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Abstract—We consider a random access network consisting
of source-destination pairs. Each source node generates status
updates and transmits this information to its intended destination
over a shared spectrum. The goal is to minimize the network-
wide Age of Information (AoI). We develop a frame slotted
ALOHA (FSA)-based policy for generating and transmitting
status updates, where the frame size of each source node is
adjusted according to its local environment. The proposed policy
is of low complexity and can be implemented in a distributed
manner. Additionally, it significantly improves the network AoI
performance by (a) equalizing the update generation intervals
at each source and (b) reducing interference across the net-
work. Furthermore, we derive an analytical expression for the
average network AoI attained for that policy. We evaluate the
performance of the proposed scheme through simulations, which
demonstrate that the locally adaptive FSA policy achieves a
remarkable gain in terms of AoI compared to the slotted ALOHA
counterpart, confirming the effectiveness of the proposed method.

Index Terms—Age of information, locally adaptive policy,
frame slotted ALOHA, stochastic geometry.

I. INTRODUCTION

The rapid development of wireless communication and
Internet-of-Things (IoT) technology has given rise to numer-
ous real-time applications, including autonomous driving [1],
healthcare system [2], and real-time human-AI interaction.
These applications are highly sensitive to latency and require
timely information, as outdated data can result in erroneous
decisions, leading to potentially dangerous consequences [3].
In response to this concern, researchers have proposed the Age
of Information (AoI) metric to assess the timeliness of the
received information [4]–[6]. Unlike traditional metrics such
as delay or throughput, AoI is receiver-oriented and measures
the time elapsed since the latest received update was generated.
Thus, unlike the source-centric metrics, AoI captures the
“freshness” of information. A broad array of research has been
conducted on analyzing and designing techniques to optimize
AoI under different systems.

The study of AoI originated in [7], where the authors
analyzed the average AoI under a standard fist-come-first-serve
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queue. The findings revealed that schemes for optimizing the
conventional metrics may not effectively minimize AoI. This
discovery led to further exploration in subsequent works [8]–
[10], wherein various scheduling policies and packet manage-
ment schemes were developed with a primary focus on point-
to-point systems.

In wireless networks, communications often occur over
a shared spectrum, resulting in potential severe interference
that significantly degrades communication quality or even
leads to transmission failure. In such a context, the signal-
to-interference-plus-noise ratio (SINR) model [11] is com-
monly used to characterize interference, which encompasses
key properties of a wireless network, including fading, path
loss, and co-channel interference. Under this model, if the
SINR received by the destination surpasses a predetermined
threshold, the transmission is deemed successful; otherwise, it
is considered failed. The SINR model has promoted several
studies on AoI in random access networks, which employed
stochastic geometry to model the complex spatial deployments
as point processes, significantly facilitating the interference
analysis. For example, [12] derived the upper and lower
bounds on the average AoI distribution in Poisson networks
by taking the locations of the interfering nodes into account.
Subsequently, [13] further improved this result by deriving a
tighter upper bound on the spatial distribution of the average
peak AoI. In addition to these bounds, [14] established a
theoretical framework capturing the intricate spatiotemporal
entanglement amongst transmitters in the network and pro-
vided analytical expressions for peak and average AoI. In
[15], a stochastic geometric analysis of throughput and AoI
in a cellular IoT network was presented. Recognizing that the
interference experienced by each source is primarily influenced
by its spatially adjacent neighbors, [16] proposed a decentral-
ized channel access strategy, enabling each source to set its
channel access probability based on the observed surrounding
information. This scheme significantly reduced the peak AoI.
Following similar considerations, [17] and [18] leveraged the
locally observed information to adjust each source node’s
transmit power and updating rate, respectively, to optimize the
network AoI.

