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Abstract—We investigate the performance of multi-user
multiple-antenna downlinks via joint antenna selection and power
control design. In order to fully exploit the spatial diversity while
minimizing the energy consumed by active radio frequency (RF)
modules, a subset of antennas are selected to serve the users.
Firstly, we propose a joint antenna selection and power allocation
(JASPA) algorithm to maximize the system sum rate subjected
to the total transmit power constraint and quality of service
(QoS) requirements. JASPA copes with the non-convexity of the
formulated problem via a doubly iterative algorithm, in which an
inner iteration successively optimizes the transmit power followed
by an outer loop that tries all valid antenna combinations.
Although approaching the global optimality, JASPA suffers a
combinatorial complexity, which might limit its application in
real-time network operations. To overcome this limitation, we
propose a learning-based antenna selection and power allocation
(L-ASPA) which significantly reduces the high computational
time of JASPA while retaining comparative performance. The
core idea behind L-ASPA is to exploit the advances in machine
learning to establish underlaying relation between the key system
parameters and the selected antennas. The effectiveness of the
proposed algorithms is demonstrated via numerical results, which
show that JASPA could achieve 90% of the optimal performance
while reducing more than 93% computation time.

Index Terms—Multiuser, Antenna selection, power allocation,
machine learning, optimization.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) is the key techno-
logical enabler to cope with the rapidly increasing demand for
data-hungry applications in future mobile networks. Thanks to
a large number of antennas, a MIMO base station can send
independent information beams to multiple users simultane-
ously with negligible inter-user interference. The advantages
of MIMO, under a proper beamforming design, comprises
not only high spectral efficiency and capacity per area but
also improved energy efficiency [1]. When the number of
antennas in MIMO becomes very large, antenna selection (AS)
is employed to improve the MIMO performance in terms of
both economical and technological aspects [2]. This is due to
the fact that radio frequency (RF) chains are usually much
more expensive than antenna elements. More importantly, a
proper AS strategy is capable of not only obtaining full spatial
diversity but also considerably minimizing the RF chains’
energy consumption, hence improving the system energy effi-
ciency [3]-[5]. In general, AS is a NP-hard problem whose
optimal solution is only guaranteed via exhausted search,
which tries all possibility of antenna combinations [6]. The

high complexity of AS might limits its potential in practice,
especially in 5G services which usually requires stringent
latency and real-time decision making [7].

Recently, the use of machine learning (ML) in commu-
nications systems has attracted much attention [8], [9]. The
main advantage of ML-aided communications lays in the
capability in establishing underlying relation between system
parameters and the desired objective, hence be able to shift
the computation burden in real-time processing to the off-
line training phase. [10], [11]. The authors in [12] proposed
a multi-class classification approach to tackle the AS problem
in single-user MIMO systems, which were based on two
classification methods, namely multiclass k-nearest neighbors
and support vector machine (SVM). In [13], a neural network-
based approach was proposed to reduce the computational
complexity of AS for multicasting. The neural network (NN)
is employed to predict the most potential antenna subset
that maximizes the minimum signal to noise ratio among
the users. The authors in [14] proposed a learning-based
transmit antenna selection to improve the security in wiretap
channel. Two learning-based SVM and naive-Bayes schemes
were considered. Although being able to improve the secrecy
performance with a reduced feedback overhead, [14] is limited
to only a single antenna selection.

In this paper, we investigate the joint design for antenna
selection and power allocation for multiuser multi-antenna
downlinks to improve the energy efficiency while guaran-
teeing the users’ quality of service (QoS) requirements. Our
contribution is two-hold. Firstly, we develop a joint antenna
selection and power allocation (JASPA) algorithm which relies
on the inner approximation method to deal with the non-
convexity of the joint design problem. The proposed JASPA
works based on a doubly iterative algorithm, in which an
inner iteration successively optimizes the transmit power,
followed by an outer iteration that selects the best antenna
subset. The convergence of JASPA is theoretically guaranteed.
Secondly, in order to overcome the combinatorial complexity
of JASPA, which might limit its potential in real-time applica-
tions, we propose a machine learning-based antenna selection
and power allocation (L-ASPA) algorithm. By exploiting the
NN advance, L-ASPA enables underlaying relation between
the system parameters and the selected antennas via off-
line training process. Compared with [12], which studies a
single-user MIMO, we consider the multi-user system. Our



proposed L-ASPA is fundamentally different from [13] since
we consider the general unicast, whereas [13] studied the max-
min broadcasting without inter-user interference. Furthermore,
our proposed algorithms guarantee user QoS requirements,
whereas [13] did not. The effectiveness of the proposed
algorithms is demonstrated via numerical results, which show
that L-ASPA can achieve more than 90% the (near) optimal
performance while reducing more than 90% the computational
time.

