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Abstract—Network slicing emerged in 5G networks as a key
component to enable the use of multiple services with different
performance requirements on top of a shared physical network in-
frastructure. A major challenge lies on ensuring wireless coverage
and enough communications resources to meet the target Quality
of Service (QoS) levels demanded by these services, including
throughput and delay guarantees. The challenge is exacerbated
in temporary events, such as disaster management scenarios and
outdoor festivities, where the existing wireless infrastructures
may collapse, fail to provide sufficient wireless coverage, or lack
the required communications resources. Flying networks, com-
posed of Unmanned Aerial Vehicles (UAVs), emerged as a solution
to provide on-demand wireless coverage and communications
resources anywhere, anytime. However, existing solutions mostly
rely on best-effort networks. The main contribution of this paper
is SLICER, an algorithm enabling the placement and allocation
of communications resources in slicing-aware flying networks.
The evaluation carried out by means of ns-3 simulations shows
SLICER can meet the targeted QoS levels, while using the
minimum amount of communications resources.

Index Terms—Aerial Networks, Flying Networks, Network
Slicing, Quality of Service, Unmanned Aerial Vehicles.

I. INTRODUCTION

Network slicing aims at enabling the use of multiple services
with different performance requirements on top of a shared
physical network infrastructure [1, 2]. According to the 3rd

Generation Partnership Project (3GPP), a network slice is a
logical network that provides specific network capabilities
and target performance requirements, for instance, in terms
of throughput and delay [3]. An important aspect related to
the network slicing concept is its end-to-end nature, where a
network slice is extended from the access network to the core
network [4]. Two major network entities may be associated
to slicing: Mobile Network Operators (MNOs) and Service
Providers or virtual MNOs. MNOs ensure the availability of the
required communications resources, including the wireless and
wired network infrastructure, such as cell sites, fronthaul and
backhaul networks, and cloud data centers [2]. These resources
can be owned and managed by the MNOs or leased by them
from third-party infrastructure providers. Service Providers
or virtual MNOs exploit and manage the network slices
supplied by the MNOs, in order to meet the strict performance
requirements of the services they offer, such as high definition
video streaming, augmented and virtual reality, or smart
metering. Service Providers and virtual MNOs act as tenants of
the network infrastructure and provide services to their clients,
performing the role of network users, as depicted in Fig. 1.
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Fig. 1: Flying access network, composed of Unmanned Aerial Vehicles
(UAVs), used by a Mobile Network Operator (MNO) to place and provide
communications resources on-demand, so that |S| network slices are made
available to a Service Provider at target geographical areas.

In order to offer the Quality of Experience (QoE) expected
by the users, the tenants request network slices to MNOs in the
form of a Service Level Agreement (SLA). The SLA describes
the service requirements at a high level, including Quality of
Service (QoS) metrics, user density, and the geographical area
where the services should be made available [2].

The literature on network slicing has been mainly focused on
the resource allocation challenges, in order to ensure fairness
and efficiency, while meeting the targeted QoS levels. Yet, a
fixed network infrastructure is typically assumed [2]. A major
challenge imposed to the MNOs lies on ensuring the availability
of a dynamic wireless infrastructure able to provide wireless
coverage and enough communications resources. This challenge
is exacerbated in temporary events, such as disaster manage-
ment scenarios and outdoor festivities, where the existing wire-
less infrastructures may collapse, fail to provide sufficient wire-
less coverage, or lack the required communications resources.

In order to overcome this challenge, the use of flying
networks, composed of Unmanned Aerial Vehicles (UAVs)
acting as cellular Base Stations (BSs) and Wi-Fi Access Points
(APs), emerged as a solution to provide agile, on-demand
wireless coverage and communications resources, especially
due to the UAVs’ 3D positioning ability. Despite the ongoing
research on UAV placement, existing solutions are focused
on extending the wireless coverage and network capacity
considering a best-effort approach, including our previous
research [5–7]. Regarding network slicing in flying networks,
state of the art works typically consider the UAVs acting
as clients of telecom infrastructures and do not address
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the challenges regarding the placement and allocation of
communications resources simultaneously [8–11].

The main contribution of this paper is SLICER, an
algorithm enabling the on-demand placement and allocation
of communications resources in slicing-aware flying networks
composed of UAVs. SLICER allows to minimize the cost
of deploying a slicing-aware flying network by computing
the minimum amount of communications resources, namely
the number of UAVs acting as Flying Access Points (FAPs),
needed to meet the target QoS levels required by network
slices made available in different geographical areas.