The aforementioned works utilized the slotted ALOHA
(SA) protocol. Building upon this, [19] proposed a frame
SA (FSA) protocol that significantly enhances the AoI per-
formance. However, [19] adopted a universally fixed frame-
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size throughout the entire network, ignoring the discrepancy
amongst interference levels at different spatial locations. In this
paper, we improve the FSA-based protocol by developing a
strategy that adapts the framesize and update rate of each node
based on its local observation, improving the network AoI
performance. Specifically, we model the source-destination
pair as a Poisson bipolar network. Time is divided into slots of
equal duration, and each source combines several consecutive
time slots into a single frame. At the beginning of each frame,
sources will decide with different probabilities whether to
be active in this frame, where both the framesize and the
probability of being active depend on their local observations.
If a source decides to be active, it will pick one time slot in
this frame uniformly at random, generate an updated sample,
and transmit the information to the destination immediately;
otherwise, it will stay silent for the entire duration of the
frame. We employ the SINR model to quantify the quality
of information delivery, where transmission is successful only
when the SINR exceeds a given decoding threshold. Our main
contributions are summarized below.

• We develop a locally adaptive FSA protocol that exploits
the observed information at each node to set its framesize
to minimize the AoI across the network. The proposed
protocol is decentralized and has low implementation
complexity.

• We develop an analytical framework to evaluate the
network average AoI. Our framework takes into account
several attributes of a wireless system, including the
deployment density, random activation of transmitters,
channel gain, path loss, and interference.

• The network average AoI can be significantly reduced
by incorporating local observations into the policy design,
whereas increasing the information about the surrounding
environment will bring about further improvement.

II. SYSTEM MODEL

In this section, we introduce the system model and the
performance metric. We also elaborate on the concepts of
stopping sets and locally adaptive policies.

A. Network Model

1) Spatial Deployment: We consider a Poisson bipolar
network on the Euclidean plane, as depicted in Figure 1.
Specifically, the sources are deployed according to a homoge-
neous Poisson point process (PPP), denoted by Φs = {Xi}∞i=0,
with spatial density λ. Each source node has an exclusive
destination located at a constant distance r from it in a random
orientation. According to the displacement theorem [20], the
spatial distribution of destinations, denoted by Φd = {yi}∞i=0,
is also subject to a homogeneous PPP with the same spatial
density. In this network, every source monitors a physical pro-
cess and updates the status of its observation to the destination
by sending a sequence of information packets. We assume
that each node transmits at the same power Ptx

1, whereas the

1This assumption is made to facilitate the analysis. Note that the framework
in this paper can be extended to design power control strategies as per [17].

Fig. 1. A snapshot of the employed network model. The solid squares
represent the source nodes that sample a physical process’s most recent status
information and transmit them to the destinations denoted by the circles. The
solid black line is the typical link, the solid red lines represent other active
links, and the dashed blue lines are inactive.

transmissions take place over a shared spectrum. The signal
propagation is affected by small-scale Rayleigh fading with
a unit mean and path loss that obeys the power law. The
channel fading varies independently across time and space.
The transmissions are also subject to white Gaussian thermal
noise with variance σ2.

2) Temporal Pattern: We assume that the network is
synchronized. We segment the time into slots of the same
duration, equal to the period required to complete a packet
transmission. We adopt a generate-at-will approach based on
the FSA protocol for status updating [19]. Specifically, for
link i, we group a number of consecutive time slots into a
frame of size Fi. At the beginning of each frame, source i
independently decides whether to sample information in that
frame with probability ηi (also known as the update rate). If
node i decides to update, it selects a time slot in frame Fi

uniformly at random to generate the update information and
sends it to the destination immediately. At the end of the same
time slot, if the received SINR exceeds a decoding threshold
θ, the information is successfully delivered.

Since the time scale of signal transmission and fading is
much smaller than that of spatial dynamics, we assume the
network is static; namely, the nodes are initially scattered
randomly and remain constant in subsequent time slots.

B. Performance Metric

This paper focuses on AoI, which quantifies the timeliness
of information delivered in the network. As illustrated in
Figure 2, AoI increases linearly2 over time until the infor-
mation at the destination is successfully updated. Without loss
of generality, we choose an arbitrary link in the network as
our typical link and mark its receiver position as the origin.
According to Slivnyak’s theorem [20], the performance of this
link is statistically identical to that of other links. Thus, it

2The framework of this paper can also be extended to the case of non-linear
growth according to [21].



Fig. 2. An example of the AoI evolution over the typical link under the FSA
status updating protocol. The framesize of the typical link is set as F0 = 3.

can be used as a representative. A formal expression for the
instantaneous AoI over the typical link can then be written by

∆0(t) = t−G0(t), (1)

where G0(t) represents the generation time-stamp of the latest
packet received by the typical destination at time t.

