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Abstract—We present a new Beamforming-based (BB) Multiple-
Input Single-Output (MISO)-Non-orthogonal Multiple Access
(NOMA) scheme for Power Domain NOMA (PD-NOMA), in which
the total transmit power consumption is minimized subjected to
prescribed signal-to-interference-plus-noise ratio (SINR) require-
ments for each user, and under the assumption that only imperfect
channel state information (CSI) is available at the transmitter. To
this end, the fractional programming (FP)-based quadratic trans-
form is employed to reformulate the non-convex SINR constraint
of the original problem into a tractable quadratic form, which
contains an estimate of the CSI error vector as a parameter.
Taking advantage of the fact that the zero duality gap holds for
the non-convex quadratic problems, a closed-form expression for
an estimate of the CSI error vector is derived, completing the
formulation. Finally, a novel iterative algorithm based on both the
herein derived CSI error vector and the semidefinite relaxation
(SDR) technique is contributed, which is shown to capable of
efficiently solving the constrained min-power problem. Simulation
results are given which illustrate the effectiveness of the proposed
algorithm, which is found to sacrifice only small quantities of
transmit power in return for substantial increase in robustness
against CSI imperfection.

I. INTRODUCTION

Non-orthogonality is a key concept in fifth generation (5G)
and beyond networks, which aims to improve the efficiency
of resource utilization via the carefully designed overlapping
of wireless signals. In particular, the advantages of code and
power domain Non-orthogonal Multiple Access (NOMA) over
classic Orthogonal Multiple Access (OMA) approaches such as
Time Division Multiple Access (TDMA) [1], Code Division
Multiple Access (CDMA) [2] and Orthogonal Frequency Di-
vision Multiple Access (OFDMA) [3], have been demonstrated
in [4] and references thereby. The NOMA approach has since
become the multiplexing method of consensus to ensure massive
connectivity in future wireless networks, while resulting also
in significant enhancement of spectrum efficiency [?], [4]–[6],
being incorporated in the ongoing standardization of 5G radio,
Release 14 and beyond, which determined that non-orthogonal
transmission should be considered at least in the uplink of 5G
massive Machine Type Communications (mMTC) systems.

In turn, the combination of Multiple-Input Multiple-Output
(MIMO) techniques and NOMA has attracted significant atten-
tion from both Academia and Industry, as it enables further
improvement thanks to the expansion of Degree of Freedoms
(DoFs) in spatial domain.

Two distinct strategies for MIMO-NOMA system designs can
be found in the literature, namely, a) the Cluster-based (CB)
MIMO-NOMA [7]–[9] and b) the Beamforming-based (BB)
MIMO-NOMA [10]–[12] designs. In the CB MIMO-NOMA

approach, users in a cell are partitioned into groups (clusters),
with a conventional Successive Interference Cancellation (SIC)-
based PD-NOMA scheme applied within each group, while
transmit beamforming vectors are designed for each cluster.
The advantage of this scheme is that since the additional spatial
DoF is devoted to ensuring that the appropriately designed beam
corresponding to a specific cluster holds orthogonality to users
assigned to other clusters, the inter-cluster interference can be
sufficiently mitigated. On the other hand, the drawback of the
CB MIMO-NOMA approach is the combinatorial optimization
problem which needs to be solved in order to form the clusters,
which becomes prohibitive (NP-hard) for large number of users.

In contrast, in BB MIMO-NOMA, different transmit beam-
forming vectors are assigned to different users individually,
which then perform SIC in an order defined by the relative
channel gains associated with each user. In this approach, the
computational cost at the base station (BS) is significantly
reduced due to the fact that user grouping is not required, such
that BB MIMO-NOMA is more scalable than its counterpart.
However, due to the larger number of users whose interference
need be mitigated, it is easy to foresee that BB MIMO-NOMA
is more sensitive to the accuracy of instantaneous channel state
information (CSI) knowledge than CB MIMO-NOMA.

