establishing a mac80211 subsystem-based LCFS
queue for timely status updates over the physical-layer FCFS

Status update generator

WNIC driver

Application layer

Transport layer

Network layer

Data-link 
layer

Mac80211

Physical layer

UDP

IP

Packet filter

Channel 
access 

controller

Packet traffic

Status update

WNIC queue manager

Other packets

WNIC 𝑄𝑄3 𝑄𝑄0

Fig. 4. Diagram of Fresh-Fi architecture in implementing the mac80211
subsystem-based LCFS queue over the physical-layer FCFS queues of the
WNIC.

queues of the WNIC, as depicted in Fig. 4. This figure shows
three vital modules, and each one of them will be explained
along the status update transmission path.

A. Packet Filter

To prevent accidental injections of non-status update packets
into the mac80211 subsystem-based LCFS queue, this module
filters out status updates from the incoming traffic of the
mac80211 subsystem. It not only ensures that status update
packets will not be injected into the same transmission queue
as the other packets, but also guarantees that Fresh-Fi will not
interfere with the transmissions of packets that require higher
reliability. For example, network management protocols, such
as address resolution protocol (ARP) and internet control mes-
sage protocol (ICMP), prioritize packet transmission reliability
over speed.

Fresh-Fi implements the packet filter in the
ieee80211_subif_start_xmit() function, which
serves as the entry point of the mac80211 subsystem. The
status update generator at the application layer assigns a
unique time-to-live (TTL) value to every generated packet.
Based on this TTL value, the packet filter sifts out the status
updates from incoming traffic and directs them to the channel
access controller, while other packets follow their original
transmission paths within the mac80211 subsystem.1

B. Channel Access Controller

This module is responsible for ensuring the number of
status updates stored in the mac80211 subsystem-based LCFS
queue does not exceed one, and preventing the WNIC from
repeatedly re-transmitting a stale status update.2 The channel

1Alternative filtering strategies can also be utilized. For instance, the packet
filter can be configured to identify status update packets by verifying if they
are directed towards the predetermined destination IP address and port number.

2Our current design is optimized for short status update packets. However,
we plan to investigate the effects of longer status update packets and the
resulting packet segmentation at the transport layer in our future work.



access controller configures the WNIC to report the trans-
mission status to the mac80211 subsystem once a status
update has been delivered. Fresh-Fi uses this message as a
feedback packet for the status sampling policy to indicate the
transmission completion of the previous status update. Only
after receiving a feedback packet, the status sampling policy
schedules the next status generation. Additionally, to reduce
the wasted time when re-transmitting stale status updates, the
channel access controller configures the WNIC to only send
each status update once. Before delivering the status update to
the WNIC queue manager, the channel access controller backs
up this packet for possible re-transmission in the future.

Fresh-Fi implements the channel access controller in
the ieee80211_xmit() function. This module sets the
IEEE80211_TX_CTL_REQ_TX_STATUS flag in the status
update, enabling the WNIC to report the transmission status
after finishing transmitting this packet. Moreover, it modifies
the source code of the adaptive data rate adjustment algorithm
in the ieee80211_get_tx_rates() function, to create
a special type of re-transmission table exclusively for status
updates. This type of re-transmission table only has a value
of one for the maximum re-transmission time of the highest
data rate supported by the current channel condition, and zero
values for the maximum re-transmission times of the lower
data rates. Finally, the channel access controller copies the
status update and saves the duplication to its backup buffer,
which is an FCFS queue with a size of one, for later usage.

C. WNIC Queue Manager

Based on the FCFS queue mechanism with multiple pri-
orities implemented in the WNIC, this module injects status
updates into the physical-layer FCFS queue with the highest
priority, while other packets are injected into the physical-
layer FCFS queue with the lowest priority. Since a new status
update only comes after the delivery of the previous one, the
number of packets stored in the highest priority physical-layer
FCFS queue never exceeds one. In addition, due to queue
prioritization, the WNIC always transmits the status update
earlier than other packets. Consequently, the WNIC queue
manager transforms the physical-layer FCFS queue of the
WNIC with the highest priority to the mac80211 subsystem-
based LCFS queue, which specifically serves for status update
transmissions.

Fresh-Fi employs the WNIC queue manager in the
ieee80211_tx() function. The mac80211 subsystem de-
fines the packet priority from zero to fifteen in the packet
structure [25]. By setting the priority field of status updates as
fifteen and other packets as zero, the WNIC queue manager
ensures that the WNIC injects status updates into the FCFS
queue with the highest priority, while other packets are injected
into the FCFS queue with the lowest priority.