To capture the overall timeliness in the delivery of status
updates through the typical link, we then define the time-
average AoI at the typical receiver as following

∆̄0 = lim
T→∞

1

T

T∑
t=1

∆0(t). (2)

Note that different nodes have distinct update strategies and
are subject to different interference levels. Therefore, ∆̄i is
still a random variable. As such, we average the time-average
AoI of all the links over space and term the resultant quantity
the network average AoI [14]. Formally, it is given by

∆̄ = lim sup
R→∞

∑
i:Xi∈B(0,R) ∆̄i

λπR2
= E

[
∆̄0

]
, (3)

where B(0, R) represents a disk with radius R centered at the
origin.

C. Stopping Sets and Locally Adaptive Protocol

Due to the spectrum’s shared nature, simultaneous trans-
missions of wireless links in proximity can result in severe
interference that hinders information delivery. On the other
hand, if every source could obtain certain information about
its nearby interferers, it can utilize that information to adjust
the status update policy, balancing the timeliness of samples
at the source and interference level across the network. As a
result, the nodes may jointly minimize the network average
AoI in a distributed but cooperative manner.

Thus, we configure sensors for each source to perceive
the geographic information of the surrounding transmitters.
Then according to this knowledge, sources will adjust their
framesizes and update rates to optimize the AoI performance
of the network. Although the sensing capability of each source

node is often limited, considering that concurrent transmis-
sions in geographic proximity usually dominate interference,
the local observations and the subsequent design are still
meaningful. We model the observation window by the notion
of stopping set [16], [22]. Specifically, given the spatial
deployment Φ ≜ Φs ∪ Φd, the stopping set W = W (Φ) is
a measurable function that maps Φ to a Borel set H in R2.
One can determine whether the event {W ⊂ H} occurs or not
just with the knowledge about points of Φ in H. For clarity,
we choose a generic source i, and demonstrate two types of
stopping set construction as examples:

1) Random Stopping Sets: Given a compact set H, try
constructing a minimal disk centered on the source i and
containing the nearest p nodes around it. We define the radius
of this disk as Rp = min{R ≥ 0 : Φ(B(X0, R)) = p}.
If the disk exists, we know that B(X0, Rp) ⊂ H, otherwise
B(X0, Rp) ̸⊂ H.

2) Deterministic Stopping Sets: Similar to the above, given
a predetermined radius R and a compact set H, we construct
a disk centered on Xi and increase its area. We will stop
increasing until the moment when either (a) the radius of this
disk reaches the value R or (b) the disk grows large enough
to touch the complement of H. If the former happens, we
know that B(X0, R) ⊂ H; but if the latter happens, we know
that B(X0, R) ̸⊂ H. Either way, we do not need information
outside the set H; hence the stopping set is respect to Φ.

Based on this concept, we can define the locally adaptive
update rate and framesize at source node i as following

ηi = η(W (SXi
(Φ))), (4)

Fi = F (W (SXi
(Φ))), (5)

where Sx is a shift operation that converts the locations of
nodes in any set H ⊂ R2 into a coordinate representation with
x as the origin (i.e. Sx(H) = {z−x : z ∈ H}), η : R2 → [0, 1]
is a measurable function that maps the local information
W (SXi(Φ)) into an update rate, and F : R2 → N∗ is a
measurable function that intakes W (SXi

(Φ)) and produces
a frame size. Two points are noteworthy: i) both ηi and Fi

are functions of nearby geometry, not their actions. Therefore,
given the observation window, they are independent of each
other; ii) once the policy (i.e., the pair (η, F ) of update rate
and framesize) is determined, it will not change over time.

III. DESIGN AND ANALYSIS

In this section, we develop a status update policy that
enables the source nodes to adjust their framesizes in accor-
dance with their local observation, which improves the AoI
performance of the network. We also analyze the network
average AoI under such a policy.

