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Abstract—Network operators are interested in continuously
monitoring the satisfaction of their customers to minimise the
churn rate: however, collecting user feedbacks through surveys
is a cumbersome task. In this work we explore the possibility
of predicting the long-term user satisfaction relative to network
coverage and video streaming starting from user-side network
measurements only. We leverage country-wide datasets to en-
gineer features which are then used to train several machine
learning models. The obtained results suggest that, although some
correlation is visible and could be exploited by the classifiers,
long-term user satisfaction prediction from network measure-
ments is a very challenging task: we therefore point out possible
action points to be implemented to improve the prediction results.

Index Terms—User satisfaction prediction, Cellular Networks

I. INTRODUCTION

According to recent Cisco estimates, by 2021 mobile cellu-
lar networks will connect more than 11 billion mobile devices
and will be responsible for more than one fifth of the total IP
traffic generated worldwide [1]. Aware of these facts, mobile
network operators are constantly monitoring and improving
their access networks in order to give the best possible service
to users and reduce failures, with the final goal of generating
profit. This goal can be reached on the one hand by attracting
as many new customers as possible and on the other hand
trying to minimise the churn rate, i.e., the percentage of
customers that, due to an unsatisfactory service, stop their
subscriptions and move to a different operator.

In order to monitor the level of satisfaction of their cus-
tomers, network operators often rely on surveys and question-
naires. Standard tools exist to capture the level of satisfaction
of users through general questions: as an example the Net
Promoter Score (NPS) survey asks users to indicate the like-
lihood of recommending the network operator to a friend or
colleague on a scale from 0 to 10. In addition to such a generic
survey, operators often ask customers to reply on very specific
questions related to the user satisfaction relative to certain
mobile network services (network coverage, voice and video
quality, etc.), which can better highlight possible problems in
the network. Based on the results of such surveys, operators
have some clues on which services should be boosted up and

possibly where: as an example, the operator can invest money
to increase the bandwidth or the output power available at a
certain base station. Unfortunately, performing customer feed-
back surveys is costly and cumbersome for operators, mainly
due to the generic poor cooperative attitude of customers.
At the same time, network operators has several ways of
gathering objective measurements from their customers: radio
statistics and channel quality indicators can be obtained at the
Radio Access Network (RAN), while advanced measurements
such as throughput or latency can be measured with deep
packet inspection (DPI) devices and network probes nowadays
commonly installed at the network gateways (GGSN in 3G
networks or PGW for 4G networks). Additionally, operators
may obtain network measurements directly from the user
terminals with specific applications running in background and
installed under the user consent. Leveraging the renovated in-
terest in machine learning and artificial intelligence techniques,
operators may therefore attempt to predict the satisfaction of
their customers starting from network measurements only.

In this paper we explore this possibility and predict the
customer satisfaction relative to two cellular network aspects:
network coverage and video streaming. The former is a nec-
essary service for every user: trivially, no network activities
can be performed without radio coverage. The latter has
become more and more important for network operators in
the last few years, as video already constitutes the majority
of mobile traffic. The satisfactions relative to the two aspects
play a big role in a customer decision to leave its current
operator for a better one. Differently from related works in
the area analyzing short-term Quality-of-Experience (QoE) of
different network services, we focus here on the long-term
satisfaction, i.e., the satisfaction reported by a user relative to
a period of time spanning several weeks. We base our study
on country-wide datasets obtained from Vodafone cellular
network, containing both user-side activity measurements and
ground truth satisfaction feedbacks. We describe the features
that can be extracted from those datasets and we report on
the prediction results obtained when using such features to
train different machine learning models. The remainder of
this paper is structured as it follows: Section II summarises
the related works in the area of user satisfaction prediction
in mobile cellular networks, while Section III describes the
datasets under consideration. Section IV describes the task ofISBN 978-3-903176-18-8 2019 IFIP c©2019 IEEE



coverage satisfaction prediction, commenting on the choice of
the input features and the obtained results; Section V does
the same for video streaming services. Finally, Section VI
provides a discussion on the obtained results.