The rest of the paper is organized as follows. Section
IT presents the system models for downlink multi-antenna
systems. Section III presents the proposed JASPA algorithm
with quality of service (QoS) constraints. Section IV proposes
a L-ASPA algorithm. Numerical results are demonstrated in
Section V. Finally, Section IV concludes the paper.

Notations: The superscript (.)7 and (.)¥ stand for the
transpose and Hermitian transpose, respectively. ( ') represents
the binomial coefficients. |.| and ||.|| denote the cardinality and
the lo-norm of a set, respectively.

II. SYSTEM MODEL

We consider a downlink multiple-input single-output
(MISO) cellular system, in which a base station (BS) equipped
with IV antennas servers K single-antenna users via a shared
wireless medium, where N > K. In order to fully exploit
spatial diversity gain while minimizing energy consumed by
the RF chains, only M antennas are selected to serve the users,
with K < M < N.

Let h;, € C*V denote the channel vector from the BS’s
antennas to user k, which follows circular-symmetric complex
Gaussian distribution hy, ~ CN(0,0:Iy), where o7 is the
parameter accounting for the path loss from the BS antennas to
user k. The BS is assumed to have full channel state informa-
tion (CSI) to all users. We aim to select a subset of M antennas
to serve the users to fully exploit the spatial diversity gain.
Denote A = {ai,as,...,ap},am € [N] 2 {1,2,...,N},
as a subset of M antennas (out of V), and denote A as the
collection of all possible antenna subsets. By definition, we
have [A] = M and |A| = ().

Denote hj 4 as the channel vector from all active
antennas in a subset A to user k, eg, hpa =
[hilar], hilag], . .., hilanr]], where a,, € A and hy[n] is the
n-th element of hy. In order to send data to the users, the
BS first applies precoding to suppress inter-user interference.
Denote wy 4 € CN*1 as the precoding vector for user k
corresponding to the group A. The received signal at user k
is given as

YkA = B aWi ATk + Zi;ﬁkhk,Awi,Axi +ng, (1)

where ny, is Gaussian noise with zero mean and variance o2.

The first term in (1) is the desired signal, and the second term
is the inter-user interference.

By treating interference as noise, the achievable data rate
of user k is

| awp, 4]?
Z¢¢k|hk,Awi,A|2 + 02

where B is the shared channel bandwidth.

In this paper, we employ the minimum mean square error
(MMSE) precoding design [15] due to its low complexity.
By design, the MMSE precoding vector has a form wy 4 =
/DKWy, 4, where py is the power factor allocated to user k
and wy, 4 is the k-th column of the MMSE precoding matrix
HY(H HY + 0%Ik)™!, with H4 is the channel matrix
between the active antennas in .A and the users. Denote 3 i =
\hi Atk 4|2, Vi, k as the interference factor to user k from the
i-th user’s data stream. By treating interference as noise, the
achievable data rate is given as

Ri(A) = Blog, (1 + ),Vk, 2)

Bﬁkpk
Zi;&k [3/“:}11)1 + 02
The transmit power toward user k is Appr, where Ay £

-2
(| we [

Ri(A) = Blog, (1 + ),Vk. 3)

III. JOINT ANTENNA SELECTION AND POWER
ALLOCATION

To fully exploit the spatial diversity while minimizing the
RF chains’ energy consumption, a subset of M < L antennas
are selected to serve the users. In this section, we develop a
JASPA algorithm to maximize the system sum rate. The joint
optimization problem is formulated as follows:

K

PO: Maximize R (A 4
Ac A {pr}E Zk:l ¢(A) @
Ri(A) > Vk " A <P
s.t. k:( ) =Z Mk, ) Zk‘:l EPk = Ttot,

where Ry (A) is given in (3), Py is the total transmit power,
and 7y is the minimum rate requirement for user k.