A. Preliminaries

We start with analyzing the SINR statistics, which quantify
the quality of the wireless links. Specifically, if the typical



source sends out an information packet at time t, the received
SINR can be written by

SINR0,t =
Ptxh0,tr

−α∑
i ̸=0 Ptxhi,tvi,t∥Xi∥−α + σ2

, (6)

where hi,t ∼ exp(1) denotes the channel fading between
source i and the typical receiver, α stands for the path loss
exponent, vi,t indicates whether source i is activated at t (in
this case, vi,t = 1) or not (in this case, vi,t = 0), and ∥ · ∥
denotes the Euclidean norm.

Because the network is static, we characterize the rate
of information delivery, which is directly affected by the
SINR, using the conditional transmission success probability
[23]. To be more precise, the conditional transmission success
probability over the typical link represents the probability of
the received SINR at the typical receiver exceeding a decoding
threshold θ, given the point process Φ, namely3,

µΦ
0 = P(SINR0 > θ | Φ). (7)

We first average out the effects of channel fading in a similar
way to [19] and arrive at the analytical expression of µΦ

0 .
Lemma 1: Given the point process Φ, the conditional

transmission success probability over the typical link is

µΦ
0 = e−

θrα

ρ

∏
i ̸=0

(
1− ηi/Fi

1 + ∥Xi∥α/θrα

)
, (8)

where ρ = Ptx/σ
2 denotes the signal-to-noise ratio (SNR).

Proof: According to our transmission protocol, we note
that for any source i, it decides to update in a typical
frame independently with probability ηi, and if it decides,
it randomly selects one time slot in this frame according to
a uniform distribution. Consequently, at any given time slot,
source i activates with probability ηi/Fi, i.e., P(νi = 1) = ηi

Fi
.

Then, we can derive Lemma 1 as following

µΦ
0 = P

(
Ptxh0r

−α∑
i̸=0 Ptxhiνi ∥xi∥−α +σ2

> θ
∣∣∣Φ)

= P

h0 > θrα
∑
i ̸=0

hiνi ∥xi∥−α +
θσ2

Ptx

∣∣∣Φ


= e−
θrα

ρ E

∏
i ̸=0

exp
(
−θrαhiνi ∥xi∥−α

) ∣∣∣Φ


(a)
= e−

θrα

ρ E

∏
i ̸=0

1

1 + θrανi ∥xi∥−α


(b)
= e−

θrα

ρ

∏
i ̸=0

(
ηi/Fi

1 + θrα ∥xi∥−α
+ 1− ηi

Fi

)
, (9)

where (a) follows since {hi}∞i=1 are i.i.d. random variables
following the exponential distribution with unit mean, and (b)
follows as {νi}∞i=1 are independent of each other.

3Since the considered point process in this work is stationary, we drop the
subscript t in the sequel.

Next, we adopt a graphical method to calculate the condi-
tional time-average AoI over the typical link.

Lemma 2: Conditioned on the spatial topology Φ, the time-
average AoI over the typical link is

∆̄0 =
F 2
0 − 1

12F0
× η0µ

Φ
0 +

F0

η0µΦ
0

+
1− F0

2
. (10)

Proof: The proof is similar to Theorem 1 in [19] thus
omitted.

Note that if all the nodes are updating in each frame and
every information packet can be successfully delivered upon
each transmission attempt, the network average AoI achieves
its minimum. This ideal scenario offers a fundamental lower
bound for the network AoI performance as

∆̄0 ≥ F 2
0 − 1

12F0
+ F0 +

1− F0

2
=

7F0

12
− 1

12F0
+

1

2
. (11)

In consequence, we have

∆̄0 ∼ 7

12
F0, F0 → ∞ (12)

indicating that for large F , the network AoI increases mono-
tonically with the frame size. Therefore, it is important to
adequately adjust the framesize to achieve an optimal age
performance.

B. Status Update Policy

From Lemma 1 and Lemma 2, we notice that the update
rate and framesize jointly influence the network average AoI,
where the effects are explicitly reflected by (10) and implicitly
contained in (8). As such, we can cast the policy design
into the following optimization problem: given the observation
window W , find the update rate-frame size pair (η, F ) such
that

min
η,F

E
[
∆̄0(η0, F0)|W

]
(13)

s.t. 0 ≤ ηi = η(W (SXi(Φ))) ≤ 1,

Fi = F (W (SXi(Φ))) ∈ N∗, ∀i ∈ N. (14)

In order to solve (13), we first derive an analytical expres-
sion for E[∆̄0(η0, F0)|W ]. Specifically, when the observation
window is given by a stopping set W = W (Φ), we can
decondition µΦ

0 in (10) over Φ, which results in the following
expression for the network AoI.

