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Abstract—This work develops a novel approach toward per-
formance guarantees for all links in arbitrarily large wireless
networks. It introduces a spatial network calculus, consisting of
spatial regulation properties for stationary point processes and
the first steps of a calculus for this regulation, which can be
seen as an extension to space of the classical network calculus.
Specifically, two classes of regulations are defined: one includes
ball regulation and shot-noise regulation, which are shown to
be equivalent and upper constraint interference; the other one
includes void regulation, which lower constraints the signal power.
These regulations are defined both in the strong and weak
sense: the former requires the regulations to hold everywhere
in space, whereas the latter only requires the regulations to hold
as observed by a jointly stationary point process.

Using this approach, we derive performance guarantees in
device-to-device, ad hoc, and cellular networks under proper
regulations. We give universal bounds on the SINR for all

links, which gives link service guarantees based on information-
theoretic achievability. They are combined with classical network
calculus to provide end-to-end latency guarantees for all packets
in wireless queuing networks. Such guarantees do not exist in
networks that are not spatially regulated, e.g., Poisson networks.

Index Terms—Deterministic networks, URLLC, performance
guarantees, latency, queueing networks, stochastic geometry,
point process, Palm calculus, wireless network, cellular network,
device-to-device network, ad hoc network.

I. Introduction

Network calculus [1]–[3] is a (the) key tool for establishing

deterministic latency guarantees in wireline computer net-

works subject to such uncontrolled events as bulk arrival of

information to be processed, conjunction of multiple accesses

to the network, processing speed slowdowns due to preemptive

systems-level tasks, etc. Such guarantees are fundamentally

needed in mission-critical and real-time applications where

strict real-time is required, e.g., the control network of an

airplane or a car, that of an airport, a manufacturing floor,

or a nuclear plant. This is obtained by 1) shaping the input

arrival processes and 2) providing guaranteed service curves.

Every computer or communication link being a physical

system composed of electronic devices subject to quantum

physics, strict determinism is of course only true up to certain

limitations which are of inherent probabilistic nature. For this

and many other and more compelling reasons, a recent trend

in this domain has been stochastic network calculus, which

accepts some forms of controlled randomness in the input and

service curves and replaces the deterministic guarantees by,

e.g., a strict control of the tail distribution of latencies.

It is fair to say that wireless networking lags behind in terms

of provable guarantees compared to what wireline networks

have been offering to industry and embedded systems for more

than 30 years: despite the strong claims from the 5G and 6G

industries that ultra-reliable and low-latency communications

(URLLC) will support 100% of users in intended use cases

[4], [5], provable performance guarantees for all links in an

arbitrarily large wireless network remain largely unavailable to

the best of our knowledge. The most relevant results so far are

the meta distributions [6]–[8], which allow link-level character-

izations in large networks without providing guarantees. There

are at least two intrinsic reasons for this. The first set of reasons

comes from physics and more precisely electromagnetism.

Wireline propagation takes place in a controlled (and even

designed) medium, whereas open space wireless propagation

is subject to uncontrolled multi-path reflections and direct

path obstructions, two phenomena that make wireless link

characteristics fluctuate in an unpredictable way, and which

are captured by the statistical concepts of fading and shad-

owing, respectively. The second set of reasons comes from

the shared nature of the wireless medium. In contrast to what

happens on a cable, in the open space, there is no way to

isolate a given electromagnetic transmission from other, even

distant, concurrent transmissions using the same spectrum. The

interference that other sources create hence plays a key role

here and is even well acknowledged to be the key limitation

in dense networks. Frequency reuse and carrier sensing are

in a sense natural but only heuristic ways to cope with this

question [9], [10]. The control of multiple access in this open

space context is still only very partially mastered. All these

phenomena (propagation, fading, shadowing, multiple access,

and interference) are key ingredients in the definition of the

Shannon rate, which decides the achievable performance for

the communication service process of wireless links. Thus one

understands why deterministic or strict stochastic guarantees

are not available yet.

So far, performance analysis of large wireless networks

relies on a well-recognized framework based on stochastic ge-

ometry and particularly, Poisson point processes (PPPs) [11]–

[15]. This framework often allows computable and closed-

form results, whose analogs in queueing theory are M/M/1

queues or more generally, Jackson networks. Unfortunately,

none of these frameworks offers deterministic guarantees. In

comparison, the present work shifts the focus from providing

new closed forms for a specific spatial model to regulation

properties, which, when implemented, lead to the desired

bounds.

http://arxiv.org/abs/2302.02001v3
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A. Spatial Network Calculus

The present paper proposes a new approach to this class

of questions through the construction of a spatial network

calculus which is based on spatial regulations that are al-

gorithmically implementable and which provides guarantees

for all links and their concatenation in wireless networks of

arbitrarily large size. For spatially regulated point processes,

a key example is hardcore point processes. Given spatial

regulations on transmitter and receiver processes, this cal-

culus provides computable lower bounds on the signal-to-

interference-plus-noise ratio (SINR) for all links in the network

that are deterministic in the case without fading and stochastic

in the case with fading. This in turn provides service curves

(i.e., a lower bound on the Shannon rate) on all links that

are deterministic in the absence of fading and stochastic with

fading. The service curves are further combined with classical

network calculus toward bounded or controlled latency in

wireless queueing systems.

B. Summary of Spatial Regulations

Spatial regulations of stationary spatial point processes

are defined in Sections II and III. Two classes of spatial

regulations are defined. The first class is that meant to control

the clustering of wireless links. This class contains ball and

shot-noise regulations, which are shown to be equivalent. The

second class contains void regulation and is meant to control

link distance.

Regulations are defined both in the strong and weak sense.

Let Φ and Ψ be jointly stationary and ergodic point processes

on R2 [15], denoting the transmitter and receiver point process,

respectively. A strong regulation of Φ is required to hold

everywhere in space, whereas a weak regulation of Φ with

respect to Ψ is required to hold only as seen at the atoms of

Ψ. The notion of weak regulation formalizes the notion of “the

typical observer” based on Palm calculus [15] and is natural

in the wireless setting. This was not discussed in classical

network calculus and is new to the best of our knowledge.

C. Performance Guarantees in Wireless Networks

The interest of spatial network calculus is illustrated by

a few key wireless network architectures in Sections IV-VI,

both of the device-to-device (D2D) and the cellular type.

The bipolar D2D architecture is considered in Section IV,

where transmitters form a stationary point process Φ, and each

transmitter has a dedicated receiver at a fixed distance g. We

show that the weak spatial regulation of Φ (with respect to the

receiver point process) leads to a lower bound on the SINR

for all links in the network. Further, assuming each transceiver

pair has a queue where the input arrival rate is equal to a

constant _ (the same for all queues) and the service rate is

the Shannon rate of the wireless link, we show that the spatial

regulation of Φ leads to a situation where all queues are stable

for _ small enough, whereas, in the absence of regulation,

for all positive _, there is a positive proportion of the queues

which are unstable. This is completed by deterministic latency

guarantees for all queues if the input arrival processes are time-

regulated and there is no fading, and by stochastic guarantees

in terms of bounds on the tail otherwise.

Another classical D2D setting is the ad hoc one, consid-

ered in Section V, where there is a single point process of

transceivers Φ. Assuming each node (transceiver) can establish

links with those nodes w.r.t. which the SINR is above some

predefined threshold bidirectionally, this defines a so-called

SINR graph [16], [17]. We show that if Φ is strongly void

regulated and ball regulated, then one can operate long-range

multi-hop communications between arbitrarily distant nodes.

In case there is no fading, one can even maintain a wireless

backbone (defined below) in the ad hoc network, capable of

transmitting packets on arbitrarily large distances, with bounds

on the latency through the queues in series that compose

the backbone. Again, these bounds are deterministic if the

input traffic arrival process is time-regulated and if there is

no fading. They are of stochastic nature otherwise.

The cellular setting considered in Section VI features two

jointly stationary point processes, a base station point process

Φ and a user point process Ψ. We introduce yet another type

of spatial regulation called cell-load regulation, which controls

the clustering of Ψ in the Voronoi cells of Φ. If Φ is weakly

ball regulated w.r.t. Ψ, and the network is cell-load regulated,

then performance guarantees similar to those available for the

previous network architectures hold for all users and their

queues.

II. Strong Spatial Regulations

A. Definitions

Let Φ be a stationary and ergodic point process on R2,

defined on the probability space (Ω,A, P)1. Let 1(G, A) ⊂ R2

denote the open ball of radius A > 0 centered at G ∈ R2

and �(G, A) denote its closure. For a Borel set ! ⊂ R2, let

Φ(!) ∈ N , {0, 1, 2, ...} denote the number of points of Φ

residing in !. Let #(A) , Φ(1(>, A)) to simplify the notation.

Throughout this work, we say that an event holds a.s. (which

stands for almost surely) to indicate that the probability of this

event is 1.

Definition 1 (Strong (f, d, a)-ball regulation). A stationary

point process Φ is strongly (f, d, a)-ball regulated if for all

A ≥ 0,

#(A) ≤ f + dA + aA2, P-a.s. (1)

where f, d, a are constants and f, a ≥ 0.

Alternatively, we can write P(#(A) ≤ f + dA + aA2) = 1.

By stationarity, for all H ∈ R2, A > 0, Φ(1(H, A)) is equally

distributed as Φ(1(>, A)) and is hence a.s. upper bounded by

f + dA + aA2. A much stronger result is proved later in Lemma

4, Section III-B, which states that Φ is strongly (f, d, a)-ball

regulated if and only if P(∩H∈R2 ,A≥0Φ(1(H, A)) ≤ f + dA +

aA2) = 1, i.e., the bound holds true for all locations for all A

simultaneously a.s.