In general, problem (4) is a mixed binary non-linear problem
with binary variable of the activated antennas and positive
power control. Because the power allocation is performed for a
given selected antenna subset, problem PO can be reformulated
in an iterative form as follows:

Ma}itlenize P1(A), %)

where P1(.A) is the power allocation problem for the candidate
antenna subset .4, defined as

P1(A): Max B log (
{pe} ; ?

ﬁ]ékpk )
Z,‘;&k B}élpv + 02

ﬁf:}kpk

Z#k ﬁ/éipi + 02
K

Zkzl/\kpk < Piots

where we have used (3) in the objective function.
If problem P1 can be solved optimally, then the optimal
solution of PO can be obtained via an exhausted search in

(6)

s.t. Blog, (1+ )an,Vk (62)

(6b)



(5), which tries all possible antenna subsets. Unfortunately,
solving problem P1 is challenging due to the non-convexity
of the objective function.

By introducing arbitrary positive variables (zj)5_,, we can
reformulate problem P1 as follows:

K
Maximize B Tk )
(Prsmi) f—y k=1
51?41491@
s.t. log (1—!— ‘) ) >z, Vk  (7a)
’ Ditk 57314191’ + 02

(6b); x> i/ B, VEk, (7b)

where the second constraint is to guarantee the QoS.
Although the objective function of (7) is now
convex, solving problem (7) is still challenging
due to the non-convexity of constraint (7a). By
defining parameters Ay = [ﬂ,él, Bty ... ,ﬂ,ﬁK],

B = B¢ B 1,0, B8 415 -+ Bk, and introducing
intermediate variables (y;)&_,, constraint (7a) is equivalent
to

log(Arp + 02) > log(2)zk + yi, Vk
Bip + 02 < €Y \Vk

(8a)
(8b)

where p £ [p1,.--,D K]T denotes the power allocation vector
for all users. We observe that constraint (8a) is convex.
However, since the function exp is convex, constraint (8b) is
unbounded. To overcome this difficulty, we employ the inner
approximation method, which uses the first-order approxima-
tion of eY* at the right hand side of (8b). The approximated
problem of (7) is formulated as follows:

P2(yo) : maxinize BY . ©)
s.t. log(Agp + 02) > log(2)xy + yw, Yk (92)
Bip + 0% < %% (yp — yor + 1), Vk (%9b)

(7b),

where yo £ (yox )X, is any feasible point of constraint (8b).

It is evident that, for a given yg, problem (9) is convex since
the objective function and the constraints are convex. Thus,
it can be solved in an efficient manner by standard solvers,
e.g., CVX. Because e*(x —a+1) < e*,Va, the approximated
problem (9) always gives a suboptimal solution of the original
problem (7).

It is worth noting that the optimal solution of problem (9) is
largely determined by parameters (yox)i_,. Thus, it is crucial
to select proper values (y()k)k},{zl such that the solution of (9)

Algorithm 1 ITERATIVE ALGORITHM TO SOLVE (7)

1: Initialize yq, €, Xo1q and error.

2: while error > ¢ do

3: Solve P2(yp) in (9) to obtain py, (T, ysk )i,
Compute error = | >, T.x — Xoid|
Update Xowg < Zle Tk Yok — Yk, VE

AN

is close to the optimal solution of (7). As such, we propose an
iterative optimization algorithm to improve the performance of
problem (9) as shown in Algorithm 1. The premise behind the
proposed algorithm is to better select the parameters (yok)szl
through iterations.

Proposition 1 (Convergence of Algorithm 1): The objective

function of problem P2(yp) in (9) solved by Algorithm 1
decreases by iterations.
The proof of Proposition 1 is shown in Appendix A. Although
not guaranteeing the global optimum of problem (7), Propo-
sition 1 justifies the convergence of the proposed iterative
algorithm.