The rest of this paper is organized as follows. Section II
presents the related work. Section III describes the system
model and formulates the problem. Section IV details the place-
ment and allocation of communications resources performed
by the SLICER algorithm. Section V refers to the performance
evaluation of the flying network when SLICER is used. Finally,
Section VI points out the main conclusions and future work.

II. RELATED WORK

Network slicing emerged in 5G networks as a key component
to ensure performance guarantees using the minimum amount of
communications resources. In [12], a survey on network slicing
for 5G networks is presented, including the 3GPP standardiza-
tion process, whereas [13] describes the key principles, enabling
technologies, and open research challenges regarding network
slicing. In the literature, several solutions have been proposed
to meet the QoS levels of different network slices and ensure
fairness and efficiency. In [14], network slicing is formulated
as an optimization problem, considering the backhaul network
capacity, storage, and available bandwidth. However, only one
BS in a fixed position is considered. In [15], the resource
allocation challenges in 5G+ access networks are discussed,
including isolation, scalability, and efficiency. Due to the
complexity in solving these problems, different approaches have
been considered, including optimization [16], game theory [17],
evolutionary and heuristic algorithms [18, 19], and Machine
Learning [20]. Still, these works are focused on maximizing
the resource usage and minimizing costs, and do not address
the placement of communications resources on-demand. A
reference work that considers coverage constraints for providing
network slices is presented in [2]. Yet, it assumes fixed BSs only.
Overall, when it comes to wireless networks in general, the liter-
ature on network slicing has been focused on the resource allo-
cation challenges, aiming at maximizing the resource utilization
and minimizing the operation costs. However, a fixed network
infrastructure is typically assumed. Providing wireless connec-
tivity on-demand for ensuring coverage-aware network slices
in dynamic environments has not been addressed so far [21].

Flying networks, composed of UAVs acting as Wi-Fi APs
or cellular BSs, have emerged as a flexible and agile solution
to provide on-demand wireless connectivity when there is no
network infrastructure available or there is a need to enhance
the coverage and capacity of existing networks [22–24]. Within
this context, UAV placement algorithms have been proposed to

determine the UAV positions that maximize the wireless cover-
age or the QoS and QoE offered to the users [25]. In particular,
the solutions presented in [26, 27] aim at maximizing the area
and number of users served, whereas the ones in [28, 29] focus
on optimizing the QoS offered. The use of UAVs has also been
envisioned under the Integrated Access and Backhaul (IAB)
concept defined in 3GPP Release 16, which takes advantage of
resources provided by BSs to establish backhaul networks [30].
Still, these solutions aim at improving the overall network per-
formance by maximizing the Signal-to-Noise Ratio (SNR) and
minimizing interference. In order to meet heterogeneous QoS
levels, an on-demand density-aware 3D placement algorithm
for a UAV acting as a BS is proposed in [31]. It maximizes the
number of users served, while promising guaranteed data rates,
but considers only one UAV. In [32], a coverage-aware geomet-
ric placement approach for a UAV that provides connectivity to
multiple users is proposed, considering the UAV altitude, cell
size, and antenna’s beamwidth. Yet, this approach is targeted
for areas that demand two network slices only, by placing a
single UAV so that the average data rate of the users belonging
to the enhanced Mobile Broadband (eMBB) slice is maximized,
while ensuring coverage for the massive Machine-Type Com-
munications (mMTC) slice. In [33], an approach based on
distributed learning and optimization is proposed, in order to
provide an eMBB slice to the users, and an Ultra-Reliable and
Low-Latency Communications (URLLC) slice for UAV control.
A similar work is presented in [34], in which multiplexing
methods in time and frequency, and the effect of physical layer
parameters, such as Modulation and Coding Scheme (MCS),
are studied. Still, these works aim at enabling aggregate QoS
guarantees and are not able to ensure different QoS levels for
the same type of traffic being exchanged with different users.

When it comes to slicing in flying networks, the literature
has been focused on UAVs acting as clients of telecom
infrastructures [8]. Existing works that take advantage of UAVs
for providing on-demand network slices aim at improving
energy-efficiency fair coverage [9, 10] and resource allocation
efficiency [11], but do not consider the placement and allocation
of communications resources simultaneously. In [35], the UAV
placement is optimized to improve the users’ satisfaction when
using different services, but no QoS guarantees are considered.
In contrast, our work aims at paving the way to integrate UAVs
into telecom infrastructures as on-demand communications re-
sources that can be deployed anywhere, anytime, while meeting
different QoS levels demanded by multiple network slices that
coexist on top of a shared physical airborne infrastructure.