IV. REAL-TIME KERNEL-BASED CROSS-LAYER TUNNEL IN
FRESH-FI

To compensate the absence of the transport layer ACKs
when using the UDP socket for fast status update trans-
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Fig. 5. Diagram of Fresh-Fi architecture in implementing the real-time kernel-
based cross-layer tunnel.

missions, Fresh-Fi needs to generate feedback packets based
on the transmission status reported from the WNIC. These
packets are then passed to the status sampling policy through
the Fresh-Fi cross-layer tunnel, as the indications of the
completion of the previous status update transmission. Fig.
5 shows the three key Fresh-Fi modules in building up this
cross-layer communication mechanism.

A. Transmission Status Collector

This module collects the transmission status, then decides
whether to generate a feedback packet based on this informa-
tion or command the channel access controller to re-transmit
the previous status update. Recall that the channel access
controller sets up the WNIC to send every status update only
once, with no guarantee of successful transmission. When a
transmission error occurs, it may improve AoI performance
by re-transmitting the previous status update. Therefore, the
transmission status collector has to decide if a re-transmission
is necessary. If the previous status update is successful, then
the transmission status collector forwards the transmission
status as a feedback packet to the cross-layer tunnel. If un-
successful, the transmission status collector compares the AoI
of the backup status update in the channel access controller to
the request-then-arrival (RTA) interval. This interval is defined
as the time it takes for a new status update generated in
the application layer to reach the mac80211 subsystem after
the delivery of a feedback packet by its transmission status
collector. If the system time (or local age) of the backup status
update is smaller than the RTA interval, then the transmission
status collector instructs the channel access controller to resend
its stored packet. Otherwise, the transmission status collector
sends the transmission status as a feedback packet to the cross-
layer tunnel to initiate the generation of a new status update
in the application layer.

Fresh-Fi implements the transmission status collector in the
ieee80211_tx_status() function to collect the trans-
mission status from the WNIC. This module identifies the



TABLE I
RTA INTERVAL EVALUATION RESULTS.

Without patch With patch
Mean RTA interval 58.17µs 38.30µs

Standard deviation of RTA interval 120.40µs 71.52µs
Percentage of value >100µs 6.65% 1.33%

status update according to the unique TTL value, and then
determines whether the transmission of the previous status
update is successful or not by checking the ACK flag. The
ACK flag is defined in the transmission status, its value of
one indicates that the WNIC has received the physical layer
ACK, while a value of zero denotes the absence of the physical
layer ACK reception. If the ACK equals zero, a transmission
error occurs. The transmission status collector calculates the
system time of the status update stored in the channel access
controller by measuring the time period between the reception
of the transmission status and the packet generation time as
recorded by the payload. The value of the RTA interval is
measured according to the statistical analysis of the status
update process for a sufficient long time.

B. Cross-layer Tunnel

This module is created to transmit feedback packets to
the status sampling policy as fast as possible. Fresh-Fi uses
Netlink socket technology to establish the cross-layer tunnel,
enabling real-time communication between the mac80211
subsystem and the application layer. An effective cross-layer
tunnel has to achieve a low RTA interval. We assess the
performance of the cross-layer tunnel by conducting a 10-
minute point-to-point status update experiment with the just-
in-time status sampling policy integrated in the status update
generator. The evaluation results are presented in the first col-
umn of Table I. The data shows that the mean RTA interval is
58.17µs, with a standard deviation of 120.40µs. The deviation
of the recorded data is approximately twice the mean value,
indicating the instability in both the cross-layer transmitting
and the status update generation process. Furthermore, 6.65%
of the measured RTA interval is larger than 100µs. To make the
RTA interval more stable, we implement the PREEMPT RT
patch [26] in the Linux operating system. The PREEMPT RT
patch is intended to ensure real-time performance, minimize
latency, and provide a rapid response time. We conduct the
experiment again for another 10 minutes and record the results
in the second column of Table I. It shows that the installation
of PREEMPT RT patch decreases the mean RTA interval to
38.30µs, along with a reduction in the deviation value of ap-
proximately 40% to 71.52µs. The proportion of RTA interval
with a value larger than 100µs is only 1.33%. Therefore, we
conclude that the implementation of the PREEMPT RT patch
significantly enhances the overall stability of Fresh-Fi.

V. EXPERIMENT RESULTS

We begin this section by outlining the design and im-
plementation details of our experimental platform for estab-

lishing a single-device3 status update network using COTS
WiFi devices. Subsequently, we evaluate and compare the
AoI performances of the network with Fresh-Fi and other
protocol stacks. Finally, we present the results of a series of
experiments aimed at analyzing the effectiveness of various
Fresh-Fi modules in improving information freshness.