Interestingly, despite the great amount of effort dedicated
thus far to develop NOMA technologies, not enough attention
has been payed to the aforementioned problem as evidence
by the fact that perfect CSI knowledge at the transmitter is
the standard assumption in related literature. While usually a
reasonable simplification in wireless communications systems,
the assumption of perfect CSI is particularly unrealistic in
NOMA due to inherent overloading, which is known to impact
the accuracy of channel estimation [13].

In this paper, we therefore turn our attention to the design of
a multi-user/single-carrier BB MISO-NOMA system subjected
to norm-bounded channel imperfection, proposing a novel frac-
tional programming (FP)-based transmit beamforming design
aiming at the minimization of the total power consumption.

The remainder of the article is as follows. Section II de-
scribes the system model and the problem formulation aiming
at minimizing the total transmit power subjected to signal-
to-interference-plus-noise ratio (SINR) requirements for each
user. The Quality of Service (QoS) based min-min problem
is reformulated and solved in Section III. The mathematical
expression of the CSI error vector estimate is derived therein,
and the proposed algorithm are also offered thereby. Simulation
results illustrating the effectiveness of the proposed algorithm
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compared with the non-robust scheme – that is, subject to the
same channels, but optimized under the assumption of perfect
CSI – are shown in Section IV. Conclusions and discussions on
possible future works are given in Section V.

A. Notation

Throughout the article, matrices and vectors are expressed
respectively by bold capital and small letters, such as in X
and x. The conjugate, Hermitian (transpose conjugate) and
inverse operators are be respectively denoted by (·)∗, (·)H and
(·)−1, while the `2-norm operators are be depicted by ‖·‖2.
A complex matrix with a columns and b rows is denoted by
X ∈ Ca×b, and a circularly symmetric complex random scalar
variable following the complex Gaussian distribution with mean
µ and variance σ2 is expressed as x ∼ CN

(
µ, σ2

)
. For given

A,B ∈ Sn, A � B indicate that A−B is positive semidefinite,
and Re(·) and R(A) express the real part of a complex number
and the range space of the matrix A, respectively.

II. SYSTEM MODEL

Consider a power domain single-carrier NOMA system where
one BS, equipped with Nt transmit antennas and capable of
performing digital precoding towards all users, attempts to
simultaneously transmit U data-stream to a pool of single-
antenna downlink users u ∈ {1, 2, . . . , U}.

Without loss of generality, let all channel vectors hu between
the BS and the u-th user be sorted in ascending order, such that
‖h1‖2 ≤ ‖h2‖2 ≤ . . . ≤ ‖hU‖2. It is assumed then that each
u-th user in such a system can decode its own intended signal
su after successively detecting and removing the first u − 1
users’s messages while regarding the higher order signals as
interference. It follows from this assumption that, for a given
reference user u, all `u users with `u ∈ {u, u+1, . . . , U} ought
to detect the u-th user’s signal in order to successfully decode
their own intended signals.

Letting wu ∈ CNt×1 denote the transmit beamforming vector
corresponding to the symbol intended for the u-th user, the
received signal at the `u-th expressed so as to highlight the
u-th user’s signal can be written as

yu,`u = hH
`uwusu +

u−1∑

m=1

eH
`uwmsm +

U∑

k=u+1

hH
`uwksk + n`u ,

(1)
where n` ∼ CN (0, σ2) is the circularly symmetric additive
white Gaussian noise (AWGN) at user `u and

h`u = ĥ`u + e`u ,∀`u (2)

with ĥ`u ∈ CM×1 and e`u ∈ CM×1 denoting the estimate of
the physical channel h`u between the BS and the user `u and
the corresponding channel estimation error bounded such that
‖e`u‖2 ≤ ε, respectively.