III. SYSTEM MODEL AND PROBLEM FORMULATION

At time interval tk = k · ∆t, k ∈ N0, where ∆t � 1 s is
the flying network reconfiguration period, let u ∈ U represent
a UAV from the set of UAVs U positioned inside a cuboid
C with dimensions X long, Y wide, and Z high, as shown
on the left-hand side of Fig. 2. Cuboid C is divided into a
set of N equal and smaller fixed-size cuboids, where n ∈ N
represents a cuboid in which center a UAV may be located.
Pu = (xu, yu, zu) is the position of UAV u. When used,
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Fig. 2: Illustrative networking scenario composed of multiple ground users
(blue squares) served by two FAPs/UAVs u ∈ U (green stars). The ground
users are associated with two network slices s ∈ S made available in different
subareas a ∈ As at the base of cuboid C (2D representation on the right-hand
side).

UAV u acts as a FAP that is in charge of providing wireless
connectivity to the ground users placed in the base of cuboid
C. The base of cuboid C is divided into a set of fixed-size
subareas (cf. right-hand side of Fig. 2). Let a ∈ A represent
a subarea, where A is the set of subareas composing the base
of cuboid C. Subarea a ∈ A is centered at Pa = (xa, ya, 0),
where up to one and only one ground user is located.

UAV u has available a total number of Ru wireless channels
with constant bandwidth B, in Hz. We assume that B is the
minimum bandwidth per wireless channel, in Hz, that can be
used to carry traffic to/from the ground users. This bandwidth
depends on the wireless access technology employed. The
management of the wireless link established between UAV
u and the Internet is beyond the scope of this paper; herein,
we are focused on the wireless access network only.

The wireless channel between UAV u and the ground users
is modeled by the Free-space Path Loss model. We assume
the wireless channel is symmetric. The power PRu,a received
at Pa from UAV u, in dBm, is given by Eq. (1), where PTu
is the transmission power of UAV u, in dBm, and GTu and
GRa are, respectively, the antenna gains of UAV u and the
ground user in subarea a, in dBi. The path loss component
PLu,a , in dB, is computed by means of Eq. (2), where du,a
is the Euclidean distance between Pu and Pa, in meters, fu
is the carrier frequency used by UAV u, in Hz, and c is the
speed of light in vacuum, in m/s.

PRu,a = PTu +GTu +GRa − PLu,a (1)

PLu,a = 20 · log10(du,a) + 20 · log10(fu) + 20 · log10
(

4 · π
c

)
(2)

The SNR received at Pa from UAV u, in dB, is given by
SNRu,a = PRu,a − PNu,a , where PNu,a is the noise power,
in dBm, which we assume to be constant for the channel
bandwidth B. The capacity provided by each wireless channel
is equal to the data rate associated with the Modulation and
Coding Scheme (MCSu,a) index used for the wireless link
established between UAV u and the ground user at Pa. The
use of MCSu,a imposes a minimum SNRu,a, considering
a constant noise power PNu,a .

The number of wireless channels provided by UAV u to sub-
area a ∈ A during time interval tk is denoted by ru,a(tk). The
number of wireless channels provided by UAV u to all subareas
a ∈ A must be lower than or equal to the total number Ru of
wireless channels available at UAVu, as defined in Eq. (3).∑

a∈A
ru,a(tk) ≤ Ru, ∀u ∈ U (3)

The number of UAVs serving subarea a ∈ A during time
interval tk is denoted by Ka(tk). We assume subarea a ∈ A
is served by one and only one UAV u, as stated in Eq. (4).

Ka(tk) = 1, ∀a ∈ A (4)

The indicator function 1u(tk), defined in Eq. (5), denotes
whether UAV u serves any subarea a ∈ A during time interval
tk.

1u(tk) =

{
1, if

∑
a∈A ru,a(tk) > 0, ∀u ∈ U

0, otherwise (5)

Let us consider that a Service Provider rents a set of network
slices from an MNO, in order to offer online services to the
ground users located in area A, as depicted in Fig. 2. Let
s ∈ S represent a network slice, where S is the set of network
slices. We assume that each subarea a ∈ A occupied by a
ground user is associated with a single network slice s, but
a network slice s can cover multiple subareas a ∈ A. As such,
network slice s enables the use of a service made available
in area As ⊂ A. The area As associated with network slice
s is the union of a set of fixed-size subareas a ∈ A.