A. COTS WiFi Device-based Experiment Platform

We establish our status update system in the dynamic indoor
environment by using two MINI PCs running the Ubuntu 18.04
operating system with kernel 4.19.37. The distance between
them is around three meters. One MINI PC serves as the AP
and the destination node, and the other works as the source
node. Both MINI PCs are equipped with the Atheros AR9382
WiFi chip and the supporting ath9k driver, allowing them to
communicate in the 2.4 GHz frequency band according to the
IEEE802.11g wireless specifications. In the application layer,
the source node uses the C language socket library to create
a status update generator with the UDP socket for packet
transmissions. The status sampling policy is also written in the
C language. For Fresh-Fi, we initially integrate the zero-wait
sampling policy proposed in [10] in the status update gener-
ator. This policy schedules the next status generation once it
receives a feedback packet from the cross-layer tunnel. Every
generated status update is 150 bytes long. It has a unique TTL
value4 of 53 and its generation timestamp is recorded in the
payload. Meanwhile, the destination node runs a status update
receiver program written in C language, which extracts the
generation timestamps of received status updates to calculate
the instantaneous AoI. To calculate the AoI in high precision,
we synchronize the source node and destination node using
the precision time protocol (PTP) [27]. This synchronization
protocol is able to achieve sub-microsecond accuracy and is
carried out over the Ethernet connection, without interfering
with the status update transmissions over the wireless channel.

B. AoI Performance Comparison between Fresh-Fi and Other
baselines

We evaluate the AoI performances of three different infor-
mation freshness-oriented protocol stacks, and display their
10-minute average AoI measured on our experiment platform
as shown in Table II. The considered implementations are:

• Fresh-Fi: The source node integrates the zero-wait sta-
tus sampling policy in the status update generator, and
deploys Fresh-Fi as described in Secs. III and IV.

• WiFi UDP: The source node simply uses the UDP
socket for delivering status updates. Once the UDP socket
sends the packet to the kernel space, the status update
generator immediately produces a new packet for the next
transmission.

3We note that Fresh-Fi can be directly applied in multi-device WiFi systems.
Moreover, the single WiFi device still needs to contend for the channel access
with other surrounding WiFi devices.

4We chose to set the TTL value to 53 because it is sufficiently large for
transmitting status updates within a network consisting of a single device.
How to set the TTL value in larger networks will need further investigation .



TABLE II
AVERAGE AOI COMPARISON AMONG DIFFERENT INFORMATION

FRESHNESS-ORIENTED PROTOCOL STACKS

WiFresh APP
WiFi UDP Fresh-Fi

R=5kHz R=6kHz R=7kHz

22.21ms 25.83ms 28.88ms 35.13ms 1.56ms

• WiFresh APP [12]: To our best knowledge, this is the
only work that tried to enhance the AoI performance
of a COTS WiFi systems. The source node generates
status updates at a constant rate R and buffers them in
an LCFS queue implemented in the application layer. The
destination node sends a polling packet to the source node
every 300µs. Upon receiving a polling packet, the source
node sends the latest status update popped from the LCFS
queue to the destination node through the UDP socket.

Table II shows that increasing the value of R from 5KHz to
7KHz has little effect on the average AoI of WiFresh APP,
which remains around 25ms. In contrast, the average AoI
of WiFi UDP is 35.13ms, as shown in the second column.
These results suggest that WiFresh APP only reduces the
average AoI by approximately 25%. This is not surprising, as
WiFresh APP is implemented solely in the application layer
and status updates can still suffer from various delays in the
lower layer queues and needs to wait for the polling packet
from the destination before pushing down a new status update.
By contrast, the third column shows that Fresh-Fi offers a
significant improvement in information freshness. Its average
AoI equals 1.56ms, which is about one twenty-second of that
of the WiFi UDP and one thirteen of that of WiFresh APP.
The dramatic AoI improvement of Fresh-Fi is attributed to two
reasons. First, Fresh-Fi prohibits the WNIC from repeatedly
transmitting the stale status update and thus improves the AoI
at the destination node. Second, the mac80211 subsystem-
based LCFS queue implemented in Fresh-Fi eliminates the
backlogging time suffered by status updates.

C. Effectiveness of Different Fresh-Fi Modules

Next, we evaluate the effectiveness of different Fresh-Fi
modules in decreasing the average AoI. Meanwhile, since
the zero-wait status sampling policy is not always optimal as
indicated in [11], we consider replacing it with the 300µs-wait
status sampling policy. This policy schedules the status update
generator to create a new packet 300µs later, once receiving
the feedback packet. The 10-minute average AoI evaluation
results are listed in Table III, which includes the following
modified protocol stacks from Fresh-Fi:

• Fresh-Fi with default WNIC re-transmissions: The
source node integrates the zero-wait status sampling
policy in the status update generator, and deploys Fresh-
Fi without modifying the adaptive data rate adjustment
algorithm to generate the special type of re-transmission
table for status updates.