1Following the standard notation in probability theory, Ω, A, P denote the
sample space, the f-algebra on Ω, and the probability measure on (Ω, A),
respectively.
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This definition can generalize to ball regulation for sta-

tionary point processes on R3 , provided that the polynomial

of degree two is replaced by a polynomial of degree 3. A

special case is ball regulation for stationary point processes

on R+. Let Φ be a stationary and ergodic point process on

R+. Define (f, d)-ball regulation for Φ that for all A > 0,

Φ([0, A)) ≤ f + dA, P-a.s. By stationarity, for all 0 ≤ B ≤ C,

Φ([B, C)) ≤ f + d(C − B), P-a.s. On R+, ball regulation

hence boils down to the (f, d)-regulation for packet arrivals

in classical network calculus, except that here the model is

stochastic.

We say that a stationary point process Φ is strongly ball

regulated if there exist some finite constants f, d, a such that

Φ is strongly (f, d, a)-ball regulated.

Definition 2 (Strong (f, d, a)-shot-noise regulation). A sta-

tionary point process Φ is strongly (f, d, a)-shot-noise reg-

ulated if, for all non-negative, bounded, and non-increasing

functions ℓ:R+ → R+, and for all ' > 0,

∑

G∈Φ∩1(>,')

ℓ(‖G‖) ≤ fℓ(0)+d

∫'

0

ℓ(A)dA+2a

∫'

0

Aℓ(A)dA, P-a.s.,

(2)

where f, a are positive constants.

By stationarity, (2) is equivalent to saying that for all

H ∈ R2,
∑

G∈Φ∩1(H,') ℓ(‖G − H‖) ≤ fℓ(0) + d
∫'

0
ℓ(A)dA +

2a
∫'

0
Aℓ(A)dA, P-a.s. Definition 2 is a special case of Definition

1, as the latter requires (2) to hold for ℓ(·) ≡ 1 only.

Remark 1. Eq (2) is equivalent to

∑

G∈Φ
ℓ(‖G‖) ≤ �ℓ , P-a.s., (3)

where

�ℓ , fℓ(0) + d

∫∞

0

ℓ(A)dA + 2a

∫∞

0

Aℓ(A)dA. (4)

�ℓ is finite if and only if
∫∞

0
AℓdA < ∞. It is easy to see that

(2) implies (3) by letting ' → ∞. For all ' > 0, by letting

ℓ(A) = 1(A ≤ ') (the indicator function that is equal to 1 if the

argument is less than ' and 0 otherwise), one retrieves (2).

The LHS of (3) is the shot-noise2 generated by Φ and ℓ at the

origin, hence the name used in this definition.

The physical meaning of this regulation is related to the

total received power and interference in wireless networks. In

wireless networks, the path loss function naturally satisfy the

conditions on ℓ.

Theorem 1 (Equivalence). A stationary point process Φ is

strongly (f, d, a)-shot-noise regulated if and only if it is

strongly (f, d, a)-ball regulated.

Proof. Firstly, the necessary part can be proved by letting

ℓ(·) ≡ 1. Now we prove the sufficient part. For ' > 0,

let Δ , '/= and A: , :Δ, = ∈ N, : = 0, ..., =. Define

the monotonic sequences (�0, �1, ...) and (;0, ;1, ...), where

2The expectation of the shot-noise is known by Campbell’s theorem [18].

�: , 1(>, A:), ;: , ℓ(A:), : = 0, ..., =. The shot-noise

generated by points in 1(>, ') at location > is
∑

G∈Φ∩1(>,')

ℓ(‖G‖)

(a)

≤ ;0Φ(�1) +
=−1∑

:=1

;: (Φ(�:+1) −Φ(�:))

(b)
=

=∑

:=1

(;:−1 − ;:)Φ(�:) + ;=Φ(�=)

(c)

≤
=∑

:=1

(;:−1 − ;:)(f + dA: + aA2
:) + ;=(f + d' + a'2), P-a.s.

Step (a) follows from the monotonicity of ℓ. Step (b) follows

from summation by parts. Step (c) follows from the fact that Φ

is strongly (f, d, a)-ball regulated. The summation
∑=

:=1
(;:−1−

;:)(f + dA: + aA2
:
) converges to the Riemman-Stieltjes integral∫'

0
f + dA + aA2dℓ as = → ∞. The integral exists because ℓ is

monotone and bounded, and thus has countable discontinuities.

Now, using summation by parts, we retrieve (2). �

Remark 2. Theorem 1 shows that the shot-noise of strongly

ball regulated point processes is upper bounded with com-

putable bounds. This theorem is applied in deriving determin-

istic bounds on the SINR in the case without fading for all

links in wireless networks (see, e.g., Section IV).

The equivalence between strong ball regulation and strong

shot-noise regulation is due to the universality of the function

ℓ in Definition 2. For a fixed ℓ, the conditions under which∑
G∈Φ ℓ(‖G‖) ≤ �ℓ is weaker, as it does not imply that the

inequality holds for other functions. However, this universality

is important and has implications beyond the equivalence

theorem as shown by what follows. Let {ℎG}G∈Φ denote the

marks associated with Φ. The shot-noise,
∑

G∈Φ ℎGℓ(‖G‖), is

now also subject to the randomness of {ℎG}G∈Φ. Let L-(B) ,

E[exp(−B-)] denote the Laplace transform of random variable

- .

Definition 3 (Exponential moment condition3). A non-

negative random variable - has exponential moments if

∃B∗ > 0 such that its moment-generating function, L-(−B) =

E[exp(B-)], is finite for B ∈ [0, B∗).

Theorem 2 (Bounded conditional Laplace transform). Let

{ℎG} be i.i.d. non-negative marks with finite mean and expo-

nential moments. Let ℓ̃(A) = logLℎ(−Bℓ(A)). If Φ is strongly

(f, d, a)-ball regulated, then ∃B∗ > 0 such that for B ∈ [0, B∗),

E

[

exp

(

B
∑

G∈Φ
ℎGℓ(‖G‖)

) ���� Φ

]

≤ exp
(
�ℓ̃

)
, P-a.s. (5)

Proof.

E

[

exp

(
∑

G∈Φ
BℎGℓ(‖G‖)

) �����
Φ

]
(a)
=

∏

G∈Φ
Lℎ(−Bℓ(‖G‖))

= exp

(
∑

G∈Φ
logLℎ (−Bℓ(‖G‖))

)

.

3This is also known as the Cramér condition [19].
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Step (a) follows from the i.i.d. assumption of the marks. Then

it follows from the equivalence between (f, d, a)-ball and shot-

noise regulation, if we can show that ℓ̃ satisfies the path loss

conditions in Definition 2. Now, for B ≥ 0, ℓ̃ is non-negative

since Eℎ[exp (Bℎℓ)] ≥ 1. Secondly, ∃B∗ > 0 such that ℓ̃ is

bounded for 0 ≤ B ≤ B∗ due to the boundedness of ℓ and the

exponential moment condition on ℎ. It is easy to see that ℓ̃(A)

is non-increasing. �

Remark 3. Theorem 2 shows that the conditional Laplace

transform of the shot-noise of an i.i.d. marked and strongly

ball regulated point process given the point process is upper

bounded. This result is applied in deriving lower bounds on

reliability for all links where fading are i.i.d. marks with

exponential moments. See Section IV.

Remark 4. �ℓ̃ is finite if
∫∞

0
Aℓ(A)dA < ∞ since

logLℎ(−Bℎℓ(A)) ∼ Bℓ(A)Eℎ, A → ∞.

Definition 4 (Strong g-void regulation). A stationary point

process Φ is strongly g-void regulated if Φ(�(>, g)) ≥
1, P-a.s., where g is a positive constant.

By stationarity again, for all H ∈ R2, Φ(�(H, g)) ≥ 1, P-a.s.

Further, it is shown in Section III-B that, if Φ is strongly g-

void regulated, then R2 can be a.s. covered by
⋃

G∈Φ �(G, g),

the union of all closed disks centered at points in Φ with radius

g. The definition also generalizes to stationary point processes

in R3 .

The physical meaning of this regulation is related to the

notion of coverage, e.g., in cellular or satellite networks. Let

Φ model the locations of transmitters in a wireless network. If

Φ is strongly g-void regulated, then for an arbitrary location

in the network, there must be at least one transmitter within

radius g, which provides a lower bounded signal power in the

absence of fading.

B. Properties

Let Φ be a stationary point process and Φ8 , 8 = 1, ..., = be

a family of stationary point processes on R2, defined on the

probability space (Ω,A, P). The following properties hold:

• (Superposition) If Φ8 is strongly (f8 , d8 , a8)-ball regu-

lated, 8 = 1, ..., =, then the superposition
⋃=

8=1
{Φ8} is

strongly (
∑
f8 ,

∑
d8 ,

∑
a8)-ball regulated. If at least one of

Φ8 is not strongly ball regulated, then the superposition

is not strongly ball regulated. If Φ8 is strongly g8-void

regulated, 8 = 1, ..., =, then the superposition
⋃=

8=1
{Φ8} is

strongly min{g8}-void regulated.

• (Thinning) If Φ is strongly ball regulated, then it remains

so after an arbitrary stationarity-preserving thinning. If Φ

is not strongly void regulated, then it remains so after an

arbitrary thinning.

• (Displacement) Let Φ̃ , {G ∈ Φ: G + +G} be a displaced

point process of Φ, where {+G}G∈Φ is a set of random

vectors. If the random vectors +G are bounded and

stationarity-preserving. Then Φ̃ is strongly ball regulated

if and only if Φ is strongly ball regulated, and Φ̃ is

strongly void regulated if and only if Φ is strongly void

regulated.