Let SINRu,`u denote the SINR of the signal su at the user `u.
Then, taking into account the fact that the achievable throughput
of the u-th user is determined by the lowest SINRu,`u among
all `u users, the maximal data rate of the u-th user in order for
all users to be able to successfully obtain their own intended
signals is given by

Ru = log2

(
1 + min

`u
SINRu,`u

)
, (3)

BS

User 1

User 2

User U

User u

Nt1

Fig. 1. System Model of BB MISO NOMA with Nt transmit antennas and U
single-antenna users.

with

SINRu,`u =
hH
`u

wuw
H
uh`u

u−1∑

m=1

eH
`u

wmwH
me`u +

U∑

k=u+1

hH
`u

wkwH
k h`u + σ2

.

(4)

Although several beamforming (BF) techniques aiming at
maximizing the downlink sum data rate in PD-NOMA systems
have been proposed in the past few years [10], we argue that
the sum rate criterion in an overkill, considering that it is
sufficient to maintain a certain SINR in order for a user to
enjoy its intended application. We therefore consider instead
the optimization of transmit beamformers aimed at minimizing
total power consumption minimization, while constrained to
satisfying worst-case individual target throughput requirements,
i.e.

min
wu,∀u

U∑

u=1

‖wu‖22 (5a)

s.t. min
‖e`u‖2≤ε

Ru ≥ log2(1 + Γu) ∀u, (5b)

where Γu denotes the target SINR for the u-th user, and e`u is
the worst-case CSI error vector corresponding to user `u.

From the fact that the logarithmic function is a non-decreasing
function, the above optimization problem can be readily rewrit-
ten as

min
wu,∀u

U∑

u=1

‖wu‖22 (6a)

s.t. min
‖e`u‖2≤ε

min
`u

SINRu,`u ≥ Γu ∀u. (6b)

It can be recognized from the constraint in inequality (6b),
that the problem formulated in equation (6) is not convex and
therefore intractable in its original form. In the next section,
we therefore tackle the above problem by 1) transforming the
min min operation in (6b); and 2) recasting the non-convex ratio
constraints into a tractable quadratic convex form.

III. PROPOSED ROBUST BEAMFORMING DESIGN

A. Transformation of SINR Constraints

Following related literature [14], each constraint on Γu con-
structed with basis on the min operator over all `us in equation
(6b) can be replaced by a set of (U − u + 1) simultaneous
constraints.



That is, ∀u,

min
‖e`u‖2≤ε

min
`u

SINRu,`u ≥ Γu≡





min
‖e`u‖2≤ε

SINRu,u ≥ Γu,

min
‖e`u‖2≤ε

SINRu,u+1 ≥ Γu,

...

min
‖e`u‖2≤ε

SINRu,U ≥ Γu.

(7)

Thanks to the recasted constraints above, the original opti-
mization problem given in equation (6) can be rewritten as

min
wu,∀u

U∑

u=1

‖wu‖22 (8a)

s.t. min
‖e`u‖2≤ε

SINRu,`u ≥ Γu ∀u, `u. (8b)

where, for clarity, we highlight that the constraints in (8b) are
for all u and `u.

B. Quadratic Transform of Ratio Constraints

Unfortunately, the problem formulated in equation (8) is still
not convex, due to the SINRs defined in equation (4). While
several methods such as the the Taylor series approximation [15]
and the semidefinite relaxation (SDR) [14] have been proposed
for the transformation of non-convex ratios constraints in the
past decade, a novel quadratic transformation technique for such
non-convex ratio problems has been recently proposed in [16],
which has been shown not to result in any approximation gap
at the optimal point.

Indeed, consider a generic maximization problem with a sum
of ratios as objective, such as

max
x

M∑

m=1

aH
m (x) B−1m (x)am (x) (9a)

s.t. x ∈ X , (9b)

where am (x) denotes an arbitrary complex function, Bm (x)
is an arbitrary symmetric positive definite matrix, and x is a
variable to be optimized in a constraint set X .