II. RELATED WORK

The problem of estimating the user satisfaction relative to
different services (video streaming, web browsing, etc.) in
cellular networks has been subject to increasing attention in the
past few years. Most works focus on the Quality of Experience
(QoE) of a user accessing video streams, mostly in form of
unencrypted [2] or encrypted [3], [4], [5] YouTube contents.
Generally, these works focus on short-term QoE, i.e., they
estimate the QoE of individual video sessions starting from
flow-level features extracted from each video network traffic
traces, such as flow size and duration, average throughput and
statistics on RTT and packet losses. Network data is gathered
either from network-side traffic traces or directly by user termi-
nals [6]. QoE is obtained either directly through subjective user
feedbacks in form of Mean Opinion Scores (MOS), or more
often it is substituted by objective QoE metrics such as number
of video stalls or buffering ratio [7], the downlink bandwidth
or the access Round Trip Time [8], whose correlation to user
satisfaction is well established [9]. QoE estimation is generally
performed as a supervised classification task: when objective
QoE metrics such as video stalls are used, they are quantised
into discrete classes. As an example, in [10] and [3] the re-
buffering ratio (duration of video stalls relative to duration of
the video) is binarised using a threshold value of 0.1 [11].
In general, the reported accuracy of such short-term video
QoE prediction approaches is satisfactory, higher than 80%
in most cases. Other works focus on web browsing QoE: in
[12] authors use as QoE metrics the web session length and
the website abandonment rate. Results suggest that the web
QoE is very sensitive to inter-radio-access-technology (IRAT)
handovers and signal-to-noise-ratio. Differently from these
works, here we focus on long-term satisfaction prediction, i.e.,
the satisfaction reported by a user is relative to a period of
time spanning several weeks and not to an individual session:
such measure may capture more easily than short-term QoE
users and in turn areas of the network which impact most on
the churn rate. For what concerns coverage, several works in
the past have studied the possibility of using crowdsourced
measurements for predicting radio maps [13], [14]. However,
to the best of our knowledge, such works only focus on
objective coverage measurements and do not take into account
the user satisfaction.

III. DATASETS

This work uses two country-wide datasets coming from
Vodafone, one of the major european mobile operators: a user-
side network measurements dataset and a ground-truth user
satisfaction dataset. Both datasets, in which users details are
anonymised, are relative to a period of five months from May
2018 to November 2018 (excluding July and August to avoid
summer seasonal biasing). The network measurements dataset

contains data relative to roughly 500k users, while the satis-
factions dataset contains data relative to roughly 30k users, as
just a subset of users reporting network-related measurements
actually answer the proposed satisfaction surveys.

A. User-side Network Measurements

The first dataset is obtained through a Vodafone-branded
mobile application installed on a subset of the operator cus-
tomers’ equipments and running in background under their
consent. The application periodically logs several active and
passive network measurements relative to low-level network
indicators (e.g., average cell signal strength and channel
quality indicators, daily time spent by the user in full or
limited service conditions, etc.) as well as application level
indicators (e.g., session downlink/uplink data volume, duration
and throughput) of different applications run in foreground
by the user. Beside the measurement itself, the application
provides also additional information, such as the measurement
timestamp or the ID and location of the base station to which
the user is connected. We are interested in measurements
relative to (i) network coverage and (ii) video streaming. Re-
garding the former, the following measurements are available
for each day d and only for 4G Radio Access Technology
(RAT):
• Daily Full Service Time, (fd): the total time in seconds

a user has reported full service in day d.
• Daily Limited Service Time, (ld): the total time in

seconds a user has reported limited service (emergency
service only) during the day d.

• Daily No Service Time, (zd): the total time in seconds a
user has reported no service in day d.

• Signal to Noise Ratio (SNR) Daily Minimum (smin
d ),

Maximum (smax
d ) and Average (savg

d ) in dB.
• Reference Signal Received Quality (RSRQ) Daily Mini-

mum (qmin
d ), Maximum (qmax

d ) and Average (qavg
d ).

The extraction of such counters allows to obtain a new
dataset NC for coverage network measurements, containing
entries of this form: {user id, date d, fd, ld, nd, smin

d , smax
d ,

savg
d , qmin

d , qmax
d , qavg

d }.
For what concerns video, we focus on network measure-

ments strictly related to YouTube mobile sessions. Information
are again sampled on a daily basis, this time considering both
3G and 4G access technology (i.e., RAT ∈ {3G, 4G}), as
follows:
• Daily Download Time: (tRAT

d ): the total time in seconds a
user has downloaded YouTube contents using either 3G
or 4G radio access technology.