The superposition property follows from the fact that the

intersection of a countable collection of almost sure events is

also almost sure. The thinning property is easy to see. For

the displacement property, let � denote an upper bound on

the displacement vectors. Let Φ be strongly (f, d, a)-ball reg-

ulated. #̃(A) ≤ #(A+�) ≤ f+d(A+�)+a(A+�)2 , P-a.s., which

shows that Φ̃ is ball regulated by some (f̃, d̃, a). Conversely,

#(A) ≤ #̃(A + �), P-0.B. Combining both inequalities proves

the necessary and the sufficient condition. Let Φ be g-void

regulated, i.e., Φ(�(>, g)) ≥ 1. Then Φ̃(�(>, g + �)) ≥ 1, and

so Φ̃ is g+�-void regulated. The converse is true by a similar

argument. Note that these bounds are the worst-case bounds,

which may be improved when given additional assumptions

about the point processes.

These properties are useful in deriving bounds in wireless

network models. For example, the superposition property gives

SINR bounds in heterogeneous cellular networks, where each

layer of the network is strongly regulated by some (f, d, a).

The displacement property relates to mobility. It implies that a

strongly regulated network remains regulated under finite steps

of bounded motion, potentially with a different bound.

The following results show local regulation of ball regulated

point processes and the unboundedness of shot-noise in the

absence of ball regulation.

Lemma 1 (Local boundedness). A stationary point process Φ

is strongly ball regulated if and only if there exist constants

� > 0 and  < ∞ such that Φ(1(>, �)) ≤  , P-a.s.

Proof. For the necessary condition, we know that there exists a

(f, d, a) triple such that Φ is (f, d, a)-ball regulated. Choose

any � > 0 and let  = f + d� + `�2. By Definition 1,

Φ(1(>, �)) ≤  , P-a.s. For the sufficient condition, let q

denote a centered deterministic triangular lattice of intensity

2/(3
√

3�2). For all A ≥ 0,
⋃

H∈q∩1(>,A) 1(H, �) is a finite cover

of 1(>, A). We have Φ(1(>, A)) ≤ Φ
(⋃

H∈q∩1(>,A) 1(H, �)
)
≤∑

H∈q∩1(>,A) Φ(1(H, �)) ≤  q(1(>, A)), P-a.s. The last step

follows from the facts that P(Φ(1(H, �)) ≤  ) = 1, ∀H ∈ R2,

by stationarity, and that the intersection of a finite collection

of events is a.s. true if each of the events is a.s. true. It is

easy to see that for all A > 0, q(1(>, A)) is upper bounded by

some deterministic polynomial of A of degree 2. This proves

the existence of a (f, d, a) triple. �

This lemma leads to a constructive way to implement ball

regulation, which is through local repulsion. For instance,

a hardcore point process with hardcore distance � > 0 is

one where no two points coexist in any disk of radius 2�.

Then it follows immediately from Lemma 1 that hardcore

point processes are ball regulated with  = 1. Specially, any

stationary lattice is ball regulated. These examples are gathered

in the next subsection.

Lemma 2. Let Φ be a stationary point process. Let ℓ:R+ →
R+ be non-negative, non-increasing, and with non-empty

essential support. If Φ is not strongly ball regulated, then∑
G∈Φ ℓ(‖G‖) cannot be bounded from above a.s.

Proof. Choose n > 0 such that '(n) , sup{A: ℓ(A) ≥ n} >
0. Since Φ is not strongly ball regulated, by Lemma 1,
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TABLE I
Strong regulation properties of some common point processes.

Stationary PPs ball regulation void regulation

PPP x x

Neyman-Scott cluster process x x

Lattices X X

Perturbed lattices X X

Matérn hardcore PP X x

PPP+Lattices x X

Φ(1(>, '(n))) cannot be bounded from above by a constant a.s.

Hence
∑

G∈Φ ℓ(‖G‖) ≥
∑

G∈Φ∩1(>,'(n )) ℓ(‖G‖) ≥ nΦ(1(>, '(n)))

cannot be bounded from above a.s. �

This lemma shows that ball regulation is a necessary and

sufficient condition for the a.s. boundedness of shot-noise.

Consequently, the conditional Laplace transform of an i.i.d.

marked point process cannot be a.s. bounded in the absence

of ball regulation.

C. Examples

This subsection gathers a few examples illustrating the

definitions so far.

Corollary 1. The Poisson point process is neither strongly

void nor strongly ball regulated.

Proof. For any A > 0, the number of points in 1(>, A) or

�(>, A) is Poisson distributed, which cannot be a.s. bounded

from above or bounded away from 0. Then it follows from

Lemma 1. �

A Neyman-Scott cluster process is a cluster process where

the parent point process is a PPP, and each cluster is i.i.d.

and random in number. It is easy to show that this process is

neither ball or void regulated.

Lemma 3. Any hardcore point process on R2 with hardcore

distance � is strongly (1, 2c/(
√

12�), c/(
√

12�2))-ball regu-

lated.

Proof. See Appendix A. �

It suffices to remove a small fraction of points from a sta-

tionary PPP to make it hardcore, thus strongly ball regulated.

The resulting point processes are known as Matérn hardcore

processes. A Matérn hardcore process of type I with hardcore

distance � is obtained from a PPP by retaining a point if

there is no other point within distance 2� from it and not

retaining it otherwise. A Matérn hardcore processes of type

II with hardcore distance � is obtained from a PPP where an

independent random mark is associated with each point of the

PPP, and a point is retained if there is no point within distance

2� from it with a bigger mark. Hardcore point processes with

higher densities can be realized through sequential inhibition

processes.

Example 1 (Matérn hardcore processes). Matérn hardcore

processes are strongly ball regulated for being hardcore. They

are not strongly void regulated due to the thinning property

and the fact the PPP is not strongly void regulated.

By the superposition property, the superposition of a finite

collection of Matérn hardcore point processes is still ball

regulated (but not necessarily hardcore).

Example 2 (Lattices and perturbed lattices). Lattices are both

strongly ball and strongly void regulated. By the displacement

property, independently disturbed lattices with bounded dis-

placement are also strongly void regulated and ball regulated.

Example 3 (Superposed PPP and lattice). The superposition

of a PPP and a lattice is strongly void regulated but not strongly

ball regulated. This follows from the superposition property.

Example 4 (Cluster processes). Let Φp be a stationary point

process on R2 and {ΦG}G∈Φp
be a family of a.s. bounded points

sets distributed in bounded balls. Let the cluster point process

be Φ =
⋃

G∈Φp
{G + ΦG}. If Φp is strongly ball regulated, then

Φ is strongly ball regulated.

Table I gives a summary of the strong regulation properties

discussed in the examples, where “+” indicates superposition.

D. Extremal Regulation Parameters

Let D ⊂ R3 be defined as D , {I ∈
R3:Φ is I−ball regulated}. D is the set of regulation pa-

rameters associated with the ball regulation property of Φ.

D is convex and unbounded. To see this, let Φ be strongly

(f1, d1, a1)-ball regulated and (f2, d2, a2)-ball regulated. We

can easily show that for all ? ∈ [0, 1], ?(f1, d1, a1) + (1 −
?)(f2, d2, a2) ∈ D, ∀? ∈ [0, 1], which shows the convexity.

The unboundedness is trivial as each direction can grow

arbitrarily large. A question that naturally arises is the extremal

parameters of D. Here we look at two separate aspects: one

defines the extremal parameters which achieve the infimum in

each infinite direction of D; the other is to define the extremal

triple jointly.

Let Φ be a strongly ball regulated process and D be defined

as above. Let f2 , inf{f: (f, d, a) ∈ D, d, a < ∞}; d2 ,

inf{d: (f, d, a) ∈ D, f, a < ∞}; a2 , inf{a: (f, d, a) ∈
D, f, d < ∞}. For non-degenerate point processes, i.e., Φ 6=
∅,P-a.s., f2 ≥ 1, which accounts for the fact that the contact

distance min{G ∈ Φ : ‖G‖} can be arbitrarily small. d2 = 0

since one can always find f, a large enough such that d' is

upper bounded by f+ a'2, for all ' > 0. a2 is non-trivial and

depends on the distribution of Φ. Later we will show that, in

general, we need to choose d > 0 in order to achieve a2 . For a

fixed ℓ, the extremal shot-noise regulation is inf(f,d,a)∈D �ℓ .

For a strongly void regulated process, we define

its extremal void regulation parameter to be g2 ,

inf{g:Φ(�(>, g)) ≥ 1, P-a.s.}. Here g2 and a2 give the fol-

lowing lower and upper bounds on the density of a strongly

ball and void-regulated point process, i.e.,

1/g2
2 ≤ EΦ(�(>, 1)) ≤ a2 . (6)

The right inequality is easy to see. To see the left inequality,

EΦ(�(>, 1)) = EΦ(�(>, g2))/g2
2 ≥ Φ(�(>, g2))/g2

2 ≥ 1/g2
2 .

Eq (6) shows that strong (f, d, a)-ball regulation and g-void

regulation are not always jointly possible. For a < g, the joint

regulation is not possible. When a2 = EΦ(�(>, 1)), f + dA
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upper constrains the deviation of the number of points around

its mean for all A > 0. It is easy to see that for any stationary

lattice with intensity _, a2 = _c.

Extremal regulation parameters for general ball regulated

point processes lead to tighter upper bounds for the shot-noise,

which relates to interference power in wireless networks. We

will show, by the generalization that follows, that the bounds

may be further improved.

E. Strong 6-Ball Regulation

The strong (f, d, a)-ball regulation is based on an upper

bound on the counting measure of a stationary point process

in terms of a polynomial of degree 2. As stated in Lemma

1, all locally bounded point processes are ball regulated. For

some point processes, it is known that non-polynomial form

upper bounds exist, which are $(A2) but asymptotically tighter.