Then, the equivalent problem after applying the quadratic
transformation [16]–[18] can be written as

max
x

M∑

m=1

2Re
{
tHmam (x)

}
− tHmBm (x) tm (10a)

s.t. x ∈ X , tm ∈ C, (10b)

where tm is a scaling quantity designed so as to ensure that, for
a given x, the original function in equation (9a) is equivalent
to the transformed function as outlined in equation (10a) and
given by

tm = B−1m (x)am (x) . (11)

From the above, equation (4) can be rewritten in the form
SINRu,`u=2Re{t∗u,`uhH

`uwu} (12)

−|tu,`u|2
[
u−1∑

m=1

eH
`uwmwH

me`u+

U∑

k=u+1

hH
`uwkw

H
k h`u+σ

2

]
,

with

tu,`u=

[
u−1∑

m=1

eH
`uwmwH

me`u+

U∑

k=u+1

hH
`uwkw

H
k h`u+ σ2

]−1
hH
` wu. (13)

C. Closed-form of Worst Sum-SINR CSI Error Vector

With possession of equation (12), the optimization problem
in equation (8) can be recast as a quadratically constrained
quadratic convex problem with respect to wu. To this end, how-
ever, all SINRu,`u ’s in the inequalities (12) must be optimized
with respect to the CSI error vector e`u , which can lead to
overwhelming complexity due to the large number of distinct
pairs u, `u. In order to keep overall complexity under control,
we introduce a new variable ` ∈ {1, 2, . . . , U} and circumvent
this problem by relaxing these requirement into the sum-SINR
minimization problems (for each `)

min
e`

∑̀

j=1

SINRj,` (14a)

s.t. ‖e`‖2 ≤ ε, (14b)

which under the quadratic transform yields

min
e`

−eH
` A`e` + 2Re{eH

` b`}+ c` (15a)

s.t. ‖e`‖2 ≤ ε, (15b)

where

A` =
∑̀

j=1

|tj,`|2
∑

i 6=j

wiw
H
i , (16a)

b` =
∑̀

j=1

t∗j,`wj − |tj,`|2
U∑

k=j+1

wkw
H
k ĥ`, (16b)

c` =
∑̀

j=1

2Re{t∗j,`ĥH
` wj} (16c)

−
∑̀

j=1

|tj,`|2
[

U∑

k=j+1

ĥH
` wkw

H
k ĥ`+σ

2

]
.

Notice that due to the relaxation of equation (7) into equation
(14), the CSI error vector e` obtained is a worst-case vector in
the sum-SINR sense. Furthermore, since A` � 0, the objective
function in equation (15) is a concave function and therefore
can not be minimized via numerical convex optimization tools.
Fortunately, the strong duality holds for non-convex quadratic
problems [19], [20], so that equation (15) can be solved via
techniques such as SDR and the Lagrange multiplier method.

The Lagrangian function of equation (15) is given by

L(e`, λ`) = eH
`

(
λ`I−A`

)
e` + 2Re{eH

` b`}+ c` − λ`ε2 (17)

where λ` ≥ 0 denotes the dual variable.
For a fixed λ`, the optimal CSI error vector e` and the

corresponding dual function g(λ`) are, respectively, given by
[21]

e` = −
(
λ`I−A`

)−1
b`, (18)

and

g(λ`)=




−bH

`

(
λ`I−A`

)−1
b` if b`∈R(λ`I−A`)

+c`−λ`ε2 and λ`I−A` � 0
−∞ (otherwise).

(19)

By virtue of the Schur complement, the dual variable λ` is
optimized by solving an epigraph form of the maximization of
the dual function in equation (19), such that



Algorithm 1: FP-based Robust TX BF for PD-NOMA.

Input: Channel Estimate: ĥ` ∀`
Target SINR: Γu ∀u
Maximum number of iteration: imax
Initial TX beamforming vector: w

(0)
u ∀u

CSI error bounding parameter: ε
1 Generate random CSI error e

(0)
` ∀` such that ‖e`‖2 ≤ ε.