• Daily Download Volume (vRAT
d ): the total YouTube data

volume a user has downloaded using either 3G or 4G.
• Daily Maximum Data Session Volume (wRAT

d ): the max-
imum YouTube data volume downloaded in a single
session using either 4G or 3G.

• Daily Maximum Data Session Throughput Peak (pRAT
d ):

the maximum throughput experienced in a single
YouTubes session using either 3G or 4G.
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Fig. 1. Distribution of users Satisfaction feedbacks for (a) network coverage
and (b) video streaming.

We construct a new dataset NV containing only video
network measurements, where entries have this form: {user id,
date d, t3Gd , t4Gd , v3Gd , v4Gd , d3Gd , d4Gd , w3G

d , w4G
d , p3Gd , p4Gd }.

B. User Satisfaction Dataset

The second dataset contains ground truth feedbacks of a
subset of the operator customers on their satisfaction relative
to different aspects of the received service (e.g. network cov-
erage, video streaming quality, voice quality, data speed, etc.).
The feedbacks, collected by the operator through individual
surveys, are reported in form of satisfaction grades on a scale
from 0 (fully dissatisfied user) to 10 (fully satisfied user),
and each user gives a different answer for each investigated
network item. We extract from this dataset only the feedbacks
relative tonetwork coverage and video streaming, creating two
distinct datasets QC and QV . Considering the five months
period of analysis, QC contains 7045 survey responses for
coverage and QV contains 6264 survey responses for video
streaming, where an entry of any of the two datasets has
the following form: {user id, date, QoE}. Note that, out of
the initial 30k survey responses available in the dataset, only
about 44% of those are actually related to coverage and video
services. Fig. 1 shows the distribution of satisfaction grades for
the two considered services. As one can see, both distributions
are highly skewed, with the majority of users reporting positive
feedbacks. It is possible to discretise the grades into two
classes, with respect to a predefined satisfaction threshold T :
users whose vote is less or equal than T are grouped together
as Unsatisfied users, while the opposite happens for Satisfied
users. As an example, the percentage of users unsatisfied with
network coverage is roughly 19% when T = 6. It is not
trivial to decide which threshold value should be used: in the
following we show results for different values of T .

IV. NETWORK COVERAGE

First, we focus on predicting the satisfaction of a user
relatively to the experienced network coverage. We take a
supervised learning approach, leveraging the network measure-
ments in dataset NC and satisfaction grades in dataset QC . We
are interested only in those users that appear in both datasets,
i.e., we consider network measurements of those users having
issued a satisfaction grade on coverage in the five-months
period of interest. These are limited to 4680 users (i.e., roughly
15% of the total available survey responses).

A. Feature Computation
As a first step, we engineer features from the daily mea-

surements in NC . We start with the assumption that a user’s
satisfaction feedback issued at day d (i.e. day d is the survey
response date) depends on its experience in the previous n days
d− 1, d− 2, . . . , d− n. A first question is how to dimension
n, which controls the memory of a user. Small values of n
assume that users’ satisfaction depends only on their short-
term activity (i.e., what happened in the days closest to the
survey response date), while large values of n assume longer-
terms correlations. Therefore, instead of making a strong
choice on this parameter, we compute features for all values of
n in the range 1 . . . 30 (i.e., we assume that the maximum user
memory is one month) and we let the learning model select the
best inputs. We assume that satisfaction on coverage depends
on the fraction of time that the user has passed in full, limited
or no service as well as on the signal quality observed by the
user during those days. Therefore, we first compute for each
user the Cumulative Full Service Time Ratio, Fn as:

Fn =

∑d
i=d−n fi∑d

i=d−n fi + li + ni

(1)

Similarly, we compute the Cumulative Limited Service Time
Ratio (Ln) and the Cumulative No Service Time Ratio (Zn)
changing the numerator in (1) with li or zi, respectively. Note
that Fn + Ln + Zn = 1, which means that one out of the
three features can be excluded from the model as linearly
dependent from the other two, for each selected user memory
length n. In the following, we will just consider Fn and Zn.
This process creates 30 × 2 = 60 feature per user. For what
concerns channel measurements, we compute the Minimum of
Daily Minima (Smin

n ), Maximum of Daily Maxima (Smax
n ) and

Average of Daily Averages (Savg
n ) of SNR as:

Smin
n =

d
min

i=d−n
smin
i , (2)

Smax
n =

d
max
i=d−n

smax
i , (3)

Savg
n =

∑d
i=d−n s

avg
i

n
. (4)

Similarly, we compute the same triplets for RSRQ measure-
ments (Qmin

n ,Qavg
n and Qmax

n ). This process creates additional
30× 3× 2 = 180 features per user.