For example, the upper bounds for the number of lattice points

within a ball was first studied by Gauss, known as the Gauss

circle problem. For a centered square lattice with unit density,

Gauss proved that #(A)−cA2 ≤ 2
√

2A. For general lattices with

shifted centers, it is shown that #(A)−cA2 = $(A2/3) as A → ∞
and conjectured to be $(A1/2+n ) for all positive n [20], [21].

This prompts the following generalization of Definition 1. Let

6 : R+ → R+ be a non-negative and wide-sense increasing

function with countable discontinuities, and such that 6(A) =

$(A2) as A → ∞.

Definition 5 (Strong 6-ball regulation). A stationary point

process Φ is strongly 6-ball regulated if for all A ≥ 0,

#(A) ≤ 6(A), P-a.s.

By stationarity, for all H ∈ R2, Φ(1(H, A)) is equally

distributed as Φ(1(>, A)). So the same a.s. upper

bound holds on Φ(1(H, A)). A stronger result states that

P(∩H∈R2 ,A≥0Φ(1(H, A)) ≤ 6(A)) = 1. The formal proof are

given in Section III-B.

Theorem 3 (Equivalence). A stationary point process Φ is

strongly 6-ball regulated if and only if for all non-negative

and non-increasing continuous functions ℓ:R+ → R+ and for

all ' > 0,

∑

G∈Φ∩1(>,')

ℓ(‖G‖) ≤
∫'

0

6(A)dℓ + ℓ(')6('), P-a.s. (7)

Proof. The proof follows from replacing f+dA+aA2 by 6(A) in

the proof of Theorem 1.
∫
6dℓ is the Riemann-Stieltjes integral,

which exists as 6 has countable discontinuities. �

Remark 5. Taking the limit ' → ∞ of both sides of (7),

provided that the RHS is finite, we obtain the 6-shot-noise

regulation.

Remark 6. ℓ does not need to be bounded for generalized

ball regulation. For example, the RHS of (7) exists for ℓ(A) =

A−U, U > 2 provided that 6(A) is zero around the origin. Here

we require ℓ to be continuous only to make sure that
∫
6dℓ

exists. The condition can be relaxed by requiring that ℓ and 6

share no common discontinuities. The properties of (f, d, a)-

ball regulation hold for 6-ball regulation and are omitted here.

III. Weak Spatial Regulations

In many applications, the perspective of interest is only

that from a specific set of observers rather than from the

entire space. For example, in cognitive radio networks, there

are a set of primary transceivers and a set of secondary

transceivers. The mandated regulation (or protection) for the

former can be more strict than that seen from an arbitrary

location or the secondary transceivers. This motivates what we

propose to call weak spatial regulations. The “strong-weak”

terminology will become clear by the end of this section. Weak

spatial regulations build upon Palm calculus, which concern

the perspective of the typical observer [15].

A. Definitions

Let Φ and Ψ be two point processes on R2 which are

jointly stationary and ergodic, defined on the same probability

space (Ω,A, P). Without loss of generality, let Ψ be the set

of observers, from which Φ are measured. Let P>
Ψ

, E>
Ψ

denote

the Palm probability and Palm expectation of Ψ, respectively.

Note that nothing forbids to take Ψ = Φ.

Recall that #(A) counts the number of points in Φ that reside

in 1(>, A). Let 6 : R+ → R+ be non-decreasing with countable

discontinuities such that 6(A) = $(A2) as A → ∞.

Definition 6 (Weak 6-ball regulation). A stationary point

process Φ is (weakly) 6-ball regulated with respect to a jointly

stationary point process Ψ if for all A ≥ 0, #(A) ≤ 6(A), P>
Ψ

-a.s.

Remark 7. Regulation is in the weak sense when it is specified

w.r.t. an observer point process. If Φ is independent of Ψ, then

P>
Ψ

= P [15, Lemma 6.3.1], and we retrieve strong regulations

as in Section II.

We say that Φ is 6-shot-noise regulated with respect to Ψ if

for all ' > 0 and all non-negative and non-increasing functions

ℓ:R+ → R+,
∑

G∈Φ∩1(>,') ℓ(‖G‖) ≤
∫'

0
6dℓ+ℓ(')6('), P>

Ψ
-a.s.,

provided that the Riemman-stietjes integral
∫
6dℓ exists. Spe-

cially, Φ is (f, d, a)-ball regulated with respect to Ψ if for all

non-negative, bounded, and non-increasing functions ℓ:R+ →
R+,

∑
G∈Φ ℓ(‖G‖) ≤ fℓ(0)+d

∫∞
0
ℓ(A)dA+2a

∫∞
0
Aℓ(A)dA, P>

Ψ
-a.s.

Corollary 2 (Equivalence). A stationary point process Φ is

6-shot-noise regulated with respect to a jointly stationary point

process Ψ if and only if it is 6-ball regulated with respect to

Ψ.

Proof. Apply the techniques in the proof of Theorem 3. �

Definition 7 (Weak g-void regulation). A stationary point pro-

cess Φ is g-void regulated with respect to a jointly stationary

point process Ψ if Φ(�(>, g)) ≥ 1, P>
Ψ

-a.s., where g > 0 is a

constant.

Remark 8. Any stationary point process is void regulated

w.r.t. itself.

The superposition property of strong spatial regulation holds

for weak regulation provided it is with respect to the same

observer point process. However, not all properties of strong

regulations extend to weak regulations. For example, if there

exist some constant ',  > 0 such that Φ(1(>, ')) ≤  ,
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(Ω,A, P)

Strong (P-a.s.)

Theorem 4

[22, Lemma 2.6]

[15, Chap. 6]

Lemma 4 ⋂
H∈R2 {Φ(1(H, A)) ≤ 6(A)}Φ(1(>, A)) ≤ 6(A)

Weak (P>
Ψ

-a.s.)
⋂

H∈Ψ {Φ(1(H, A)) ≤ 6(A)}Φ(1(>, A)) ≤ 6(A)

Fig. 1. An illustration of the strong v.s. weak ball regulation relation. The diagram holds for all A > 0. The blue line denotes equivalence between the events.
The red double arrow denotes “implies”. Similar results hold for the strong v.s. weak void regulation and are omitted here.

P>
Ψ

-a.s. (referred to as local boundedness in Lemma 1), Φ

is not necessarily ball regulated with respect to Ψ. Further,

the absence of weak regulation does not imply that the shot-

noise cannot be P>
Ψ

-a.s. upper bounded. One can construct such

examples using fixed ℓ with bounded support.

B. Relation to Strong Regulations

This subsection justifies the strong-weak terminology used

in the present paper. Firstly, we justify the claim that the strong

regulation defined above in terms of properties of the balls of

center > is in fact a property enforced everywhere in space.

Lemma 4. For all fixed ; ∈ N and A > 0, the set⋂
H∈R2{Φ(1(H, A) ≤ ;} is an event of A. The set �Φ =⋂
H∈R2 ,A≥0 {Φ(1(H, A)) ≤ 6(A)} is also an event of A. Further,

P(�Φ) = 1 if and only if for all A ≥ 0, P(Φ(1(>, A)) ≤ 6(A)) = 1.

Proof. See Appendix B. �

Lemma 5. The set +Φ =
⋂

H∈R2 {Φ(�(H, g)) ≥ 1} is an event

of A. In addition, P(+Φ) = 1 if and only if P(Φ(�(>, g)) ≥
1) = 1.

Proof. See Appendix C. �

Note that the events
⋂

H∈R2{Φ(1(H, A) ≤ ;}, �Φ, and +Φ are

{\C }-invariant [15, Chap. 6]; such events hold P>
Ψ

-a.s. if they

hold P-a.s.

Theorem 4 (Strong v.s. weak). Let Φ, Ψ be two jointly

stationary point processes.

1) If Φ is strongly 6-ball regulated, then all jointly sta-

tionary point processes Ψ, Φ is weakly 6-ball regulated

with respect to Ψ; if Φ is weakly 6-ball regulated with

respect to some Ψ, it is not necessarily strongly 6-ball

regulated.

2) If Φ is strongly g-void regulated, then for all jointly sta-

tionary point processes Ψ, Φ is weakly g-void regulated

with respect to Ψ; if Φ is weakly g-void regulated with

respect to some Ψ, it is not necessarily strongly g-void

regulated.

Proof. For the first statement of 1), it follows from Lemma 4

that if Φ is strongly 6-ball regulated, then P(�Φ) = 1. Then it

follows from the {\C }-invariance of �Φ that P>
Ψ

(�Φ) = 1, which

implies the weak 6-ball regulation. For the second statement,

it suffices to provide the following counter-example: let Φ be a

stationary square lattice with unit density. Let Ψ = Φ[1/2,0] be

the observer point process, which is Φ shifted by the vector

(1/2, 0). Consider the observer (f, d, a)-ball regulation with

respect to Ψ: f = 0 belong to the set of regulation parameters

of this observer point process. In contrast, the same parameters

do not regulate Φ.

The first statement of 2) follows from Lemma 5 and the

{\C }-invariance of +Φ, and the fact that P>
Ψ

(+Φ) = 1 implies

the weak void regulation. For the second statement, let Φ be

a stationary Poisson point process and Ψ = Φ[1/2,0]. Then Φ

is 1/2-void regulated with respect to Ψ but not strongly void

regulated. �

An illustration of the key elements and their relations related

to strong v.s. weak 6-ball regulation is given in Fig. 1. It holds

for all A > 0. A similar relation holds for void regulation.

IV. Performance Guarantees in Device-to-device

Bipolar Networks

A. System Model

Let the transmitter locations in a device-to-device (D2D)

bipolar network [17] be modeled by a stationary and ergodic

point process Φ on R2, defined on the probability space

(Ω,A, P)4. Each transmitter has a dedicated receiver at a

fixed distance g > 0 in a uniformly random direction. The

resulting receiver point process is denoted by Ψ, which is

jointly stationary and ergodic with Φ. We focus on the typical

D2D link (transmitter-receiver dipole), where the receiver is

at the origin and its dedicated transmitter is denoted by C ∈ Φ.