Combining (5) and (9), we can solve the original joint
antenna selection and power allocation problem (4) via a
doubly iterative algorithm, as shown in Algorithm 2.

Algorithm 2 JOINT ANTENNA SELECTION AND POWER
ALLOCATION
Inputs: H, Py, {1} . Outputs: Copi, Aopt, Popt
Construct the super group A= {A | A C [N],|A| = M}
Initialize Cypr = 0
fori=1:|.A| do

A = Ali]

Apply Algorithm 1 on the current antenna subset A
to obtain the optimal X,;4(A) and p,(A)
6. If Copt < Xold(A)
7: C'opt — Xold(-A); -Aopt — »A; Dopt = P*(-A)-

A

A. Complexity analysis for JASPA

The proposed JASPA algorithm consists of two iterations.
The outer iteration tries all possibilities for the subset of M
antennas, and the inner iteration solves optimize the transmit
power iteratively. While the complexity of the inner iteration
is relatively reasonable since problem (9) is convex, the
outer iteration’s complexity increases combinatorially with the
number of antennas. In fact, the JASPA has to go through all
( J]C][) candidates for the selected antennas. As an example, for
L =20, N = 8, the JASPA examines 125970 possible antenna
subsets, each of which imposes an inner loop in Algorithm 1.
Although JASPA approaches the optimal performance, the
high computation complexity might limit its capability in
practical scenarios, especially in the 5G applications with
stringent latency requirements.

IV. LEARNING-BASED ANTENNA SELECTION AND POWER
ALLOCATION

In this section, we propose a learning-based antenna selec-
tion and power allocation (L-ASPA) algorithm which over-
comes the high computational complexity of JASPA. The
premise behind L-ASPA is to exploit machine-learning based
predictions to help the optimal algorithm to tackle the most
difficult and time-consuming part in the optimization. In par-
ticular, L-ASPA will first predict potential subsets of antennas,

which will be much smaller than ( J\J\/[[)



We deploy NN as the learning model to establish underlay-
ing relation between the system parameters (inputs) and the
selected antenna subset. The NN consists of three main parts:
one input layer, one output layer and one (or several) hidden
layer. Based on the labeled data, the NN will optimize the
learning parameters in order to minimize the prediction error,
e.g., cost function. The L-ASPA is implemented via 3 steps: 1)
training data generation, ii) building the learning model, and
iii) real-time prediction.

1) Training data generation: It is crucial to determine
features which will be extracted from the CSI. Because
the NN accepts only real-value inputs, the original complex
representation of the channel matrix is invalid. One important
observation is that the performance of problem (4) heavily de-
pends on inter-user interference, which is determined by cross-
product between the channel vector between any pair of users.
Therefore, we choose v = abs(vec(H” H))? € REN*1 ag
the training input. We note that user location, i.e., pathloss, is
already captured in v.

Once the input sample is given, we need to define the output,
which is the selected antenna combination that provides the
maximum objective function in (4). For each training input
v, we define an output vector b € {0, 1}(1\13 )1 indicating the
selected antenna subset, e.g., b[n] = 1 if the n-th subset is
selected, otherwise b[n] = 0. Because we are interested in
selecting only one subset, we have || b ||o= 1 In order to
compute b, for each channel realization H (corresponding to
v), we run the optimization (5) to find the selected antenna
subset A* and then assign the output element bn*] = 1
corresponding to A*.

Denote Ng as the number of samples used to train the
learning model. The total training input is aggregated in
the input matrix X = [vy,va,...,vN.], Where v is the
t-th input sample. Similarly, the training output matrix is
B = [by,...,by,], where b; is the t¢-th output sample
corresponding to the input sample v;.

2) Building the learning model: When the training data are
available, they will be used to train the NN with the learning
parameter ®. For a L-layer NN, we have ® = [0, ...,0;],
where 8, € RVi*1 1 <[ < L, is the learning parameters in
the I-th layer. We employ the sigmoi function, sigmoi(z) =
(1 +e7*)71, as the activator of the NN. The learning phase
can be done via the minimization of prediction error

A(©) =Nis|| (BT log(fe (X)) (10)

~T(B” log(1 — fo (X)) * +5a=3
2N S =1
where ) is the regulation parameter, B = 1 — B, and fe(X)
is the prediction of the output layer.