2 Set i = 0.
3 repeat
4 i ← i+ 1

5 tu,`u ∀u, `u ← Equation (13) for given e
(i−1)
` ,w

(i−1)
u .

6 λ` ∀` ← Solve SDP in equation (20).
7 e

(i)
` ← Compute from equation (18).

8 w
(i)
u ← Solve SDP in equation (21).

9 Check convergence

δ =
∑U
u=1

∥∥∥w(i−1)
u −w

(i)
u

∥∥∥
2
/(Nt · U)

10 until δ < 10−4 or reach the maximum iteration imax;

max
λ`,β`

β` (20a)

s.t.

[
λ`I−A` b`

bH
` c`−λ`ε2 − β`

]
� 0 (20b)

λ` ≥ 0. (20c)

Proof. See Appendix A.

One can readily notice that equation (20) is a standard
semidefinite programming (SDP) problem with a linear objec-
tive function, which can be efficiently solved in polynomial time
via interior point methods [22].

D. Robust TX BF Algorithm

With estimates of the CSI error vectors e` obtained as
per equation (18) in hand, the original optimization problem
given in equation (8) becomes a standard non-convex power
minimization problem, which can be relaxed and solved in a
number of different manners. One possibility is, for instance,
to solve the problems via SDR [23]. In this case, defining
Wu = wuw

H
u � 0, H`u = h`uhH

`u
� 0 and E`u = e`ueH

`u
� 0,

equation (8) can be transformed into

min
Wu,∀u

U∑

u=1

Tr (Wu) (21a)

s.t. Tr (H`uWu)− Γu

[u−1∑

m=1

Tr (E`uWm) (21b)

+

U∑

k=u+1

Tr (H`uWk)

]
≥ Γuσ

2 ∀u, `u

Wu � 0 ∀u, (21c)

where we omitted the rank-one constraint.
We remark that although the relaxed problem in equation (21)

can be efficiently solved by interior point methods, it is not
guaranteed that such relaxed solutions are rank-one. It is known,
however, that if the largest eigenvalue of Wu is sufficiently
larger than the second, the approximation gap between the
global optimum and the solution to equation (21) is tight [24],
[25], while randomization procedures can be used to generate
an approximate solution otherwise.
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IV. SIMULATION RESULTS

In this section, we evaluate via computer simulations the
effectiveness of the proposed algorithm in a downlink BB
MIMO-NOMA system with Nt = 3 transmit antennas at the BS
serving U = 3 single-antenna users, comparing its performance
against that of a “Non-Robust” scheme which does not take into
account channel uncertainties, both under perfect and imperfect
CSI knowledge conditions.

In all simulations, it is assumed that ĥ` are independent and
identically distributed (i.i.d) Rayleigh fading channel estimates,
with underlying vectors following a complex Gaussian distri-
bution with zero-mean and variance adjusted by the number of
transmit antennas Nt for all `, namely, ĥ` ∼ CN

(
0, 1

Nt
INt
)
,

while the CSI error e` is uniformly distributed within a disk
of radius 0.01 (i.e., ε = 0.01). In addition, we use the
following simulation setup unless otherwise mentioned. The
noise variance σ2 is set to be 0.01 [mW] and the number



of iterations for the proposed algorithm is upper-bounded by
10, i.e., imax = 10, whereas, for the sake of simplicity but
without loss of generality, the target SINR Γu is assumed to
be identical, namely, Γ = Γu ∀u, and scaled from 0 [dB]
to 10 [dB]. All the results are averaged over 500 channel
realizations with 100 CSI error realizations for each channel
realization. Throughout the simulations, the MATLAB-based
convex optimization toolbox CVX with its default solver SDPT3
is utilized to solve convex optimization problems such as SDPs
in equation (20) and equation (21).