By the displacement property from Section II, Φ and Ψ are

either both strongly ball (void) regulated or neither ball (void)

regulated. Further, by the construction of the model, Φ is

weakly g-void regulated w.r.t. Ψ (the reverse is also true).

We first consider the case where all links are always active,

i.e., full buffer at all transmitters. This assumption yields

worst-case bounds. The queueing aspect is considered in the

4Ergodicity, roughly speaking, means that one single realization of the point
process contains the full statistical information. Stationarity and ergodicity
allow one to simulate only one large spatial realization of the network.
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Fig. 2. Illustration of a D2D bipolar network with g = 0.5. Blue circles
denote transmitter locations simulated by a PPP with intensity 0.5, and red x-
marks denote receiver locations. Dashed circles represent guard zones centered
around the transmitters with radius 0.5. Through thinning the PPP to obtain a
Matérn hardcore process of type II, only transmitters with green guard zones
are retained.

last subsection. Without loss of generality, we assume that the

bandwidth is normalized to 1. We assume that the path loss

is a function of distance denoted by ℓ : R+ → R+. We assume

ℓ is bounded, non-increasing, continuous, and integrable in

R2, i.e.,
∫∞

0
ℓ(A)AdA < ∞. The boundness of ℓ is not strictly

necessary for 6-ball regulation as noted in Remark 6. Without

loss of generality, let ℓ(0) = 1. Let , denote the variance of

the additive white Gaussian noise. Denote by ℎG the power

of the small-scale fading from G ∈ Φ to the origin. Let 5ℎ,

�ℎ, and Lℎ denote the PDF, CDF, and Laplace transform

of a random variable ℎ, respectively. Assume that the fading

{ℎG}G∈Φ are i.i.d. with unit mean and satisfy the exponential

moment condition (Definition 3). Our framework generalizes

easily to system models with shadowing, which will not be

discussed here.

Fig. 2 illustrates a D2D bipolar network, where the original

transmitters are distributed as a PPP, which is not ball regu-

lated, and the retained transmitters are distributed as a Matérn

hardcore process of type II, which is ball regulated. The latter

is realized through a thinning of the former.

B. Performance Metrics

The SINR at the origin is

SINR =
ℎCℓ(g)

�C +,
,

where ‖C‖= g and �C ,
∑

G∈Φ\{C } ℎGℓ(‖G‖) is the power of the

total received interference. For a target SINR threshold \ > 0,

the link reliability is defined as

%s(\) , P
>
Ψ

(SINR > \ | Φ).

The random variable %s(\) ∈ [0, 1] is the reliability of the

typical receiver under fading conditioned on the locations of

transmitters. The distribution associated with %s(\) is known

as the meta distribution [6], which gives the fraction of links

in the network that achieve a link reliability above G for

a target SINR threshold \. For some point processes, e.g.,

Poisson networks, the fraction is strictly less than 1, and its

asymptotics is known [6], [7]. The link ergodic rate when

treating interference as noise is

� , E>
Ψ

[log(1 + SINR) | Φ],

which is averaged over fading (in [nats/s/Hz]).

The regime of interest here is when %s(\) and � are a.s.

lower bounded, i.e., all links achieve a link reliability and

ergodic rate. Note that the former implies the latter.

Definition 8 (Link performance bounds). For a target SINR

threshold \, we say that G is a reliability lower bound for all

links if P>
Ψ

(%s(\) > G) = 1. We say that G is an ergodic rate

lower bound for all links if P>
Ψ
(� ≥ G) = 1.

C. No Fading

In the absence of fading, the link performance is determined

by the network geometry. This is a degenerate case where the

link reliability %s(\) ∈ {0, 1}. The total interference is simply

the Palm version of the shot-noise generated by Φ w.r.t. Ψ

excluding the shot from the dedicated transmitter C. Recall

from Remark 1 that �ℓ = fℓ(0) + d
∫∞

0
ℓ(A)dA + 2a

∫∞
0
Aℓ(A)dA.

Corollary 3. If Φ is (f, d, a)-ball regulated with respect to

Ψ, in the absence of fading,

�C ≤ �ℓ − ℓ(g), P>
Ψ

-a.s. (8)

The link SINR is lower bounded by

ℓ(g)/(�ℓ − ℓ(g) +,), P>
Ψ

-a.s., and the ergodic rate is

lower bounded as by log (1 + ℓ(g)/(�ℓ − ℓ(g) +,)) , P>
Ψ

-a.s.

Proof. Since Φ is (f, d, a)-ball regulated with respect to Ψ,

from Definition 2,
∑

G∈Φ ℓ(‖G‖) ≤ �ℓ , P
>
Ψ

-a.s. Then it follows

from the fact that �C =
∑

G∈Φ\{C } ℓ(‖G‖) =
∑

G∈Φ ℓ(‖G‖) − ℓ(g).
�

Remark 9. Without spatial regulation on Φ, e.g., when Φ is

a PPP, the above a.s. bounds do not exist.

Example 5. Consider ℓ(A) = min{1, A−U}, U > 2. If Φ

strongly is (f, d, a)-ball regulated, by the strong-weak relation,

�C ≤ f + dU/(U − 1) + aU/(U − 2) − min{1, g−U}, P>
Ψ

-a.s.

For a hardcore point process with hardcore distance � = 1,

U = 4 and g = 1, one can simply plug into (f, d, a) =

(1, 2c/
√

12, c/
√

12)) from Lemma 3.

D. With Fading

1) Interference bounds: With fading, even if Φ is ball

regulated w.r.t. Ψ, the power of total interference given Φ

cannot be a.s. upper bounded in general due to potentially

unbounded support of fading. However, its tail distribution can

be bounded using classical inequalities.
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Corollary 4 (Markov and Chebyshev Bounds). If Φ is

(f, d, a)-ball regulated w.r.t. Ψ, then P>
Ψ

-a.s., P>
Ψ

(� > G |
Φ) ≤ (�ℓ − ℓ(g))/G, and P>

Ψ
(|� − E[� | Φ]|> G | Φ) ≤

(Eℎ2 − 1)
(
�ℓ̃ − ℓ̃(g)

)
/G2 where ℓ̃ = ℓ2.

Proof. The first inequality follows from the fact that E[� |
Φ] =

∑
G∈Φ\{C } ℓ(‖G‖) ≤ �ℓ − ℓ(g) from Corollary 3 and the

Markov inequality. For the second, the conditional variance of

� given Φ is

E>
Ψ



(
∑

G∈Φ\{C }
(ℎG − 1)ℓ(‖G‖)

)2 �����
Φ


(a)
=

∑

G∈Φ\{C }
E

[
(ℎG − 1)2

]
ℓ2(‖G‖)

=
(
E[ℎ2] − 1

) ∑

G∈Φ\{C }
ℓ̃(‖G‖).

Step (a) follows from the independence assumption of fading

and Eℎ = 1. Then it follows from Chebyshev inequality and

the fact that ℓ2 is bounded and non-decreasing, and that Φ is

(f, d, a)-shot-noise regulated w.r.t. Ψ. �

Corollary 5. For the D2D bipolar model described in Sec-

tion IV-A, if Φ is (f, d, a)-ball regulated w.r.t. Ψ, then

there ∃B∗ > 0 such that for B ∈ [0, B∗), L� |Φ(−B) ≤
exp

(
�ℓ̃ − ℓ̃(g)

)
, P>

Ψ
-a.s., where ℓ̃(A) = logLℎ(−Bℓ(A)).

Proof. Follows from Theorem 2. �

If Φ is not ball-regulated, E[exp(B�) | Φ] cannot be P>
Ψ

-a.s.

upper bounded. Hence the Laplace transform of the interfer-

ence with fading cannot be P>
Ψ

-a.s. upper bounded. One such

an example is the PPP.

Example 6. For i.i.d. Nakagami-< fading, Lℎ(−B) = (1 −
B/<)−<, and B∗ = <. When ℓ(A) = min{1, A−U}, U > 2,

�ℓ̃ = < log
1

(1 − B/<)f
+
UdB 2�1

(
1 − 1

U
, 1; 2 − 1

U
; B
<

)

U − 1

+
UaB 2�1

(
1 − 2

U
, 1; 2 − 2

U
; B
<

)

U − 2
,

where 2�1 is the hypergeometric function and can be efficiently

evaluated numerically.

Corollary 6 (Chernoff bound). Let ℓ̃(A) = logLℎ(−Bℓ(A)). If

Φ is (f, d, a)-ball regulated, then

P>
Ψ

(� > G | Φ) ≤ exp

(
inf

B∈[0,B∗)
−BG + �ℓ̃ − ℓ̃(g)

)
, P>

Ψ
-a.s. (9)

Proof. For ∀B ≥ 0, P>
Ψ

(� > G | Φ) =

P>
Ψ
(exp (B�) > exp(BG) | Φ) ≤ exp(−BG)L� |Φ(−B). Then

Eq (9) follows from Corollary 5 and minimizing the exponent

over B. �

The exponent in the RHS of (9) is known as the Legendre

transform. If it is differentiable in B, one can solve it by taking

the derivative.

2) Performance guarantees:

Theorem 5 (Reliability lower bound for all links). If Φ

is (f, d, a)-ball regulated with respect to Ψ and the fading

satisfies the exponential moment condition, then for any \ > 0,

the link reliability is lower bounded. Moreover, %s(\) ≥
Z (\), P>

Ψ
-a.s., where Z (\) is the following deterministic func-

tion:

Z (\) ,

∫∞

,\
ℓ(g)

5ℎ(G)
(
1 − 4infB∈[0,B∗) �ℓ̃−ℓ̃(g)−B(Gℓ(g)\−1−,)

)+

dG,

(10)

and ℓ̃(A) = logLℎ(−Bℓ(A)). Further, for any n > 0 , ∃X > 0

such that a reliability 1− n is achieved by all links for \ ≤ X.