The average data rate available in subarea a ∈ As when
using a given number of wireless channels must be higher than
or equal to the average data rate T s demanded by network slice
s, as denoted in Eq. (6). cu,a(tk) represents the bidirectional
network capacity provided by a wireless channel with constant
channel bandwidth B, in terms of the amount of bit/s carried
between UAV u and the ground user located in area a ∈ As.∑

u∈U
cu,a(tk) · ru,a(tk) ≥ T s,∀a ∈ As, ∀s ∈ S (6)

The relation between the minimum SNRu,a from UAV u in
subarea a ∈ As required for using MCSu,a is considered, tak-
ing into account target Bit Error Rate (BER) values according
to the requirements of network slice s. For improved reliability,
higher SNR values must be ensured, so that a lower BER is
achieved [36]. For illustrative purposes, BER equal to 10-10 is
considered for a URLLC network slice type, while BER equal
to 10-5 is employed for an eMBB network slice type. The rela-
tion between SNRu,a and MCSu,a for different target BER
values is presented in Fig. 3, considering the IEEE 802.11ac
standard, 800 ns Guard Interval (GI), and 20 MHz channel
bandwidth. Since the relation between SNRu,a and MCSu,a
is step-wise (cf. solid green lines in Fig. 3), making the problem
intractable and complex to solve mathematically, we model it as
a continuous function using a linear regression (cf. dashed black
lines in Fig. 3), which is a function that closely fits the data.
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Fig. 3: Wireless channel capacity modeled by linear regressions between
the SNR and the data rate associated to the IEEE 802.11ac MCS indexes,
considering 20 MHz channel bandwidth.

cu,a(tk) changes according to the location of subarea a ∈ As
and the position of UAV u, since both influence SNRu,a.

For the ground user in subarea a ∈ As, the traffic being
forwarded by UAV u is modeled by an M/D/1 queue Qu,a
(Poisson arrival, deterministic service time, 1 server) [37].
Traffic arrives at queue Qu,a with arrival rate λu,a packet/s and
is served with a service rate µu,a packet/s. The average delay
Du,a(tk) of a packet generated by the ground user in subarea
a ∈ As during time interval tk is computed using Eq. (7).

Du,a(tk) =
1

µu,a
·

ρu,a

2 · µu,a · (1− ρu,a)
· 1u(tk),

∀u ∈ U, ∀a ∈ As, ∀s ∈ S
(7)

where:

ρu,a =
λu,a
µu,a

< 1, λu,a 6= 0, ∀u ∈ U, ∀a ∈ As, ∀s ∈ S

The average packet delay Du,a(tk) must be lower than or
equal to the maximum average packet delay Hs associated
with network slice s, as given by Eq. (8).

Du,a · 1u(tk) ≤ Hs, ∀u ∈ U, ∀a ∈ As, ∀s ∈ S (8)

Herein, we consider average QoS values for illustrative
purposes, but an SLA established with an MNO can also refer
minimum values (e.g., lowest packet delay among all packet
delay values) or median values (e.g., 50th percentile of the
frequency distribution of packet delays) [38].

The problem consists in minimizing the cost of deploying
a slicing-aware flying network able to meet the coverage and
QoS levels of any network slice s ∈ S, including a minimum
average data rate T s and a maximum average packet delay
Hs. Solving this problem includes determining the minimum
number of UAVs to use, their 3D positions, and the number
of wireless channels they provide to the subareas associated
with the network slices. We assume that there is a set of N
predefined 3D positions where potential UAVs are placed.
Placing UAV u ∈ U at Pu, during time interval tk, has a fixed
activation cost Fu, where Fu is a constant associated with the
usage of UAV u. This activation cost may be defined according
to multiple criteria, such as the cost of the hardware carried on
board and the operating cost of each UAV. The optimization

problem, including the objective function, is defined in Eq. (9).

minimize
ru,a(tk),1u(tk)

∑
u∈U

Fu · 1u(tk), ∀a ∈ A (9a)

subject to:∑
a∈A

ru,a(tk) ≤ Ru, ∀u ∈ U (9b)

∑
u∈U

cu,a(tk) · ru,a(tk) ≥ T s, ∀a ∈ As, ∀s ∈ S (9c)

Du,a · 1u(tk) ≤ Hs, ∀u ∈ U, ∀a ∈ As, ∀s ∈ S (9d)

Ka(tk) = 1, ∀a ∈ A (9e)

The main notation used to formulate the problem addressed
by SLICER is presented in Table I.

TABLE I: Main notation used to formulate the problem addressed by SLICER.