• Fresh-Fi without WNIC queue manager: The source
node integrates the zero-wait status sampling policy in

TABLE III
AVERAGE AOI COMPARISON AMONG THE FRESH-FI ARCHITECTURES

WITH DIFFERENT MODIFICATIONS

Fresh-Fi 1.56ms

Fresh-Fi with default WNIC re-transmissions 1.74ms

Fresh-Fi without WNIC queue manager 1.62ms

Fresh-Fi without cross-layer tunnel 17.27ms

Fresh-Fi with the 300µs-wait status sampling policy 1.14ms

the status update generator, and deploys Fresh-Fi without
distributing status updates and other packets into different
WNIC queues.

• Fresh-Fi without cross-layer tunnel: The source node
integrates the zero-wait status sampling policy in the
status update generator, and deploys Fresh-Fi without
the Netlink sockets for feedback packet transmissions
from Fresh-Fi to the status sampling policy. Without
feedback on previous status transmission, the status sam-
pling policy can no longer schedule status generations.
Thus, the status update generator produces a new packet
immediately after the UDP socket sends the previous one
into the kernel space.

• Fresh-Fi with the 300µs-wait status sampling policy:
Fresh-Fi remains unmodified. The source node integrates
the 300µs-wait status sampling policy, rather than the
zero-wait policy, in its status update generator.

Comparing the first and second rows in Table III, we find
that the WNIC re-transmission process leads to around 180µs
increase in the average AoI. This is because the WNIC spends
extra time re-transmitting the stale status update whenever
the transmission error happens. The comparison between the
first and third rows reveals that if status updates lose the
transmission priority, the consequent penalty in average AoI
is quite negligible, which is around 60µs. This is because
the source node only deploys the status update generator in
the application layer, and the network management packet
transmissions are sparse in the Linux networking protocol
stack. Even without transmission priority, only a few status
updates are delayed by the other packets’ transmissions. The
fourth row shows a dramatic average AoI increase from
1.56ms to 17.27ms. The reason is due to the lack of feedback
packets from Fresh-Fi, the status update generator produces a
new packet before the previous one is completely delivered.
As a result, the increasing backlogging time in the lower layer
transmission queues destroys AoI performance.

In Table III, the last row is the only one providing a
smaller average AoI compared to the first row. Its AoI per-
formance improvement is around 25%, which is due to the
receive interruption mitigation mechanism in the WNIC at
the destination node. This mechanism defines two thresholds,
which are equal to 2000µs and 500µs respectively in the
ath9k driver, in controlling the interruption mitigation. During
high-traffic periods, if the time interval between consecutive
received packets is smaller than 500µs, then the WNIC gen-
erates one interruption to report all the packets received in



the previous 2000µs. During low-traffic periods, if the time
interval between consecutive received packets is larger than
500µs, then the WNIC generates one interruption for only
one packet received in the previous 500µs. Since the zero-
wait status sampling policy leads to frequent status update
receptions with the interval less than 500µs, these packets
are delayed by the receive interruption mitigation mechanism
and finally arrive at the receiver program in a burst mode.
In contrast, the 300µs-wait status sampling policy purposely
increases the status update reception interval to be large than
500µs. As a result, the WNIC at the destination node generates
interruptions more frequently to report the latest reception. The
average AoI decreases from 1.56ms to 1.14ms.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we developed Fresh-Fi, the first-of-its-kind
information freshness-oriented protocol stack implemented in
the Linux mac80211 subsystem that involves careful cus-
tomization to the lower protocol stack layers of commodity
WiFi systems. Fresh-Fi significantly improves the average
AoI by designing and implementing two new components:
a mac80211 subsystem-based LCFS queue that specifically
serves status update transmissions, and a real-time kernel-
based cross-layer tunnel that informs the status sampling
policy about the previous updating completion for scheduling
the next status generation. Our experimental results in a
commodity WiFi status update system showed that the imple-
mentation of Fresh-Fi improves average AoI performance over
20-fold compared to the baseline simply transmitting status
updates through the UDP socket and over 13-fold compared
to a state-of-the-art baseline implemented in the application
layer. In future work, we plan to refine Fresh-Fi to further
improve its AoI performance in multi-user networks. This
will involve devising and implementing AoI-aware channel
access mechanisms to reduce contention and improve overall
network efficiency. Additionally, we aim to enhance Fresh-Fi
by providing more physical layer information, such as packet
transmission time and transmission rate, to the status sampler,
so that the waiting time between status generations can be
dynamically adjusted to further optimize AoI performance.
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