Proof. See Appendix D. �

Remark 10 (Generality). Theorem 5 is applicable to all

(f, d, a)-ball regulated point processes (strong or w.r.t. Ψ)

regardless of their distributions. For channel models, it applies

to all bounded and non-increasing path loss functions and

fading statistics including Rayleigh, Rician, and Nakagami.

Theorem 5 proves lower-bounded ultra-reliability for all

links. Z (\) can be efficiently computed using numerical meth-

ods. With Nakagami fading and ℓ(A) = min{1, A−U}, one can

find the infimum of the exponent by taking its derivative.

Theorem 6. For Rayleigh fading, if Φ is (f, d, a)-ball regu-

lated w.r.t. Ψ, then

%s(\) ≥ exp

(
− \,
ℓ(g)

)
exp

(
−�ℓ̃ + ℓ̃(g)

)
, P>

Ψ
-a.s., (11)

where ℓ̃(A) = log(1 + \ℓ(A)/ℓ(g)).

Proof.

%s(\)
(a)
= E>

Ψ

[
exp

(
− \ (� +,)

ℓ(g)

) ���� Φ
]

(b)
= exp

(
− \,
ℓ(g)

) ∏

G∈Φ\{C }

1

1 + \ℓ(‖G‖)/ℓ(g)

= exp

(
− \,
ℓ(g)

)
exp

(

−
∑

G∈Φ\{C }
log(1 + \ℓ(‖G‖)/ℓ(g))

)

.

Step (a) follows from the CCDF of Rayleigh fading. Step

(b) follows from the independence assumption on fading and

the distribution of Rayleigh fading. Lastly, ℓ̃(A) = log(1 +

\ℓ(A)/ℓ(g)) is non-increasing, monotonic and bounded. Hence

we prove the theorem by applying the upper bound for the

interference for a (f, d, a)-regulated point process w.r.t. Ψ. �

Theorem 6 gives an explicit formula for an a.s. lower bound

on %s(\) in the special case of Rayleigh fading. By the strict

monotonicity and continuity w.r.t. \ of the RHS expression in

(11), we can invert the RHS of (11) to obtain a lower bound

on the threshold SINR needed to achieve an arbitrarily high

target reliability. Specially, for ℓ(A) = min{1, A−U},

�ℓ̃ = log

(
1 + \

ℓ(g)

)f

1 + \
+
Ud\ 2�1

(
1 − 1

U
, 1; 2 − 1

U
;− \

ℓ(g)

)

(U − 1)ℓ(g)

+
Ua\ 2�1

(
1 − 2

U
, 1; 2 − 2

U
;− \

ℓ(g)

)

(U − 2)ℓ(g)
+ ℓ̃(g). (12)
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Fig. 3. Lower bounds of link reliability in a bipolar network where Φ is a
triangular lattice with � = 1. , = 0, ℓ(A ) = min{1, A−U }, g = 1, Rayleigh
fading. The analytical lower bounds are obtained via Theorems 6 and 5, with

�ℓ̃ − ℓ̃(g) given in (12) and f = 1, d = 2c/
√

12, a = c/
√

12 from Lemma
3. The simulated lower bounds are obtained via 500,000 realizations.

In Fig. 3, we plot the derived lower bounds against simulated

lower bounds where Φ is a stationary triangular lattice with

hardcore distance is 1, and ℓ(A) = min{1, A−U} with U = 3, 4

respectively. Here we choose triangular lattice to obtain a rel-

atively accurate estimation of the worst-case reliability. While

the same a.s. bound holds for a Matérn hardcore point process

with the same hardcore distance, extreme cases happen rarely

and hence are more difficult to simulate accurately. Analysis

on statistical bounds are left for future work. The (f, d, a)-

ball regulation parameters are given in Lemma 3. The vertical

gap is the difference in the worst-case link reliability between

the proposed analytical characterization versus simulations.

The horizontal gap is the difference between the derived

and simulated SINR thresholds needed to achieve a given

target reliability. For a target reliability above 0.7, there is a

horizontal gap less than 4 dB between simulation and Theorem

6. The bounds for U = 3 measured by the horizontal gap are

0 0.2 0.4 0.6 0.8 1
Link ergodic rate (Nats/s/Hz)

0

0.2

0.4

0.6

0.8

1
simu. CCDF
simu. lower bound
Cor. 7

(a) U = 3.

0 0.2 0.4 0.6 0.8 1
Link ergodic rate (Nats/s/Hz)

0
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0.4

0.6

0.8

1

simu. CCDF
simu. lower bound
Cor. 7

(b) U = 4.

Fig. 4. Lower bounds and CCDF of the link ergodic rate in a bipolar network.
The analytical lower bounds are obtained via Corollary 7 (using the bound in
Theorem 6). The setup and parameters are the same as those for Fig. 3.

slightly tighter than the bounds for U = 4.

Corollary 7 (Ergodic rate lower bound for all links). If Φ is

(f, d, a)-ball regulated with respect to Ψ, then the ergodic rate

is lower bounded by
∫∞

0
exp (−Z (4C − 1))dC, P>

Ψ
-a.s., where Z (·)

is defined in Theorem 5. Let ℓ̃(A) , log(1 + (4C −1) ℓ(A)/ℓ(g)).

For Rayleigh fading, we have

� ≥
∫∞

0

exp

(
− (4C − 1),

ℓ(g)

)
exp

(
−�ℓ̃ + ℓ̃(g)

)
dC, P>

Ψ
-a.s. (13)

Proof. With fading,

� =

∫∞

0

P>
Ψ

(log(1 + SINR) > C | Φ)dC

=

∫∞

0

P>
Ψ

(SINR > 4C − 1 | Φ)dC. (14)

The rest then follows from the reliability lower bounds in

Theorems 5 and 6. �



11

Fig. 4 plots the analytical lower bound in Corollary 7 (using

the bound in Theorem 6) against simulated lower bounds for

the link ergodic rate, where the parameters are the same as

those in Fig. 3. The gaps between the simulated lower bound

and the analytical lower bound for U = 3 and U = 4 are 0.07

and 0.148 (in Nats/s/Hz), respectively.

E. Wireless Queues in D2D Networks

Spatial network calculus, when combined with classical

network calculus, induces performance guarantees for all

queues simultaneously in wireless queueing systems. Previ-

ously, stochastic network calculus has been applied to study

performance of wireless queues by formulating SINR based

service curves [8], [23]. For large wireless networks, [8]

analyzes and latency of wireless queues in Poisson bipolar

networks. Due to the absence of spatial regulations in Poisson

networks, stability and performance guarantees only hold for

a (strict) subset of links in the network [24].

Consider a countable collection of queues associated with

the links, where each queue has an infinite buffer with first-

in-first-out (FIFO) scheduling. Traffic arrives at the transmitter

according to a time stationary and ergodic point process with

intensity _ > 0, is served by the wireless link, and leaves

the queue when successfully decoded by the receiver. The

service process at each queue depends on the performance of

its wireless link. We assume full buffer at interfering queues,

which is conservative. Another essential matter concerns fad-

ing now seen as a time series. Let ℎG(C) denote the fade from

G ∈ Φ to the origin at time C. Conditionally on Φ the time

fading processes {ℎG(C)}C are assumed i.i.d. w.r.t. G ∈ Φ with

exponential moments, which is in line with what was assumed

above. The main additional assumption is that for all fixed G,

the time series ℎG(C) is ergodic. A simple instance is where

this time series is a mixing Markov chain, with a steady state

distribution which is that considered above (say Nakagami).

Theorem 7. Let Φ be a stationary and ergodic spatial point

process denoting the transmitter locations in a bipolar network.

If Φ is (f, d, a)-ball regulated with respect to Ψ, then

1) in the absence of fading, if the traffic arrival

to each queue is (f∗, d∗)-regulated, with d∗ <

log
(
1 +

ℓ(g)
�ℓ−ℓ(g)+,

)
, then the queue length is upper

bounded, and the latency is upper bounded at each

queue;

2) in the presence of ergodic fading with exponential mo-

ments, there exists a threshold d∗ > 0 such that when

_ < d∗, all queues in the network are stable, the tail

distribution of latency is upper bounded, and the tail

distribution of queue length is upper bounded.

If Φ is not ball-regulated with respect to Ψ, either in the

absence of fading or with fading, there is a non-zero fraction

of unstable queues. The tail distribution of link-level latency

and queue length cannot be upper bounded.

The proof is omitted. The statement on the existence of

bounds on the tail distribution of latency follows from Loynes’

theorem [25] and leverages the time ergodicity assumptions

on the fading time series and the arrival point processes. The

nature of the result is illustrated by the following discrete-time

example.

Example 7 (Stochastic bounds on latency in discrete-time

queues). The aim of this example is to illustrate the stochastic

bounds that can be obtained on queuing latency by spatial

regulation alone, i.e., in the absence of time regulation and

in the presence of fading with short coherence times. The

illustration features a D2D network with Rayleigh fading

where each link is equipped with an infinite buffer FIFO queue.

Time is slotted. The packet arrival process in each queue is

i.i.d. over time slots and the number of arrivals of packets in a

time slot has the distribution - over the integers. The packet

head of a given queue at a given time slot is successfully

transmitted (served) if the SINR at that location and at that

time exceeds the threshold \. If it is the case, the packet leaves.