Symbol Definition
u, a, s, tk Symbols representing respectively the UAVs, subareas, net-

work slices, and time intervals
A Area forming the base of cuboid C
As Set of subareas a ∈ A where the network slice s is made

available
C Cuboid within which the set of UAVs U can be positioned
Pu, Pa Position of UAV u and center of subarea a ∈ A
cu,a Bidirectional network capacity provided by a wireless channel

made available by UAV u to the ground user at Pa, in bit/s
GRa Antenna gain of the ground user at Pa, in dBi
GTu , PTu Antenna gain, in dBi, and transmission power of UAV u, in

dBm
MCSu,a Modulation and Coding Scheme index used in the wireless

link established between UAV u and the ground user at Pa

PLu,a Path loss component between UAV u and Pa, in dB
PRu,a Power received at Pa from UAV u, in dBm
Ru Total number of wireless channels available at UAV u
ru,a Number of wireless channels made available by UAV u to

subarea a ∈ A
SNRu,a SNR received at Pa from UAVu, in dB

IV. SLICER ALGORITHM

In this section, we detail SLICER, the proposed algorithm to
solve the problem formulated in Section III. SLICER generates
a finite subspace of admissible solutions for the problem and
uses a state of the art solver to determine the optimal solution.
In addition, SLICER defines the communications resource
allocation by means of a channel assignment approach that
minimizes the overall bandwidth required.

Algorithm A – SLICER algorithm
1: Discretize cuboid C into N cuboids centered at Pu

2: Compute SNRu,a for the wireless link available between each
potential UAV u and the ground user at Pa

3: Compute the network capacity cu,a provided by a wireless
channel with bandwidth B to the ground user at Pa

4: Solve the optimization problem defined in Eq. (9) using a state
of the art solver

5: Assign the wireless channels that minimize the bandwidth used
6: Reconfigure the flying network accordingly

Inspired by the capacitated facility location problem [39],
a classical optimization problem that aims at selecting the
best among potential locations for a factory or warehouse, we



propose the SLICER algorithm, in order to place and allocate
communications resources in slicing-aware flying networks.

Following Algorithm A, SLICER initially considers a set of
N smaller cuboids, each associated to a potential FAP deployed
at Pu, and a given number of ground subareas, each occupied
by a user in the central position. Each potential FAP can give
rise to a real FAP, if it is part of the final solution. In turn,
each ground user is characterized by a homogeneous known
traffic demand and a maximum average packet delay, which
are values associated to the SLA of a given network slice
s ∈ S. Then, SLICER computes the SNR of the wireless link
that can be established between each potential FAP and the
ground user in the center of each subarea a ∈ As. After that,
SLICER determines the network capacity achievable when
using the minimum channel bandwidth that can be provided
by each potential FAP. The minimum channel bandwidth is a
configuration parameter that may be defined according to the
communications technology used by the flying network – e.g.,
20 MHz for IEEE 802.11 or in terms of the number of Orthog-
onal Frequency-Division Multiple Access (OFDMA) Resource
Units (RUs) for IEEE 802.11ax or 5G New Radio. Assuming
that each potential FAP has a given activation cost, as well as
a limited number of wireless channels available, a state of the
art solver is used by SLICER, in order to minimize the sum of
the potential FAPs’ activation costs, which includes identifying
the potential FAPs/UAVs to actually use, and the number of
wireless channels to be made available by each FAP. At the
same time, the solver must ensure that the SLA associated with
each network slice is met, while the capacity of each FAP in
terms of the total number of wireless channels available is not
exceeded. In its current version, SLICER uses the GurobiTM

optimizer [40] and considers 1000 C as the activation cost,
defined based on a realistic cost for an off-the-shelf quadcopter
UAV [41], as well as eight 20 MHz wireless channels available
per FAP, enabling up to 160 MHz channel bandwidth. The
resulting solution consists of the potential FAPs to use, which
are associated to a known location, as presented in Fig. 2,
and the minimum amount of wireless channels that they must
provide to each subarea a ∈ A. When a potential FAP does
not provide resources to any subarea a ∈ A, its activation cost
is zero and the potential FAP does not give rise to a real FAP.