Lemma 3: Conditioned on the stopping set W , the network
average AoI is given by

E
[
∆̄0|W

]
= E

[
F0

η0
exp
(θrα

ρ
+

Cη0
F0

(
1− η0

F0

)δ−1
)∣∣∣W]

+ E
[
(F 2

0 −1)η0
12F0

exp
(
− θrα

ρ
−Cη0

F0

)∣∣∣W]+ 1−E[F0|W ]

2
,

(15)

where δ = 2/α, C = λπr2θδΓ(1 − δ)Γ(1 + δ), and Γ(·) is
the Gamma function [23].

Proof: Please see Appendix A.
From this result we have the following observations.



Observation 1: Given any updating policy (η, F ), we can
always transform it into another one as (1, F̃ ), where F̃ =
F/η, and obtain a smaller network average AoI.

This statement can be formally justified by comparing the
network average AoI attained under the two policies as follows

E
[
∆̄0

(
1,

F0

η0

)∣∣∣W]− E
[
∆̄0(η0, F0)|W

]
= E

[
(F0/η0)

2−F0
2

12F0/η0
exp
(
− θrα

ρ
−Cη0

F0

)
+

F0− F0

η0

2

∣∣∣W]

< E

[
F0

η0
−F0η0

12
+

F0− F0

η0

2

∣∣∣W]

= E
[
F0(1− η0)(η0 − 5)

12η0

∣∣∣W] < 0. (16)

Observation 1 also implies that having each node update
in each frame is beneficial for the age performance of the
network. This is because the frame structure improves net-
work AoI by (a) reducing mutual interference amongst the
transmitters and (b) equalizing the update generation intervals
at each source, which is instrumental in reducing AoI. As a
result, the optimization problem in (13) reduces to

min
F

E
[
F0 exp

(
θrα

ρ
+

C

F0

(F0 − 1

F0

)δ−1
)

+
F 2
0 − 1

12F0
exp

(
− θrα

ρ
− C

F0

)
+

1− F0

2

∣∣∣W] (17)

s.t. Fi = F (W (SXi
(Φ))) ∈ N∗, ∀i ∈ N. (18)

Observation 2: The network average AoI under FSA is
always smaller than that under SA. In other words, if the
solution to (17) is to adopt Fi at node i, then the network
average AoI achieved by using SA with ηi =

1
Fi

would be an
upper bound to the optimal one.

This statement can be verified in a similar spirit as [19].
Armed with the above result, noticing that directly solving

(17) by finding the optimal framsize for each source node is
difficult, we can opt for a suboptimal solution by minimizing
the upper bound:

min
η

E
[

1

η0µΦ
0

∣∣∣W] (19)

s.t. 0 ≤ ηi = η(W (SXi(Φ))) ≤ 1, ∀i ∈ N (20)

where (19) is the network average AoI obtained under the
locally adaptive SA policy [18], and (20) confines the update
rate to be within a feasible range.

The following theorem provides a solution to the above
optimization problem.

Theorem 1: Given the observation window W , the solution
to (19) is obtained by solving a fixed-point equation at each
node, where the one at source i is specifically given as follows

1

η
−
∑

yi∈W,
j ̸=i

1

1+Dij−η
−
∫

R2\W

λ(1+∥x∥α/θrα)dx
(1−η+∥x∥α/θrα)2

= 0, (21)

if the following condition holds∑
yi∈W,j ̸=i

1

Dij
+ λ

∫
R2\W

(
θrα

∥x∥α
+

θ2r2α

∥x∥2α

)
dx > 1, (22)

where Dij = ∥Xi − yj∥α/θrα; and set as η = 1 otherwise.
Proof: With the expression (40), we can decondition the

spatial topology in (19) and get the following

E
[

1

ηiµΦ
i

∣∣∣W] = exp

(
θrα

ρ + λ
∫
x∈R2\W

ηi dx
1−ηi+∥x∥α/θrα

)
ηi
∏

j ̸=i,
yj∈W

(
1− ηi

1+Dij

) .