Otherwise it stays head of the line and tries again next slot

until its transmission succeeds. The simplest scenario is that

where the slot duration is of the order of the coherence time

of the fades. In this case, in each queue, the fades experienced

in different time slots are i.i.d. In the Rayleigh fading case,

the conditional probability of success in the typical queue

given the transmitter point process is bounded from below by

the constant given in Theorem 5. Hence, in each queue, the

stationary latency is stochastically bounded from above by that

in a discrete time queue with i.i.d. arrivals with distribution -

and i.i.d. Bernoulli service process with a constant probability

of success Z (\). The distribution of the stationary queue size

and of the latency in such queues has been extensively studied

using generating function techniques and is known in closed

form in function of - and Z (\) [26].

The results of the last example can be extended to more

complex scenarios (e.g., a mixing Markov evolution of the

fades over time slots in place of i.i.d. assumptions). There is a

wealth of well-known computational results on the tail decay

of stationary queues [27], starting with the seminal work of W.

Feller for GI/GI/1 queues, covering both discrete-time queues

and fluid queues, which we will not review here despite the fact

that they are fully relevant in the wireless setting considered

in the last theorem.

The ergodicity of the small-scale fading is a necessary

condition for the stability of all queues. Without this ergodicity,

a wireless link may stay with an arbitrarily low rate due to

persistent bad fades, which leads to a situation where a positive

fraction of the queues are unstable.

V. Performance Guarantees In Ad hoc Networks

A. System Model

Let Φ be a stationary point process on R2 modeling the loca-

tions of transceivers, defined on a probability space (Ω,A, P).
By the strong-weak regulation relation in Section III-B, if Φ

is strongly ball (void) regulated, then it is also weakly ball

(void) regulated with respect to itself.

We assume that node G can transmit to node H if the SINR

received by H is large enough. As above, ℓ : R+ → R+ denotes

the path loss function, which depends only on the link length,

is bounded, non-increasing, and integrable in R2. , denotes
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the variance of the additive white Gaussian noise. Here, we

denote the fading from node G to H by ℎGH, and assume that

the fading random variables {ℎGH}G,H∈Φ,G 6=H are i.i.d. with

exponential moments. The SINR of the link G → H, measured

at node H is

SINRGH ,
ℎGHℓ(‖G − H‖)

� +,
,

where � = �G,H ,
∑

I∈Φ\{G,H} ℎIℓ(‖I − H‖) is the power of the

total received interference at H.

The SINR graph of Φ for a predefined SINR threshold \ is

the random graph with nodes the atoms of Φ and with an edge

between G and H in Φ if SINRGH > \ and SINRHG > \ [16],

[17]. One says that the SINR graph of Φ percolates for the

threshold \ if it has an infinite component. One says that it has

a north-south and east-west (or any other direction) backbone

if, under the Palm probability of Φ, there exists a g > 0 and

points {G8, 9 }8, 9∈Z of Φ such that

1) G0,0 = (0, 0) and for all 8 ∈ Z, G8, 9 belongs to the square

of center (28g, 2 9g) and side 2g;

2) there is an edge between G8, 9 and G8 +
− 1, 9 and an edge

between G8, 9 and G8, 9 +
− 1, for all 8, 9 ∈ Z.

Note that the existence of such a SINR backbone in the SINR

graph implies its percolation.

B. SINR Graph Percolation

If Φ is strongly (f, d, a)-ball regulated and strongly g-void

regulated, then

1) in the absence of fading, the interference at the origin is

P>
Φ

-a.s. bounded above by �ℓ − ℓ(g). From the nearest

node to >, the link rate when treating interference as

noise is lower bounded by log
(
1 +

ℓ(g)
�ℓ−ℓ(g)+,

)
, P>

Φ
-a.s.;

2) If fading has exponential moments, the conditional

Laplace transform of interference is P>
Φ

-a.s. bounded

above by exp(�ℓ̃ − ℓ̃(g)), where ℓ̃(A) = logLℎ(−Bℓ(A)).
From the nearest node to >, the link reliability is lower

bounded by Z (\), P>
Φ

-a.s. The ergodic rate is lower

bounded by
∫∞

0
exp (−Z (4C − 1))dC, P>

Φ
-a.s.

Lemma 6. If Φ is strongly (f, d, a)-ball regulated and strongly

g-void regulated, then

1) in the absence of fading, the SINR graph admits a north-

south and east-west backbone for \ below a positive

threshold;

2) in the presence of fading, the SINR graph percolates for

\ below a positive threshold.

Proof. Let us first build the backbone. Since Φ is g-void reg-

ulated, with probability 1, each ball �((28g, 2 9g)), g) contains

at least one point of Φ. For each (8, 9) 6= (0, 0), let G8, 9 be

the point of that ball with, e.g., the largest abscissa. We now

show that for \ small enough, in the absence of fading, the

sequence {G8, 9 } is a 2g north-south and east-west backbone.

Two points G = G8, 9 and H = G;,: of this backbone will be said

to be neighboring points if (8, 9) and (;, :) are neighbors in

the Z2 grid. In the absence of fading, the interference at any

point of this backbone is upper bounded by �ℓ , P
>
Φ

-a.s. and

hence SINRGH is lower bounded. So all neighboring points are

connected for \ small enough, which concludes the proof of

the first statement.

For the second part of the lemma, note that, by an argument

similar to that used in the proof of Theorem 5, for every

n > 0, there exists a small enough X > 0 such that, e.g.,

P>
Φ

(SINRx1,0x0,0
> X) ≥ 1 − n, P>

Φ
-a.s. Hence there exists a

small enough SINR threshold such that any two neighboring

points of the backbone are connected with probability more

than 1/2. Using now the fact that the problem of percolation

of the backbone is isomorphic to that of bond percolation on

Z2 with bonds being independently closed, one can leverage

the bond percolation theory [28] to show that the SINR graph

percolates when this probability is more than 1/2. �

C. Ad hoc Queueing Networks

An important application of network calculus is in queues

in series, where the concatenation of a set of service curves

can be directly calculated by techniques similar to those in

system theory [2], [3], but in the min-plus algebra. It makes

sense to leverage the percolation properties discussed in the

last subsection to build networks of queues that allow for

long distance multi-hop relaying in this ad hoc setting. For

instance, in the case without fading, the backbone structure

can be leveraged to maintain networks made of queues in

series on each east-west path and each north-south path with

a guaranteed service curve (Shannon rate) in each station

(link between two adjacent transceivers). By classical queue-

ing theory arguments, one can maintain long distance flows

between any pairs of points of the backbone at a positive rate

(independent of the distance between source and destination)

by multi-hop routing leveraging only transmissions from one

queue to the next on the backbone. If the input flows are

time regulated, in the absence of fading, one can even provide

deterministic end-to-end latency guarantees on these flows by

adapting the network calculus theory developed for queues in

series (see [2], [3]) to the wireless links in series used in this

multi-hop routing scheme.

VI. Performance Guarantees in Cellular Networks

A. System Model

Let the base station (BS) and user locations in a cellular

network be modeled by jointly stationary and ergodic point

processes Φ and Ψ on R2, defined on a probability space

(Ω,A, P). Let each user be associated with its strongest (in

average) BS, which, by the monotonicity of the path loss func-

tion, is the nearest BS. The nearest BS is unique almost surely

[15]. By this association scheme, each BS serves users within

its Voronoi cell via multiple accesses, and so the intra-cell

resources is shared among users in time and frequency. This

feature mandates what we call cell-load regulation. Denote by

+ the Voronoi cell associated with the typical BS >.

Definition 9 (Cell-load regulation). A stationary cellular net-

work consisting of a BS point process Φ and a user point

process Ψ is cell-load regulated if there exists some constant

 > 0 such that Ψ(+) ≤  , P>
Φ

-a.s.
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Fig. 5. Illustration of a spatially and cell-load regulated cellular network,
where BSs are indicated by red triangles and users by blue circles. BSs and
users are realizations of two independent i.i.d. perturbed square lattices, with
_Ψ = 4_Φ = 1. Dashed black lines indicate Voronoi cell boundaries of the
base station point process.

In essence, cell-load regulation controls the clustering of Ψ

in the Voronoi cells of Φ, such that the effect of intra-cell

multiple access is accounted for in the dowlink performance.

Cell-load regulation can be implemented cell by cell through

a centralized trimming implemented in each base station, in a

decentralized way, or through load balancing. For instance, if

the cell surface is shared, then an appropriate ball regulation

on users leads to a distributed implementation.

Lemma 7. A cellular model as described above is cell-load

regulated if Φ is strongly void regulated and Ψ is ball regulated

w.r.t. Φ.

Proof. Let Φ be strongly g-void regulated. The Voronoi cell

associated with the origin + ⊂ �(>, g) P>
Φ

-a.s. If not, by the

convexity of Voronoi cells, there exists a non-zero fraction of +

such that �(·, g) = 0, P>
Φ

-a.s., which contradicts the assumption

of strong g-void regulation. Since Ψ is ball regulated w.r.t. Φ,

then we must have for some constant  > 0, P>
Φ

(Ψ(�(>, g)) ≤
 ) = 1. Hence P>

Φ
(Ψ(+) ≤  ) = 1. �

B. Link Performance Guarantees

We focus on the typical user at the origin. Let C ,

arg max{ℓ(‖G‖) : G ∈ Φ} be the serving BS of the typical

user. The interference at the typical user is � = �C ,∑
G∈Φ\{C } ℎGℓ(‖G‖). For the cellular model described in Section

VI-A, if Φ is g-void and ball regulated w.r.t. Ψ, then

1) in the absence of fading, P>
Ψ

-a.s., � ≤ �ℓ − ℓ(g), and

SINR ≥ ℓ(g)/(�ℓ − ℓ(g) +,);

2) If fading has exponential moments, then

P>
Ψ

-a.s., L� |Φ(−B) ≤ exp
(
�ℓ̃ − ℓ̃(g)

)
where

ℓ̃(A) = logLℎ(−Bℓ(A)), and the link reliability is

lower bounded by Z (\).