Since a precise allocation of the network resources is not
achievable in some wireless communications technologies,
including IEEE 802.11, where the channel bandwidth must
be an integer multiple of 20 MHz, SLICER performs the
resource allocation by means of a suitable channel assignment
approach that minimizes the overall bandwidth used. For that
purpose, different subareas are assigned with the same wireless
channel, aiming at reducing the overall bandwidth wasted
by sharing the spectral resources available. An illustrative
example is presented in Fig. 4 for a network slice s. Without
the channel assignment approach considered by SLICER, the
total bandwidth required is 140 MHz, as presented in Fig. 4a.
Such baseline approach considers different 20 MHz wireless
channels assigned to each subarea a ∈ As. Please note that
the total bandwidth required will increase as more subareas

Preliminary

number of channels   

before SLICER channel 

assignment

Preliminary 

number of 

channels 

(rounding to 

upper integer)

Preliminary 

minimum 

bandwidth 

required (MHz)

1.117 2 2 x 20 = 40

0.937 1 1 x 20 = 20

1.490 2 2 x 20 = 40

0.769 1 1 x 20 = 20

0.495 1 1 x 20 = 20

Total network resources 7 140

(a) Resources required before channel
assignment. Each row is associated to
a subarea a ∈ As.

Final 

number of channels

after SLICER channel 

assignment

Final

number of 

channels 

(rounding to 

upper integer)

Final

minimum 

bandwidth 

required (MHz)

1.117 + 0.769 = 1.886 2 2 x 20 = 40

0.937 1 1 x 20 = 20

1.490 + 0.495 = 1.985 2 2 x 20 = 40

Total network resources 5 100

(b) Resources required after channel
assignment. The quantities of wireless
channels stated in Fig. 4a are added to-
gether according to the color patterns.

Fig. 4: Resource allocation performed by SLICER, considering the minimum
channel bandwidth equal to 20 MHz.

a ∈ As are considered – each row in Fig. 4a corresponds
to a subarea a ∈ As. However, taking into account that for
each subarea a ∈ As the bandwidth used is far from the full
channel bandwidth available, this baseline channel assignment
approach leads to a waste of spectral resources.

With the channel assignment performed by SLICER, the total
bandwidth used is reduced to 100 MHz. This is accomplished
by using the maximum possible bandwidth of each wireless
channel made available, while assigning the same wireless
channel to the maximum number of subareas a ∈ As, as
presented in Fig. 4b. This channel assignment approach allows
to overcome the limitations imposed by some communications
technologies that make it difficult to accurately allocate the
amount of communications resources required. In addition,
it allows to reduce the spectral resources used, without
compromising the QoS guarantees.

V. PERFORMANCE EVALUATION

The evaluation of the flying network performance when using
SLICER is presented in this section. It refers to the simulation
setup employed, the simulation scenarios considered, the perfor-
mance metrics used, and the main simulation results obtained.

A. Simulation Setup

In order to evaluate the performance achieved by the
slicing-aware flying network when SLICER is employed, the
ns-3 simulator [42] was used. The ground users, performing
the role of IEEE 802.11ac Stations (STAs), and the FAPs,
acting as IEEE 802.11ac APs, were using a Network Interface
Card (NIC) in Infrastructure mode. Up to |S| wireless channels
with up to 160 MHz channel bandwidth, 800 ns GI, and a
single spatial stream were employed for the wireless links. The
IdealWifiManager mechanism was in charge of automatically
defining the data rate, since it allows to configure target BER
values, according to the SNR of the wireless links, as considered
in Section III. For each networking scenario that was considered
in the performance evaluation, SLICER was used to determine
the minimum number of UAVs, their 3D positions, and the
minimum bandwidth to allocate to each subarea a ∈ As.

B. Simulation Scenarios

Three sets of five networking scenarios consisting of 5,
20, and 45 ground users, respectively, were considered. For
each networking scenario, the ground users were randomly
distributed among two different network slices (eMBB and



URLLC) and randomly positioned on the base of cuboid C,
with dimensions X = 100 m, Y = 100 m, Z = 20 m. Each
ground user was positioned in the center of a 10 m × 10 m
subarea a ∈ A. The number of subareas was defined to consider
the occupation of the base of cuboid C (area A) equal to 5%,
20%, and 45% of the total area available. Subarea a ∈ As was
characterized by a traffic demand T s, where T eMBB was equal
to 20 Mbit/s and TURLLC was equal to 4 Mbit/s, which corre-
spond to, respectively, 25% and 5% of the data rate associated to
the highest MCS index for 20 MHz channel bandwidth, 800 ns
GI, and single spatial stream wireless links. We considered
BEReMBB equal to 10-5 and BERURLLC equal to 10-10,
which define the minimum SNR values required for transmitting
a frame using any MCS index, taking into account the network
configuration employed. Each networking scenario corresponds
to a snapshot of the flying network at tk = k · ∆t, k ∈ N0,
where ∆t� 1 s is the flying network reconfiguration period. In
a real-world deployment, each network reconfiguration implies
resolving the optimization problem defined in Eq. (9) for deter-
mining the up to date optimal solution. ∆t is a parameter that
can be adjusted according to the dynamics of the networking
scenario, in order to achieve a trade-off between the stability
of the flying network, the conservatism of the performance
requirements defined by the SLA, and the time required to
determine the optimal solution for the placement and allocation
of communications resources. For five networking scenarios
composed of 45 subareas (the most complex networking scenar-
ios considered), the average time spent by SLICER to solve the
optimization problem defined in Eq. (9) was 0.91±0.13 s (95%
confidence interval), using an 11th Generation Intel® CoreTM