(23)

In order to devise the optimal updating rate for minimizing
the network average AoI under SA protocol, we obtain the
derivative of (23) with respect to η, which yields the following

∂

∂ηi
E
[

1

ηiµΦ
i

∣∣∣W] = φ(ηi)× E
[

1

ηiµΦ
i

∣∣∣W] , (24)

in which φ(η0) is derived as:

φ(ηi) =
1

ηi
−
∑

yj∈W,
j ̸=i

1

1+Dij−η
−
∫

R2\W

λ(1+∥x∥α/θrα)dx
(1−ηi+∥x∥α/θrα)2

.

(25)

Since E
[

1
ηµΦ

∣∣∣W] is the the network average AoI under
SA protocol, it will always have a positive value. Note that,
φ(η) is a continuous and monotonically increasing function
about η over the interval [0, 1], and when η → 0, we have
φ(η) → −∞. Therefore, if φ(1) > 0, ∂

∂ηE
[

1
ηµΦ

∣∣∣W] = 0 will
have and only have one unique solution that optimizes (19).
However, if φ(1) < 0, we can get that ∂

∂ηE
[

1
ηµΦ

∣∣∣W] < 0

for all η ∈ [0, 1]. Thus the network average AoI under
SA protocol monotonically decreases with η and hence the
optimized updating protocol takes at η = 1.

Note that Theorem 1 produces an update rate ηi for node i
in the form of a function that intakes the spatial information
contained in the stopping set W .

Using the results given in this theorem, we construct a
locally adaptive FSA protocol by setting the framesize of node
i as F̂i = ⌈ 1

ηi
⌉, where ⌈·⌉ denotes the ceiling function. Albeit

such an approach only offers a suboptimal solution to (17),
it will be demonstrated in Section IV that this suboptimal
solution achieves a significant improvement in terms of the
network average AoI.

C. Network average AoI

Employing the update policy designed above, we can cal-
culate the network average AoI as follows

∆̄ =

∞∑
l=1

∆̄(1, l)P(F ∗ = l), l ∈ N∗. (26)



The problem’s tricky part is finding the distribution of F ∗.
Based on Observation 2, we can derive the distribution of F̂
under the suboptimal update policy as follows:

P(F̂ = l) = P
(⌈

1

η

⌉
= l

)
= P

(
1

η
≤ l <

1

η
+ 1

)
= P

(
1

l
≤ η <

1

l − 1

)
= P

(
η ≥ 1

l

)
− P

(
η ≥ 1

l − 1

)
. (27)

When a deterministic stopping set W is given, the comple-
mentary cumulative distribution function (CCDF) of updating
rate η can be derived according to the Theorem 2 in [18] as

P(η > κ) =
1

2π

∫ ∞

−∞
LU(κ,W )(jω)

ejω(1−V(κ,W ))−1

jω
dω, (28)

where 0 < κ < 1, and if κ = 1, the following holds

P (U(1,W ) < 1− V(1,W )) . (29)

Here, j =
√
−1, while the U(κ,W ), V(κ,W ), and the Laplace

transform of U(κ,W ) are respectively given as

U(κ,W ) =
∑

yi∈Φd

κ · χ{yi∈W,i ̸=0}
∥yi∥α

θrα + 1− κ
, (30)

V(κ,W ) =

∫
R2\W

λκ(1+∥x∥α/θrα)dx
(1−κ+∥x∥α/θrα)2

, (31)

LU(κ,W )(s) = exp

(
−λ
∫
W

[
1−exp

(
− sκθrα

∥x∥α+(1−κ)θrα
)]
dx

)
.