It is important to check the statistical distribution of each
computed feature, as a large portion of machine learning
methods assume that input features are characterised by a
Gaussian distribution. We observe that the channel measure-
ments features are already Gaussian distributed, while this is
not true for the service time ratios. As an example, Fig. 2
shows the distribution of F30; as one can see, the distribution
is not Gaussian since the majority of users have reported full
time service ratio close to 1. To make the data distribution
more similar to Gaussian we apply a log-like transformation
as follows:

F tr
n = − log(1− Fn) (5)



The corresponding transformed distribution is shown in Fig.
2(b), which now looks more similar to a Gaussian bell. A
similar transformation is also applied for Zn. Distributions of
other service time features are not shown for space limits. We
observe that such a transformation gives benefits in terms of
features correlation with users’ satisfaction. Figure 3 shows
the Correlation Relative Improvement (CRI) we get from F tr

n

with respect to Fn, for n in the range 1 . . . 30 days. For a
given user memory length n, CRI is computed as follows:

CRIn =
corr(F tr

n , y)− corr(Fn, y)

corr(Fn, y)
(6)

where y is the vector of users’ satisfaction votes and corr(a,b)
refers to the Pearson’s correlation coefficient between a and
b. As one can observe, correlation increases due to logarith-
mic transformation for each considered user memory length,
with an average CRI of 2 (i.e. on average correlations after
transformation are three times larger). Generally speaking,
gains are higher for longer-term look-up periods, where the
improvement peak is reached by F tr

26 which is almost 10
times more correlated with users’ satisfaction than F26. Similar
considerations can be done for Z tr

n with respect to Zn, this
showing that users’ satisfaction depends more likely on their
long-term rather than short term activity.
Beside network measurements related features, we believe it
is worth to add to the model some features related to user
location, as in principle the satisfaction of a user regarding a
network service may depend on the geographical area where
the service is most frequently experienced by that user. With
this aim, for a given user we define Ui as the set of base
stations i visited within a period of 30 days preceding the
user’s survey response date. Also, we refer to Lat(i) and
Long(i) as the latitude and longitude of base station i,
respectively. Moreover, we compute the Active Time AT (i)
of a given user with respect to base station i as follows:

AT (i) = F i
30 + Li

30 + Zi
30 (7)

which is non-zero if and only if base station i belongs to Ui
for that user. Note that superscript i on service time indicators
refers to the fact that to compute AT (i) we consider the
total service time experienced by the user with respect to
base station i only. Finally, we compute the Average Latitude
(LATavg) and Average Longitude (LONGavg) of a user as
follows:

LATavg =

∑
i∈Ui AT (i) · Lat(i)∑

i∈Ui AT (i)
, (8)

LONGavg =

∑
i∈Ui AT (i) · Long(i)∑

i∈Ui AT (i)
. (9)

which correspond to the weighted average of the latitude and
longitude of the base stations visited by the user, where the
weights correspond to the base stations visit times of the user
itself. Adding these two features to the model we get a total
of 60 + 180 + 2 = 242 features per user.
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Fig. 2. Probability density function of F30 and F tr
30.
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B. Satisfaction Threshold Selection

In this section we comment about the tuning of the Satis-
faction Threshold T . On the one hand, satisfaction thresholds
lower than 6 (e.g. 5 or 4) would include all those users giving
a vote equal to 6 (or 5) in the class of Satisfied users, even
though such a vote is far from the maximum possible (i.e.
10). On the other hand, considering a satisfaction threshold
equal to 9 would include in the same class only those users
giving a 10, which is a too severe approach. Therefore, we
decide to look for the best T in the range 6, 7, 8. The aim is
to tune T such to let the classifier extract as much information
as possible from the features, conditioned to the two classes
of Unsatisfied and Satisfied users. With this in mind, it is
worth observing some of the class-conditional Cumulative
Distribution Functions (CDFs) of the above described features
for the three considered values of T . Figures 4 and 5 show
the class-conditional CDFs of F tr

30 and Qavg
30 for T = {6, 7, 8}.