3) Real-time prediction: When the NN has been well
trained, it is ready to provide real-time and highly accurate
predictions. From the current channel coefficient matrix H,
we construct the input of the NN v = abs(vec(H” H))2.
Then v is used as the input of the well-trained NN to output
the prediction vector b, from which the best antenna subset

60117,

is announced. In general, the larger an element in b is, the
higher chance this element corresponds to the best antenna
subset. It is worth noting that the NN does not provide absolute
prediction, e.g., 0 or 1, but probabilistic uncertainties, e.g.,
0< B[n] < 1, Vn. Given the predicted vector b, we select K g
antenna subsets corresponding to the Kg largest elements in
b. Then we apply the power optimization algorithm on these
K subsets instead of (). The steps of L-ASPA algorithm
are listed in Algorithm 3. Compared with JASPA, L-ASPA
significantly reduces the computational time since it tries only
K promising candidates while JASPA examines all over
(ﬁ) > K¢ antenna combinations.

Algorithm 3 L-ASPA Algorithm
Inputs: ©, H, Py, {n }1_,. Outputs: C,pt, Aopt, Popt
1: Construct v = abs(vec(H H))?
Apply v to the learned model © to predict Ag
Initialize Copr = 0
fori=1:|Ag|
A = Agli]
Apply Algorithm 1 on the current subset .4 to obtain
the optimal X,;4(.A) and p,(A)
if Copt < Xold(A)
C(opt = Xold(-A); -Aopt — -’4; Popt = P*(-A)

R A

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
JASPA and L-ASPA algorithms via numerical results. All
wireless channels are subject to Rayleigh fading. The users
are uniformly distributed in an area between 50 and 100
meters from the BS. With a pathloss exponent equal to 3.5,
the pathloss is uniformly distributed between —59.4 dB and
—70 dB. The total antennas number is N = &, the channel
bandwidth B = 1 MHz, P,,; = 10 W, and the minimum rate
requirements is 7 = 0.1 Mbps, Vk. The number of active
antennas is equal to number of users, i.e., M = K.

A. Performance-complexity trade-off of L-ASPA

In this subsection, we examine the efficiency of the pro-
posed L-ASPA via a performance-complexity gain trade-off.
By confining the search space of the prediction output, i.e.,
Ks - the number of potential antenna subsets, we can manage
the complexity of L-ASPA since it will work only on Kg
candidates. The complexity gain of L-ASPA is defined as the
ratio between the computational time reduction divided by the
JASPA’s computational time, calculated as:

N
T((M)_KS) -1 Ks
)G
T\m M
where 7 is the computational time for optimizing the power
control of a given antenna combination, shown in Algorithm 1.
The performance is defined as the ratio between the sum rate

obtained by L-ASPA divided by the optimal sum rate of the
JASPA algorithm.

0(Ks) = (11)
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Figure 1. Performance-complexity tradeoff of the proposed L-ASPA.

Fig. 1 plots the performance-complexity tradeoff of the
proposed L-ASPA when serving 2 users. It is observed that
L-ASPA retains more than 96% the optimal sum rate while
saving more than 85% complexity. Even when spending only
7% the computational time, L-ASPA still achieves 90% the
optimal performance, which confirms the effectiveness of the
proposed L-ASPA algorithm. Compared with the heuristic
solution, L-ASPA further reduces 15% the computational time
at the 90% performance gain target.

Fig. 2 plots the relative performance in the real-time predic-
tion of L-ASPA versus the number of training samples. The
relative performance is measured as the ratio of the L-ASPA’s
sum rate divided by the one obtained by JASPA. Each training
sample is generated randomly and captures the randomness in
both channel small-scale fading and user location. In general,
having more training samples results in better prediction
accuracy since the L-ASPA learn more about the intrinsic
relation between the selected antennas and the input features.
It is shown that 2000 training samples are sufficient for L-
ASPA to achieve 90% the optimal performance.