(32)

If sources do not observe any available local information
(i.e. W = ∅), following sights in Observation 1, we will
configure a fixed size frame for each node and assign them
to keep updating (i.e. η = 1). In such a scheme, the network
average AoI can be derived as

∆̄=F exp
(θrα

ρ
+
C

F

(
1−1

F

)δ−1)
+
F 2−1
12F

exp
(
−θrα

ρ
−C

F

)
+
1−F
2

,

(33)

By taking the derivative of ∆̄ with respect to F and assigning
it to zero, we can have the equation for the optimal framesize
F ∗ versus network parameters, which can be written as[

1+
(
1− 1

F ∗

)δ−2C(δ−F ∗)

F ∗2

]
exp

(
θrα

ρ
+

C

F ∗

(F ∗−1

F ∗

)δ−1)
+

F ∗3+F ∗2+F ∗−12

12F ∗3
exp

(
− θrα

ρ
− C

F ∗

)
− 1

2
= 0 (34)

This equation can be solved numerically with popular software
such as Matlab. With this solution, we can obtain the optimal
status update policy (1, F ∗).
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Fig. 3. Network average AoI verse radius of the deterministic stopping set,
under different channel access scheme, in which we set λ = 3× 10−3.

IV. SIMULATION AND NUMERICAL RESULTS

In this section, we examine the performance of the proposed
policy through simulations. We scatter (on average) 1, 000
source-destination pairs according to a Poisson bipolar model
with spatial density λ, in a region of area 1000

λ . We repeat this
process 10 times. We collect the statistics over 10, 000 time
slots for every communication link in each simulation run to
calculate the network average AoI. Unless special statements,
we use the following parameters: α = 3.8, r = 30, θ = 0 dB,
Ptx = 23 dBm, and σ2 = −96 dBm.

Figure 3 compares the network average AoI obtained under
the locally adaptive FSA policy and the locally adaptive SA
policy proposed in [18], for a deterministic stopping set that is
a disk of radius R. The figure shows that the network average
AoI decreases monotonically with the radius R. This can be
attributed to the fact that as R increases, the nodes’ observation
regions expand, enabling them to obtain more information
about the geographically proximate links to adjust the updating
policy. In addition, we notice that the FSA protocol attains a
significant reduction in terms of AoI compared to SA. This
is because when the update rate is configured to be the same
on average per time slot, a more regular update pattern can
improve the performance of AoI.

Figure 4 plots the network average AoI as a function of the
spatial deployment density under locally adaptive SA and FSA
policies, with different levels of local observations (reflected
by the capacity of the stopping sets). Particularly, we consider
two types of stopping sets: the random stopping set (i.e. it is a
disk with a variable radius Rp, containing p closest neighbors
of a generic source node) and deterministic stopping set (i.e. it
is a disk of fixed radius R). From this figure, we observe that
despite an increase in spatial density inevitably deteriorating
the AoI, as spatial contentions for spectral resources become
more intense, the FSA protocol can reduce AoI by more
than half compared to the SA-based method, whereas the
gain becomes more pronounced in the very dense deployment



4 5 6 7 8

Spatial density, 10
-4

2

3

4

5

6

7

8

9

10

N
et

w
o

rk
 a

v
er

a
g

e
 A

o
I

Fig. 4. Network average AoI versus spatial density under different status
update policies and different stopping set W , in which we vary the number
of geographically proximate nodes in random stopping sets as p = 3 and 10,
and set the deterministic stopping set radius as R = 400.
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Fig. 5. Network average AoI versus the average number of nodes in both
random and deterministic stopping sets under locally adaptive FSA protocol,
in which we set λ = 5× 10−3.

regime (i.e. λ = 1.1 × 10−3). In addition, when the number
of observation neighbors increases (e.g., from 3 to 10), the
network AoI performance will also be improved.

Finally, we draw Figure 5 to comprehend the performance
of the locally adaptive FSA policy under the two types of
stopping sets by comparing their network AoI performance
with the same average number of sensed nodes. Specifically,
we increase the number of observed nodes p in the random
stopping sets from 3 to 10; we also calculate the corresponding
detection window radius R (approximately from 34.55 to
63.08) under the deterministic stopping sets as R =

√
p
λπ .

From this figure, we can see that when the knowledge of
the surrounding environment increases, the network AoI drops
significantly in both window modes. Moreover, with the same
average number of observed nodes, the deterministic stopping
sets outperform the random ones. This is because in the

densely distributed region, sources need to observe more
information for designing a good update strategy, whilst in
the sparse region, such requirements are not so stringent.
The deterministic stopping sets have the natural property
of satisfying this spatial variation requirement, which can
alleviate the interference coupling effect caused by the uneven
distribution of nodes in large-scale networks.