Generally speaking, the larger the gap between the red and
blue curves, the more the information associated to the features
is conditioned to the observation samples’ class label. As one
can see, Figures 4 shows that satisfied users (blue curves)
have more likely experienced longer full service periods than
unsatisfied users, disregarding the satisfaction threshold. For
instance, considering T = 6 we can see that almost 98% of
satisfied users had a fraction of full service time greater than
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Fig. 4. Class-conditional CDF of F tr
30 at threshold T = (a) 6, (b) 7, (c) 8.
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Fig. 5. Class-conditional CDF of Qavg
30 at threshold T = (a) 6, (b) 7, (c) 8.

95% (corresponding to F tr
30 = 3), while this is true only for

93% of unsatisfied users. Similarly, for what concerns signal
quality measurements, the CDFs in Fig. 5 show that satisfied
users have higher median values of RSRQ of about 0.5 dB.
In general we observe that T = 6 maximises the difference
in the class-conditional CDFs compared to other thresholds,
both for F tr

30 and Qavg
30 . The same result is observed from the

CDFs of the other features, which are not shown here.

C. Prediction Results

The features computed in Section IV-A are used as input
to several different supervised machine learning models. We
distinguish here two separate cases: in the first one we use as
input only those features relative to the service times (i.e. Fn

and Zn) and user locations. We refer to this case as (ST-Only).
In the second case we also add as input the features obtained
starting from SNR and RSRQ signal quality measurements: we
refer to this case as (ST+SQ). In both cases, the number of
useful observations is 4680. At the selected threshold T = 6,
1030 observations belong to the Unsatisfied class and the
rest to Satisfied class. The features and the corresponding
satisfaction ground truth votes are input to the following su-
pervised classifiers: i) Regularised Logistic Regressor (RLR),
ii) Gaussian Naive Bayes (GNB), iii) Decision Trees (DT ),
iv) Random Forest (RF ), v) Linear Discriminant Analysis
(LDA), vi) AdaBoost (a more complex classifier following
the paradigm of ensemble learning with boosting which uses
decision trees as first level learners, AB) and vii) Multi Layer
Perceptron (a neural network, in this study with a single
hidden layer, NN ). All classifiers but GNB and LDA accept
in input different hyper-parameters whose setup is not trivial
and needs to be optimised. As an example, regularised logistic
regression requires to determine the regularisation coefficient
used to penalise features and reduce overfitting. Similarly, tree-
based classifiers (DT, RF and AB) require to set parameters
such as the maximum depth of the trees and the tree splitting
criterion. Also, NN classifier requires to optimize the hidden
layer structure, by tuning the number of neurons. To tune such
hyper-parameters, we proceed with a grid search on a set of
candidate values as follows. First, according to a k-fold cross-
validation strategy with k = 5, the original dataset of 4680
observations and ground truth pairs is divided into five folds
with splitting ratios 80% (Training set) and a 20% (Test set).
Secondly, we focus on a given pair of Training Set and Test
Set. We apply to the Training Set a further 5-fold cross-
validation, such that it is divided into five folds with splitting
ratios 80% (Sub-Training Set) and 20% (Validation Set).
Each Sub-Training Set is then trained with each classifier’s
hyper-parameters candidate values. Prediction performances
are then evaluated on the corresponding Validation Set. At
end of this (inner) cross-validation process, we can select the
classifiers’ best hyper-parameters (i.e. those maximising, per
each classifier, the prediction results on the Validation Set)
that are used to train each model in the outer cross-validation
loop (i.e. the original Training Set). Finally, the trained models
prediction performances are tested on the Test Set. Note that
this procedure is repeated 5 times, one per each Training
Set selected by the outer cross-validation loop. The results
we will show correspond to the average results across the
different Test Sets. In particular, for each observation of a
given Test Set, the tested classifiers output the probability that
the observation belongs to the Unsatisfied class. By thresh-
olding such probability with different Prediction Thresholds
(PT ), one can compute the so called Receiver Operating
Characteristic (ROC) curve, which shows the values of the
True Positive Rate (TPR) and False Positive Rate (FPR)
obtained by the particular classifier. The TPR is defined as
the fraction of correctly detected Unsatisfied users, while the
FPR is the fraction of Satisfied users which are incorrectly
labeled as Unsatisfied. Additionally, to summarise in a single