i5-1135G7 processor running at 2.40 GHz and 16 GB of RAM,
which can be deployed on the Edge of the flying network.
This computing time allows to meet the target ∆t� 1 s (e.g.,
∆t = 30 s). The fine-tuning of ∆t is left for future work.

In the performance evaluation carried out, we considered two
baseline approaches:

• |S| FAPs (one FAP for each network slice s ∈ S),
each placed in the geometric center of all subareas
a ∈ As, at a random altitude of 10 m or 20 m (altitudes
considered by SLICER), configured with up to 160 MHz
channel bandwidth.

• |K| FAPs for each network slice s ∈ S, placed accord-
ing to the state of the art k-means clustering algorithm [43].
First, the k-means clustering algorithm defines |K| random
positions as clusters’ centroids. Then, it assigns each
subarea a ∈ As to the nearest cluster by calculating the
distance to each centroid. After that, it determines the up to
date centroid for each cluster by computing the average po-
sition among the assigned subareas. Each cluster’s centroid
defines the position where a FAP must be placed, at a ran-
dom altitude of 10 m or 20 m. Each FAP must provide the
cluster’s subareas with the minimum channel bandwidth
computed by SLICER for the same subareas, using up
to 160 MHz channel bandwidth. When any FAP does not
have enough channel bandwidth available, |K|, initially

set to 1, is successively increased by 1 and the k-means
clustering algorithm is run again until all FAPs are able to
provide the required bandwidth. The k-means clustering al-
gorithm is run independently for each network slice s ∈ S.

Two network slice types were considered:
• eMBB network slice that aims at enabling the use of

rich-media applications (e.g., video streaming) with
average throughput equal to 20 Mbit/s per ground user
(subarea) and average delay up to 5 ms.

• URLLC network slice that aims at enabling the use of
mission-critical applications (e.g., communications for
first-responders) with average throughput equal to 4 Mbit/s
per ground user (subarea) and average delay up to 1 ms.

The two network slice types considered and the corresponding
QoS levels were defined to evaluate and validate SLICER
under network requirements imposed by representative
applications. Yet, SLICER is valid for any number and type
of network slices, and QoS levels. UDP Poisson, a source
traffic model widely used for evaluating the performance of
wireless networks, was considered.

C. Performance Metrics

The evaluation presented herein takes into account three
performance metrics:
• Throughput: the number of bits received per second by

the FAPs.
• Packet Delivery Ratio (PDR): the ratio between the

number of packets received by the FAPs and the number
of packets generated by the ground users.

• Delay: the time taken by the packets to reach the sink
application at the FAPs, considering as reference the time
instant they were generated by the source application at
the ground users.

The performance metrics consist of average values for each
second of all the simulation runs. They are represented by
means of the Cumulative Distribution Function (CDF) for
the delay and by the complementary CDF (CCDF) for the
throughput and PDR. The CDF F (x) represents the percentage
of samples for which the delay is lower than or equal to x,
while the CCDF F ′(x) represents the percentage of samples
for which the throughput or PDR is higher than x.

D. Simulation Results

The simulation results obtained are presented in Fig. 5, Fig. 6,
and Fig. 7. They show that SLICER (cf. green circle and square
markers) allows to meet the target QoS levels associated with
the eMBB (20 Mbit/s) and URLLC (4 Mbit/s) network slices.
For 5 subareas (cf. Fig. 5), all the solutions allow to meet the
target QoS levels. This is due to the fact that, for this undemand-
ing networking scenario, the k-means clustering and geometric
center approaches offer over-provisioned communications
resources, enabling PDR higher than 95% and delay lower than
0.2 ms, when considering the 90th percentile. They even outper-
form the delay achieved by SLICER. Nevertheless, it must be
noted that SLICER does not violate the target QoS levels, as
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Fig. 5: Average performance results considering five networking scenarios composed of 5 subareas randomly associated to URLLC and eMBB network slices.