V. CONCLUSION

We proposed an FSA-based status update policy to minimize
network average AoI with source nodes’ local observations.
The policy has low complexity and can be implemented
in a distributed manner. Specifically, it dynamically adjusts
the frame size of each node according to its ambient trans-
mission condition, effectively mitigating interference among
geographically proximate links and thereby improving AoI
performance. Additionally, we derived an analytical expression
for the network average AoI under this scheme. We conducted
numerical simulations to examine the performance of the pro-
posed policy. We showed that the locally adaptive FSA policy
significantly reduces the network average AoI compared to the
SA counterpart. Moreover, increasing the information about
the ambient environment obtained by sources will further
enhance AoI performance.

Although the policy developed in this paper effectively
reduces the network average AoI, it is obtained as a suboptimal
solution to the targeted optimization problem. Investigating
efficient algorithms to solve for the exact optimal solution can
be a concrete extension of this work.

APPENDIX

A. Proof of Lemma 3

Deconditioning µΦ
0 in (10), we get the average AoI as

∆̄0 =
F 2
0 − 1

12F0
η0E[µΦ

0 |W ] +
F0

η0
E
[

1

µΦ
0

|W
]
+

1− F0

2
. (35)

Given a stopping set W , by leveraging Lemma 1, we calculate
the expectation of µΦ

0 as

E[µΦ
0 |W ]

= e−
θrα

ρ

∏
j ̸=0,

Xj∈W

(
1− ηj/Fj

1+Dj0

)
×E
[ ∏
Xj∈R2\W

(
1− ηj/Fj

1+Dj0

)]
.

(36)

By applying the mass transportation theorem of stationary
point process [20], we rewrite this expression as follows

E[µΦ
0 |W ]

= e−
θrα

ρ

∏
j ̸=0,
yj∈W

(
1− η0/F0

1+D0j

)
×E
[ ∏
yj∈R2\W

(
1− η0/F0

1+D0j

)]

= e−
θrα

ρ

∏
j ̸=0,
yj∈W

(
1− η0/F0

1+D0j

)
×E
[
e
∑

yj∈R2\W log
(
1− η0/F0

1+D0j

)]
.

(37)



According to the probability generating functional (PGFL)
[24], we know that for PPP, the following equation holds

E
[
exp

(
− s

∑
x∈Φ

f(x)
)]

= exp
(
−
∫
x∈Φ

[
1− e−f(x)

]
Λdx

)
,

(38)

where Λ is the intensity of the PPP. By applying this, we can
perform the following derivation

E[µΦ
0 |W ]

= e−
θrα

ρ

∏
j ̸=0,yj∈W

(
1− η0/F0

1 +D0j

)
× exp

(
−λ

∫
x∈R2\W

[
1−

(
1− η0/F0

1 + ∥x∥α/θrα
)]

dx

)
= e−

θrα

ρ E

[
exp

(
−λ

∫
x∈R2

η0/F0 dx

1 + ∥x∥α/θrα

)
|W

]
(a)
= e−

θrα

ρ E

[
exp

(
− λπδ

∫ ∞

0

η0/F0

1 + u/θrα
uδ−1du

)
|W

]
(c)
= E

[
exp

(
−θrα

ρ
−λπr2θδΓ(1−δ)Γ(1+δ)

η0
F0

)
|W

]
, (39)

where (a) changes variables from rectangular to polar co-
ordinates and sets u = ∥x∥α, (b) is due to the result∫∞
0

uδ−1du
m+u = mδ−1 π

sin (πδ) [23]. Similarly, we have

E
[

1
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0

|W
]

= e
θrα

ρ

∏
j ̸=0,

Xj∈W

(
1− ηj/Fj

1+Dj0

)−1

×E
[ ∏
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(
1− ηj/Fj

1+Dj0

)−1]

= e
θrα

ρ

∏
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(
1− η0/F0

1+D0j
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(
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=

exp
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x∈R2\W
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[
exp
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θrα

ρ
+λπδ

∫ ∞

0
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+ u

θrα
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= E

[
exp
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θrα

ρ
+λπr2θδΓ(1−δ)Γ(1+δ) η0

F0

(
1−η0

F0

)δ−1
)
|W

]
.

(40)

Substituting (39) and (40) into (35), we can obtain the result
in Lemma 3.
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