TABLE I
PERFORMANCE OBTAINED FOR COVERAGE QOE PREDICTION

Case Classifier AUC PT TPR FPR

ST-only

RLR 0.58 0.195 0.59 0.46
GNB 0.57 0.136 0.54 0.42
DT 0.55 0.185 0.53 0.43
RF 0.57 0.178 0.54 0.42
AB 0.59 0.347 0.55 0.42
LDA 0.58 0.192 0.53 0.41
NN 0.57 0.192 0.54 0.42

ST+SQ

RLR 0.60 0.215 0.59 0.44
GNB 0.59 0.131 0.61 0.46
DT 0.57 0.181 0.52 0.40
RF 0.60 0.181 0.56 0.40
AB 0.60 0.414 0.58 0.42
LDA 0.59 0.175 0.63 0.49
NN 0.59 0.192 0.56 0.44
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Fig. 6. ROC curve for coverage QoE prediction, case ST-Only, T = 6.

value the performances of each classifier, the Area Under the
Curve (AUC) is computed. Note that, for a random classifier,
the AUC equals 0.5.
Figures 6 and 7 show the ROC curves of the different clas-
sifiers for the cases ST-Only and ST+SQ, respectively, while
Table I reports the corresponding AUC values. Additionally,
we also report in the Table the point on each classifier’s ROC
curve closest to the upper left corner ([FPR=0, TPR=1], corre-
sponding to an ideal condition of perfect prediction), by giving
the corresponding values of TPR and FPR at the corresponding
PT. The results obtained show that all classifiers perform at par
and, unfortunately, quite poorly, with a maximum achievable
AUC of 0.6. In general, adding signal quality features as input
improves the classification task by 3%. Looking at the best
working points in Table I, we can see that RLR correctly
detects 59% of the Unsatisfied users, with a corresponding
false alarm rate of 44%. Also, optimal PTs are usually lower
than 0.5.

V. VIDEO STREAMING

Beside network coverage, we focus also on predicting
users satisfaction on the quality of the experienced YouTube
streaming sessions, joining the two datasets NV and QV . In
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Fig. 7. ROC curve for coverage QoE prediction, case ST+CI, T = 6.

this case, the number of users appearing in both datasets is
limited to 1140 (i.e., less than 5% of the total feedbacks).

A. Features Computation

As done in section IV, we start by engineering features
from the daily measurements in NV . We assume that the
satisfaction of a user regarding video quality reported at day d
is somehow correlated with RAT-dependent features (3G/4G)
analysed within the previous n days. To give an example, it is
reasonable to conjecture that a user that watched videos under
4G reports higher levels of satisfaction compared to a 3G-only
user, since higher throughputs can be achieved with the former
technology. Therefore, for a given user memory of length n,
we compute:
• Cumulative Download Time and Volume in 3G or 4G:

TRAT
n =

d∑
i=d−n

tRAT
i , V RAT

n =

d∑
i=d−n

vRAT
i (10)

• Average Throughput in 3G or 4G:

GRAT
n =

V RAT
n

TRAT
n

(11)

• Overall Average Throughput:

An =
V 4G
n + V 3G

n

T 4G
n + T 3G

n

(12)

• Overall maximum of Data Session Volumes and Through-
put Peak:

WRAT
n =

i
max
j=i−n

wRAT
j , PRAT

n =
i

max
j=i−n

pRAT
j , (13)

• Cumulative Download Time Ratio in 4G:

R4G
n =

T 4G
n

T 3G
n + T 4G

n

. (14)

We don’t consider the cumulative download time ratio in
3G RAT since it is collinear with R4G

n (i.e., R3G
n + R4G

n = 1)
and thus does not add any additional information. Computing
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Fig. 8. Class-conditional CDFs of R4G
30 for T = (a) 6, (b) 7, (c) 8.

such features for n = 1 . . . 30, we create 360 features per
user for what concerns video measurements. Adding to the
model the Average Latitude (LATavg) and Average Longitude
(LONGavg) of each user in the dataset, we end up with 362
features per user for what concerns video streaming.