B. Performance comparison

The performance of the proposed JASPA and L-ASPA
algorithms are shown in Fig. 3 for various number of users.
In addition, two schemes Heuristic and Equal power are also
included for comparison. The Heuristic scheme also performs
power allocation but it searches for the selected antennas
heuristically. Whereas in the Equal power scheme, the best
antenna subset is selected in a similar manner as in L-ASPA
but without power allocation. The value of Ks in L-ASPA
is chosen such that it imposes only 10% complexity of the
JASPA algorithm. We note that the schemes in [13], [14]
are not applicable in our setup since [13] designs only one
broadcasting precoding vector for all users, while [14] selects
only a single antenna.

Fig. 3 shows that the JASPA provides the largest sum
rate since it achieves the (near) optimal performance. It is
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Figure 2. Learning performance versus the number of training samples. Two
antenna are selected. Complexity gain is equal to 93%.
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Figure 3. Performance of the proposed algorithms versus the number of users.
The number of selected antennas is equal to the user number.

worth noting that JASPA’s performance is the best we can
obtain because of the non-convexity of the original problem
(6). By applying ML to predict potential antenna candidates,
the L-ASPA algorithm significantly reduces the computational
time while retaining more than 92% of the (near) optimal
performance. In particular, the L-ASPA achieves 94% and 92%
of the (near) optimal sum rate for K = 2 and K = 5, respec-
tively. Compared with the two reference schemes, the proposed
L-ASPA outperforms for all parameters. This clearly confirms
the effectiveness of the proposed L-ASPA in minimizing the
computational overhead. One interesting observation is that the
equal power scheme obtains a close performance as L-ASPA
for small K. This is because the BS has plenty power budget to
serve all users for small K, hence the optimal power allocation
approaches the uniform distribution. When K increase, the
system resource becomes scarce, therefore the optimal transmit
power is no longer close to equal power allocation, which is



seen from a big gap between L-ASPA and the equal power
curve for large K.

The performance of L-ASPA can be further improved by
allowing a larger searching space, i.e., larger Ks, in Algo-
rithm 3, which however imposes more computational time in
L-ASPA.

VI. CONCLUSIONS

We studied joint design for antenna selection and power
allocation in multiuser downlinks to minimize the RF chain
energy consumption while fully exploiting the spacial diver-
sity. We first proposed a joint antenna selection and power
allocation algorithm (JASPA), which is based on the inner
approximation to overcome the non-convexity of the for-
mulated problem. In order to high complexity due to the
double iteration structure of JASPA, we then developed a
machine learning-based solution to provide appropriate and
time-stringent antenna predictions. We showed via numerical
results that the learning-based solution can significantly reduce
the execution time of JASPA while retaining more than 90%
the optimal performance.
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APPENDIX A
PROOF OF PROPOSITION 1

Denote ( (t),{ ka),y*)},C 1) as the optimal solution of

P2(y(() )) at iteration ¢. We will show that if y(t) (()?,Vk

then by using y( = yisg in the (¢ + 1)-th iteration, we will

have )", =, (Hl > S22 where {&""VE s the solution
at iteration t+ 1. Indeed, by choosing a relatively large initial
value y(() ), we always have y( ) < yé}c),Vk.

Denote f(x;a) = e*(x — a + 1) as the first order ap-
proximation of the e” function at a. At iteration t+ 1, we
have y(tﬂ) = Sc),Vk: Therefore, f(y; y*k) is used in the
right-hand side of constraint (9b) at the (¢ + 1)-th iteration.
Consider a candidate (y (t+1),...,y§§+1)) for any y(tH) €
(). where g, = Y — 1+ el 2 0 — 40 4 1),
Because function e” is convex and y(tﬂ) < y*k) , then we

have f(y (t+1)’y)(j€)) > f(ygc)’yé?%) Vk. Therefore, there exits

(t ) (t)
Py

> p,, and x > xz,; which satisfies constraints

K
(9a) and (9b). Consider a new set {p,(fﬂ), ;1:,(:+1), y,itﬂ)} .
k=1

This set satisfies all the constraints of problem P2(y£t)), and
therefore is a feasible solution of the optimization problem. As

the result, the optimal objective at iteration (t+1), >, mff,:rl),

must satisfy Zk t“ > Y :c,(fﬂ) > > xffk), which
completes the proof of Proposition 1.
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