First, in Figure 2, plots of the average transmit power
consumption scaled by taking into account the outage prob-
ability defined by POut = Pr (SINR < Γ) are shown, as a
function of different target SINRs. Figure 2 clearly illustrates
the consequence of ignoring CSI imperfection, demonstrating
that the proposed method is capable of significant power savings
compared to the non-robust alternative, in fact coming very close
to the performance of a system operating under perfect CSI.

The latter results are even more motivating when considered
next to the results offered in Figure 3, which shows the empir-
ical probability mass function of the number of iterations till
convergence required by for the proposed algorithm. The figure
indicates that in approximately 90% of the times convergence
is achieved after only 2 iterations, and the maximum allowed
number of iterations (imax = 10) is required less than 5% of
the times.Since this empirical distribution shown in Figure 3 was
computed over 500 channel realizations for each different SINR
target ranging from 0 [dB] to 10 [dB], it can be concluded
that the convergence behavior of the proposed scheme is very
stable for different QoS requirements. Together, Figures 2 and
3 suggest that with the proposed robust algorithm, BB MIMO-
NOMA is almost immune to the level of CSI imperfection
studied.

In Figures 4 and 5, the empirical PDF and corresponding
CDF of the instantaneous SINRs attained at each user over
different channel and CSI uncertainty levels are shown, for
two different SINR targets, namely, Γ = 0 [dB] (in Figure
4) and Γ = 10 [dB] (in Figure 5), respectively. The figures
further illustrate the robustness of our proposed algorithm. In
particular, it is observed that the SINR distributions obtained as
a consequence of the proposed method are significantly skewed
to the right, regardless of the target QoS requirements, indicating
that negligible levels of outages are achieved.

In contrast, the corresponding distributions associated with
a system designed under the assumption of perfect CSI, but
subjected to CSI uncertainties (non-robust scheme) are found to
have significant portions of their probability masses on the left
side, with the condition worsening with the QoS requirement.

Taking into account that the latter results are obtained without
requiring much more power than would necessary under perfect
CSI conditions, and without requiring more than a few iterations
of the algorithm, as shown in Figures 2 and 3, respectively, it
can be confidently stated that the proposed method is effective,
efficient and practical. In addition to all the above, while gener-
ating all the data used in the figures above – a total of 550000
Monte-Carlo data points including 500 channel realizations over
11 different SINR targets with 100 CSI uncertainty realizations
each – we kept track of the feasibility ration rFeas of the
proposed algorithm, defined as the fraction of times a rank-one
solution of equation (21) was obtained. It was found that the

(empirical) feasibility ratio of the method is of rFeas = 99.99%
at the simulated scenario of ε = 0.01, σ2 = 0.01, Nt = 3 and
U = 3.

V. CONCLUSION

We considered the downlink of a BB MISO PD-NOMA
system serving multiple single-antenna users and subjected
to a norm-bounded CSI uncertainty. For such a system, we
presented a new transmitter (TX) BF scheme, in which the
total transmit power consumption is minimized subjected to
prescribed SINR requirements for each user. The proposed
scheme takes advantage of two contributions: the first is a
novel method to obtain closed-form estimates of the CSI error
vectors that result in the worst sum of the SINRs of decodable
signals at each user; and the second is a FP-based quadratic
transformation of the original and intractable non-convex SINR
constrained power minimization problem into a problem which
is quadratic and therefore solvable using standard interior point
methods. Simulation results were shown which confirmed that
the proposed algorithm ensures the robustness to imperfect

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

0

0.02

0.04

0.06

0.08

0.1

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

0

0.02

0.04

0.06

0.08

Numerical PDF of SINR for Non Robust Scheme at ε = −20 [dB] and Γ = 0 [dB]

Numerical PDF of SINR for Proposed Scheme at ε = −20 [dB] and Γ = 0 [dB]

P
ro
b
ab

il
it
y
D
en
si
ty

P
ro
b
ab

il
it
y
D
en
si
ty

SINR

SINR

Hist. (Non Robust)

Hist. (Proposed)

(a) Empirical PDF.