B. Satisfaction Threshold Selection

As done for coverage, it is worth observing the class-
conditional CDFs of the features in order to assess the optimal
value of the Satisfaction Threshold T . Figures 8 and 9 show
the class-conditional CDFs for T = 6, 7 and 8 of R4G

30 and
G4G

30 . We observe again that T = 6 maximises the difference in
the class-conditional CDFs. For that threshold, we observe in
Fig. 8 that the median 4G download time fraction for video is
just above 20% of the total download time, while for satisfied
users it is almost 85%. Similarly, observing Fig. 9, 95%
of the unsatisfied users experienced an average throughput
less than 750 kbps, while it is above 1 Mbps for the same
percentage of satisfied users. Note that the result regarding
the best satisfaction threshold is confimed also by the CDFs
of the other features, which are not shown for space limits.

C. Prediction Results

We adopt the same workflow described in Section V-C
to compute the prediction performances of different learning
models. Figure 10 shows the ROC curves of the tested
classifiers and Table II reports the corresponding AUC and best
identified working points. Again, it can be seen that the differ-
ent classifiers perform almost the same: the best performing
classifier is the Random Forest, which scores an AUC value of
0.58. The best working point identified is at 57% of correctly
labeled Satisfied user (and a corresponding FPR of 43%) for a
PT equal to 0.244. The only underperforming classifier turns
to be the neural network, scoring an AUC of 0.52, meaning
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Fig. 9. Class-conditional CDFs of G4G
n for T = (a) 6, (b) 7, (c) 8.

TABLE II
PERFORMANCE OBTAINED FOR VIDEO QOE PREDICTION

Classifier AUC PT TPR FPR
RLR 0.57 0.435 0.64 0.52
GNB 0.57 0.944 0.51 0.37
DT 0.55 0.2985 0.55 0.45
RF 0.58 0.244 0.57 0.43
AB 0.57 0.366 0.61 0.48
LDA 0.57 0.1529 0.56 0.43
NN 0.52 0.3752 0.51 0.49

that the chosen structure with a single hidden layer does not
suite this model. We believe that a neural network with a more-
than-one layer structure would yield better performances: this
will be subject to further investigation.

D. Impact of Location-related Features

It is worth to analyse the impact of the features LATavg

and LONGavg in terms of prediction performances, both for
coverage and video streaming. Figures 11 (a) and (b) show the
gain relative to the AUC score that we get adding to the models
the two location-related features. For what concerns coverage,
considering the case ST+SQ, the best performing classifier
is RF, which improves the AUC score by 2%. Note that
similar results are observed for the case ST-Only, which are not
shown here. On the other hand, we get for Video Streaming
a maximum improvement of 3%, which is reached by AB
classifier. In general, we observe that adding the average users
location to the considered models we get on average 1% higher
AUC scores compared to a model based on objective network
measurements only.

VI. DISCUSSION AND CONCLUDING REMARKS

In this work we have commented on the possibility of pre-
dicting the long-term coverage and video satisfaction starting
from user-side network measurements. The results obtained
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Fig. 11. AUC scores with and without location-related features for cases a)
ST + SQ and b) V ideo Streaming.

demonstrate that the task is complex and challenging, as all
the different supervised machine learning classifiers used show
quite poor performances. Nonetheless, a weak correlation
between the engineered input features and user satisfaction
feedbacks could be exploited and can be used from the
operator as a starting point to identify possible problems in
the network. Some interesting points can be raised:
• Compared to short-term QoE estimation, long-term sat-

isfaction prediction looks like a much more challeng-
ing task. The most direct explanation for this could
lie in the way users reply to survey, which could be
affected by many factors (e.g., value for money or other
user-dependent standards) that network measurements
alone cannot capture. Future work will focus on adding
commercial-related features (e.g., data plan type and fee)
as well as user profile related features (i.e. age, sex,
customer type, etc.) to the models tested in order to
capture also these type of factors.

• Despite the availability of a country-wide dataset span-
ning several months, the actual number of ground truth
observations we could use in this work was quite limited
(15% of the total feedbacks for coverage and less than
5% for video). It is well known that data availability can
greatly improve the performance of supervised machine
learning methods: incentive strategies could be put in
place by operators to retrieve as much data possible from

their customers.
• Finally, we recall that one of the primary use of QoE

prediction is to identify areas of the network or network
elements with possible problems. Since each item is
visited by many users, each one reporting a ground truth
or predicted QoE value, it may be possible that misclassi-
fication errors are somehow alleviated when grouped on
a single network element/area. The impact of individual
prediction errors on the overall task of network problems
detection is under investigation.
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