0 4 8 12 16 20

Throughput (Mbit/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
C

D
F

SLICER (4 Mbit/s)

K-means clustering (4 Mbit/s)

Geometric center (4 Mbit/s)

SLICER (20 Mbit/s)

K-means clustering (20 Mbit/s)

Geometric center (20 Mbit/s)

(a) Throughput CCDF.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Packet Delivery Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
C

D
F

SLICER (4 Mbit/s)

K-means clustering (4 Mbit/s)

Geometric center (4 Mbit/s)

SLICER (20 Mbit/s)

K-means clustering (20 Mbit/s)

Geometric center (20 Mbit/s)

(b) Packet Delivery Ratio (PDR) CCDF.

0 1 2 3 4 5 6 7 8 9 10

Delay (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

SLICER (4 Mbit/s)

K-means clustering (4 Mbit/s)

Geometric center (4 Mbit/s)

SLICER (20 Mbit/s)

K-means clustering (20 Mbit/s)

Geometric center (20 Mbit/s)

(c) Delay CDF.

Fig. 6: Average performance results considering five networking scenarios composed of 20 subareas randomly associated to URLLC and eMBB network slices.
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Fig. 7: Average performance results considering five networking scenarios composed of 45 subareas randomly associated to URLLC and eMBB network slices.
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Fig. 8: Average bandwidth and number of UAVs used in networking scenarios
composed of 5, 20, and 45 subareas randomly associated to URLLC and
eMBB network slices, including 95% confidence intervals.

it was intended. On the other hand, the network performance
achieved when using k-means clustering and geometric center is
highly degraded when the number of subareas increases, which
is clearly shown for eMBB (20 Mbit/s), considering 20 and 45
subareas (cf. Fig. 6 and Fig. 7, respectively). K-means clustering
is the solution that enables the network performance closer to
SLICER, especially when the number of subareas increases.

Regarding the resource usage in terms of average bandwidth
and number of UAVs used (cf. Fig. 8), the results show
SLICER uses only one UAV and requires the least amount
of bandwidth for 5 and 20 subareas, when compared with the
counterpart solutions. For 45 subareas, the average number of
UAVs used by SLICER is three. Although the geometric center

approach uses two UAVs, it leads to network performance
degradation when the number of subareas increases, since
assigning 160 MHz channel bandwidth to each FAP, which
is the maximum bandwidth available in current IEEE 802.11
standards, is not sufficient to meet the target QoS levels. On
the other hand, the k-means clustering algorithm, which aims
at providing to each subarea a ∈ As the same minimum
amount of bandwidth as SLICER, conduces in practice to a
higher number of UAVs and amount of bandwidth used, since
each FAP uses a single wireless channel. In addition, as the
k-means clustering algorithm defines the clusters’ centroids
based on distance, computing the mean position among all
subareas belonging to each cluster, it is not QoS-aware. From
the communications point of view, it maximizes the SNR
offered to all subareas belonging to the same cluster, but does
not guarantee target SNR values. The problem is exacerbated
when the wireless channel used by each FAP is not assigned to
subareas belonging to different clusters, as SLICER does, which
leads to wasted bandwidth in underused wireless channels.

Despite the reduced amount of resources used, SLICER
allows for better network performance. This is achieved
by ensuring the optimized placement of the FAPs and
the allocation of multiple channels with lower bandwidth



(multiples of 20 MHz), whereas the geometric center approach
assigns to all subareas of each network slice a single wireless
channel with up to 160 MHz bandwidth, which may not be
sufficient. On the other hand, the k-means clustering algorithm
is the approach that uses the largest amount of resources.
For this reason, it provides increased network performance
than the geometric center approach. However, since the
placement of the communications resources performed by the
k-means clustering algorithm is not QoS-aware, the network
performance achieved is worse when compared with SLICER.

Although SLICER was formulated and validated in this
paper for a flying access network only, it can also be employed
in a backhaul network composed of UAV relays and gateways
that forward the traffic between the FAPs and the Internet [5].

VI. CONCLUSIONS

We proposed SLICER, an algorithm enabling the on-demand
placement and allocation of communications resources in
slicing-aware flying networks. SLICER allows the computation
of the minimum number of UAVs, their 3D positions, and the
amount of communications resources to be provided in different
geographical areas where network slices with target QoS levels
must be made available. The flying network performance when
using SLICER was evaluated by means of ns-3 simulations,
considering multiple random networking scenarios. The
obtained results show SLICER allows to meet the target QoS
levels imposed by the network slices, while using the minimum
amount of communications resources. As future work, we aim
at developing a slicing-aware flying network prototype and
evaluate the performance of SLICER in real-world networking
scenarios. Moreover, we plan to evaluate the performance of
SLICER using different optimization solvers.
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