3) if in addition, the network is cell-load regulated, then

the information-theoretic rate of each user under shared

BS time-frequency resources can be lower bounded.

It is easy to apply the superposition properties of regulations

to derive similar bounds for multi-tier networks.

Fig. 5 shows a spatially and cell-load regulated cellular

network where both BS and users follow two independent i.i.d.

perturbed square lattices, with _Ψ = 4_Φ = 1. The displace-

ment vectors are with length uniform randomly distributed

in [0, 0.5] and [0, 0.25], respectively, and angles are uniform

randomly distributed in [0, 2c].

C. Wireless Queues in Cellular Networks

Consider a countable collection of infinite buffer FIFO

queues associated with BS-user pairs. Assume that each BS

serves its associated users using multiple access schemes.

Assume that traffic arrives at the queues of each BS according

to a time stationary and ergodic point process with intensity

_ > 0, and leaves the queue when successfully decoded at the

intended user. Let the cellular network be cell-load regulated

and Φ be (f, d, a)-ball regulated w.r.t. Ψ. Consider the queue

associated with the BS of the typical user and assume full

buffer at interfering queues. In the absence of fading, ∃d∗ > 0

such that if the downlink traffic arrivals at each BS-user

queue is (f∗, d∗)-regulated, the downlink latency is upper

bounded; with ergodic fading having exponential moments,

if the downlink traffic arrival process at each BS-user queue

is ergodic, then there exists an average rate such that the tail

distribution of the downlink latency is upper bounded.

VII. Discussion

In this work, we derive computable bounds on performance

for all links in an arbitrarily large wireless network under

appropriate spatial regulations. The proposed spatial regula-

tions can be algorithmically implemented. The strong void

regulation can be implemented by, e.g., adding a regular or

perturbed grid. The ball regulation can be implemented in

a distributed way by the Matérn I or II method [17]. It is

beyond the scope of the present paper to discuss the distributed

implementation of weak regulation. A critical question is about

the achievability of these bounds. In this direction, we made

the first steps by defining the extremal parameters relating to

(f, d, a)-ball regulation and introducing the generalized ball

regulation. Of particular interests are tight performance bounds

in targeted use cases, e.g., ultra-reliability, low latency, or high

throughput. Wireless networks can support multiple classes

of users/traffic with different priorities, whose joint modeling

and optimization is worth exploring. Other relevant problems

include the impact of shadowing, dynamic power control,

load balancing, and directional transmission on performance

guarantees.

Appendix

A. Proof for Lemma 3

Consider any hardcore point process Φ on R2 with hardcore

distance � > 0. For any A > 0, draw balls of radius �
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centered at points in Φ ∩ 1(>, A). The union of the balls

∪G∈Φ∩1(>,A)1(G, �) ⊂ 1(>, A + �). The number of points of

Φ in 1(>, A) must be bounded from above by the maximum

number of balls of radius � one can pack in 1(>, A+�) (known

as densest packing). Further, the following results are known

about densest packings5: the volume fraction6 of packed balls

in a bounded and convex domain in R2 with at least two packed

balls is bounded from above by c/
√

12 [29]. The bound is

achieved by hexagonal triangular lattice.

Now, for A < �, at most one point of Φ falls in 1(>, A).

So #(A) ≤ 1, A < �. For A ≥ �, at least two balls can

be packed in the densest packing of 1(>, A + �). So we can

apply the upper bound on the volume fraction to obtain that

c�2#(A) ≤ c2(A + �)2/
√

12, for A ≥ �. Combining both, we

have

#(A) ≤
{

1, A < �
c√
12

(1 + 2A
�

+ A2

�2 ), A ≥ �.
(15)

For all A > 0, 1+2cA/(
√

12�)+cA2/(
√

12�2) is a P-a.s., upper

bound for #(A).

B. Proof for Lemma 4

First, we show that !;,A , {H ∈ R2:Φ(1(H, A)) ≤
;} is a random closed set [15, Chap. 9]. We have

Φ(1(H, A)) =
∑

-8 ∈Φ 1( | |-8 − H | |< A). For all 8, the function

H → 1(| |-8 − H | |< A) is lower semi-continuous because it is

the indicator function of an open set. This in turn implies

that the function H → Φ(1(H, A)) is lower semi continuous as

well because only finitely many terms show up in the sum in

the neighborhood of any point. Hence the lower level sets of

Φ(1(H, A)) are closed sets of R2. In order to prove that this

closed set is a random closed set, it is enough to show that

for all compact sets  , the set {l ∈ Ω: !;,A ∩  = ∅} belongs

to A. To prove this, we can rewrite the last set as

∑

-81
,...,-8;+1

∈Φ, 6=

;+1∏

9=1

1(‖-8 9 −  ‖< A) > 0,

where the last sum bears on all ; + 1-tuples of distinct points

of Φ and ‖-8 9 −  ‖ denotes the minimum distance between

-8 9 and the set  . Since there exists an enumeration of the

points of Φ in terms of a countable collection of points, each

of which is a random variable (e.g. based on their distance to

the origin), the last set belongs to A.

Let �2 denote the complement of � in R2. We have !2
;,A

=

{H ∈ R2:Φ(1(H, A)) > ;}. The fact that !;,A is a random closed

set implies that !2
;,A

, where � denotes the closure of �, is a

random closed set. Since
⋂

H∈R2{Φ(1(H, A)) ≤ ;} = {!2
A ,;

=

∅} = {!2
A ,;

= ∅}, and since one can rewrite {!2
;,A

= ∅} as

{!2
;,A

∈ F R2}, we get that
⋂

H∈R2{Φ(1(H, A)) ≤ ;} is an event

for all A and ;. This proves the first part of the statement.

5In R2, the problem is known as circle packing. Here, we use the terms
“balls” and for packing problems in general dimensions.

6This quantity is usually referred to as the “packing density” in sphere
packing problems. Here, to avoid confusion with the spatial density of points,
we use volume fraction instead. The volume fraction bounds are also known
in some higher dimensions.

Now we prove the second part of the statement. Let

:0 = ⌊6(0)⌋. The function 6 is non-decreasing, with countable

discontinuities, and tends to ∞. Hence ∃C: , : = 0, 1, ..., with

C0 = 0, and s.t. ⌊6(A)⌋ = : + :0 for A ∈ [C: , C:+1). Now,

�Φ =
⋂

A>0

⋂

H∈R2

{Φ(1(H, A)) ≤ 6(A)}

=
⋂

:≥0

⋂

A ∈[C: ,C:+1)

⋂

H∈R2

{Φ(1(H, A)) ≤ : + :0}

=
⋂

:≥0

�: ,

with �: ,
⋂

H∈R2{Φ(1(H, C:+1)) ≤ : + :0}. Hence, to prove

that �Φ is an event, it is enough to prove that for all :, �: is

an event of A. This follows from the first part of the statement.

Lastly, it suffices to show that P(Φ(1(>, A)) ≤ 6(A)) = 1, for

all A > 0, implies that P(�:) = 1 for all :. As explained

above, P(Φ(1(>, A)) ≤ 6(A)) = 1, for all A, implies that

P(Φ(1(>, C:+1)) ≤ :0 + :) = 1 for all :. By stationarity, this

implies that P(Φ(1(H, C:+1)) ≤ :0 + :) = 1 for all : and H.

Hence, for all :, P(⋂H∈Q2 Φ(1(H, C:+1)) ≤ :0 + :) = 1. That

is Q2 ⊂ !:0+:,C:+1
P-a.s. But since !:0+:,C:+1

is a closed set,

then R2 ⊂ !:0+:,C:+1
P-a.s. So P(�:) = 1. This concludes the

proof.

C. Proof for Lemma 5

Recall that the definition for void regulation involves closed

balls. For reasons dual to those explained in Appendix B, the

upper-level set +Φ =
⋂

H∈R2{Φ(�((H, A)) ≥ 1} is a random

closed set, which in turn implies that +Φ = R2 is an event. If, in

addition, P(Φ(�(>, A)) ≥ 1) = 1, then P(⋂H∈Q2{Φ(�(H, A)) ≥
1})) = 1. But since +Φ is a closed set, the last property implies

that P(+Φ) = 1. This completes the proof of the theorem.

D. Proof for Theorem 5

P>
Ψ

(SINR > \ | Φ)

= P>
Ψ
(� +, < ℎCℓ(g)/\ | Φ)

(a)
= P>

Ψ
(� < ℎCℓ(g)/\ −,, ℎC > ,\/ℓ(g) | Φ)

=

∫∞

,\
ℓ(g)

5ℎC (G)P
>
Ψ
(� < Gℓ(g)/\ −, | Φ, ℎC = G) dG

(b)
=

∫∞

,\
ℓ(g)

5ℎ(G)

(
1 − P>

Ψ

(
exp(B�) ≥ exp

(
B

(
Gℓ(g)

\
−,

)) ���� Φ
))

dG

(c)

≥
∫∞

,\
ℓ(g)

5ℎ(G)

(
1 − inf

B∈[0,B∗)
L� |Φ(B) exp (−B (Gℓ(g)/\ −,))

)+

dG

(d)

≥
∫∞

,\
ℓ(g)

5ℎ(G)
(
1 − 4infB∈[0,B∗) �ℓ̃−ℓ̃(g)−B (Gℓ(g)−\, )/\

)+

dG

where ℓ̃(A) = logLℎ(−Bℓ(A)), and 5 + , max (0, 5 ). Step (a)

follows from the fact that the interference is always non-

negative. Step (b) follows from the independence of the

interference and the fading from the desired transmitter. Step

(c) and (d) use the Chernoff bound as in Corollary 6. The

second part can be easily seen as Z (\) is continuous, non-

increasing, and lim\→0 Z (\) = 1.
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