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

0

0.2

0.4

0.6

0.8

1

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

0

0.2

0.4

0.6

0.8

1

Empirical CDF of SINR for Non Robust Scheme at ε = −20 [dB] and Γ = 0 [dB]

Empirical CDF of SINR for Proposed Scheme at ε = −20 [dB] and Γ = 0 [dB]

C
u
m
u
la
ti
ve

P
ro
b
ab

il
it
y

C
u
m
u
la
ti
ve

P
ro
b
ab

il
it
y

SINR

SINR

CDF (Non Robust)

CDF (Proposed)

(b) Empirical CDF.

Fig. 4. Comparisons of PDF and CDF of obtained SINR for both the Non-
Robust and the proposed schemes at ε = 0.01, σ2 = 0.01, imax = 10 and
Γ = 0 [dB].



9 9.5 10 10.5 11 11.5 12

0

0.05

0.1

0.15

0.2

0.25

9 9.5 10 10.5 11 11.5 12

0

0.05

0.1

0.15

0.2

0.25

0.3

Numerical PDF of SINR for Non Robust Scheme at ε = −20 [dB] and Γ = 10 [dB]

Numerical PDF of SINR for Proposed Scheme at ε = −20 [dB] and Γ = 10 [dB]

P
ro
b
ab

il
it
y
D
en
si
ty

P
ro
b
ab

il
it
y
D
en
si
ty

SINR

SINR

Hist. (Non Robust)

Hist. (Proposed)

(a) Empirical PDF.

9 9.5 10 10.5 11 11.5 12

0

0.2

0.4

0.6

0.8

1

9 9.5 10 10.5 11 11.5 12

0

0.2

0.4

0.6

0.8

1

Empirical CDF of SINR for Non Robust Scheme at ε = −20 [dB] and Γ = 10 [dB]

Empirical CDF of SINR for Proposed Scheme at ε = −20 [dB] and Γ = 10 [dB]

C
u
m
u
la
ti
ve

P
ro
b
ab

il
it
y

C
u
m
u
la
ti
ve

P
ro
b
ab

il
it
y

SINR

SINR

CDF (Non Robust)

CDF (Proposed)

(b) Empirical CDF

Fig. 5. Comparisons of PDF and CDF of obtained SINR for both the Non-
Robust and the proposed schemes at ε = 0.01, σ2 = 0.01, imax = 10 and
Γ = 10 [dB].
CSI, requiring only small amounts of additional transmit power
compared to a system operating under idealistic (perfect CSI)
conditions.

The proposed algorithm was also shown to be fast, requiring
only a few iterations to converge, and consistent, offering large
gains in robust power savings even when subjected to large
target SINR requirements.
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APPENDIX A
PROOF OF EQUATION (20)

Although a similar problem has been discussed in [26],
we herein provide details for the sake of complementarity.

Introducing a new slack variable β`, the maximization of the
dual function g(λ`) can be simply written in a form

max
λ`,β`

β` (22a)

s.t. −bH
`

(
λ`I−A`

)−1
b` + c`−λ`ε2 ≥ β` (22b)

b`∈R(λ`I−A`) (22c)
λ`I−A` � 0 (22d)
λ` ≥ 0. (22e)

Recalling the Schur complement, we obtain

X � 0 ⇔





λ`I−A` � 0

b`∈R(λ`I−A`)

−bH
`

(
λ`I−A`

)−1
b` + c`−λ`ε2 − β` ≥ 0

where

X =

[
λ`I−A` b`

bH
` c`−λ`ε2 − β`

]
. (23)

Proof. See Proposition 2.1 and its proof in [27]. For more
details about the (generalized) trust region problem, see [27]
and references thereby.
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