
Cache-Version Selection and Content Placement for
Adaptive Video Streaming in

Wireless Edge Networks
Archana Sasikumar∗†, Tao Zhao∗‡, I-Hong Hou‡, and Srinivas Shakkottai‡

†Juniper Networks
‡Dept. of ECE, Texas A&M University, College Station, TX 77843

Email: asasi@juniper.net, {alick,ihou,sshakkot}@tamu.edu

Abstract—Wireless edge networks are promising to provide
better video streaming services to mobile users by provisioning
computing and storage resources at the edge of wireless network.
However, due to the diversity of user interests, user devices, video
versions or resolutions, cache sizes, network conditions, etc., it is
challenging to decide where to place the video contents, and which
cache and video version a mobile user device should select. In this
paper, we study the joint optimization of cache-version selection
and content placement for adaptive video streaming in wireless
edge networks. We propose practical distributed algorithms that
operate at each user device and each network cache to maximize
the overall network utility. In addition to proving the optimality
of our algorithms, we implement our algorithms as well as several
baseline algorithms on ndnSIM, an ns-3 based Named Data
Networking simulator. Simulation evaluations demonstrate that
our algorithms significantly outperform conventional heuristic
solutions.

I. INTRODUCTION

Video streaming has become the dominant application for
modern Internet traffic. In order to provide better quality of
service (QoS) and quality of experience (QoE) to mobile users,
content delivery networks (CDNs) have been deployed to store
popular videos at cache servers close to the users. This aligns
with the trend of wireless edge networks, where computing and
storage resources are provisioned at the edge of the wireless
network [1]. Meanwhile, as users are accessing videos from a
variety of devices, ranging from smartphones to 4K televisions
(TVs), adaptive video streaming, which encodes the same
video content into multiple versions with different resolutions,
has been widely used to deliver arguably the best video version
to each user based on device types and network conditions.

In this paper, we study the interplay between three important
components for adaptive video streaming in wireless edge
networks: cache selection, where each user device determines
which cache server to retrieve videos from, version selection,
which determines the version that each user watches, and
content placement, which entails the caching strategy of each

∗These authors contributed equally to this work.
A. Sasikumar was with Texas A&M University when conducting this work.
This research was supported in part by grants NSF CNS 1149458, AST

1443891, NSF-Intel CNS 1719384, ARO W911NF-18-1-0331, and ONR
N00014-18-1-2048.

cache server. We formulate CaVe-CoP, a Cache-Version se-
lection and Content Placement problem that jointly optimizes
these three components by taking into account the preferred
video versions of users, the communication capacities of
network links, and the storage capacities of cache servers.
Our goal is to develop a new network algorithm for CaVe-
CoP that is not only provably optimal, but also practical and
implementable.

Our proposed solution is based on the observation that
there is a practical timescale separation between cache-version
selection (CaVe) and content placement (CoP), as the former
can be updated much more frequently. Hence, we first solve
the CaVe problem by fixing the solution to the CoP problem,
and prove the optimality of our CaVe algorithms. We then
solve the CoP problem by considering its influence to solution
to the CaVe problem, and prove our CoP algorithms are
optimal when fractional solutions are allowed.

While our algorithms can be practically implemented under
the current Internet architecture with TCP/IP, we demonstrate
that our algorithms can also be implemented in a distributed
fashion on Named Data Networking (NDN) [2], a future
Internet architecture designed with video streaming applica-
tions in mind. Since NDN forwards packets by content names
instead of location IDs such as IP addresses, we present
a distributed forwarding strategy that ensures user devices
always obtain their selected video versions from their selected
cache server. Moreover, we show that the overhead of our
algorithms is negligible by exploiting local information and
built-in caching. We evaluate our algorithms on ndnSIM [3],
an ns-3 based NDN simulator. Simulation results depict that
our algorithms significantly outperform baseline policies that
employ conventional heuristic solutions and subsets of our
algorithms.

The rest of the paper is organized as follows. Section II
introduces our system model and the formulation of CaVe-CoP.
Solutions to the two problems CaVe and CoP are introduced
in Section III and IV, respectively. In Section V, we discuss
the implementation of our algorithms in NDN. Section VI
demonstrates the simulation results. Section VII reviews some
related literature. Finally, Section VIII concludes the paper.

ar
X

iv
:1

90
3.

12
16

4v
2

 [
cs

.N
I]

 9
 A

pr
 2

01
9

Users

Root

Tertiary
Cache

Secondary
Cache

Edge
Cache

Fig. 1. A wireless edge network with a root node holding all videos and
three layers of caches. Each edge cache serves a group of users with different
user devices.

II. SYSTEM MODEL

We consider a wireless edge network where a group of
network caches jointly host a set of videos and serve a set
of video streaming users.1 Fig. 1 illustrates an example of
such a network, which is consistent with the YouTube video
delivery system [4]. We use C to denote the set of network
caches, S to denote the set of users, and L to denote the set of
communication links that connect the network caches, routers,
and users. We assume there is a route2 between each user s
and each network cache c, and define H l

s,c as the indicator
function that link l is on the route between s and c.

We consider multi-version video streaming where each
video is encoded into multiple versions for different resolu-
tions of the same video content. We use V to denote the set
of all versions of all videos. For each video version v ∈ V, we
use Xv to denote the average bit rate of v and Yv to denote
the file size of v, i.e. the product of Xv and the duration of
the video. For the ease of theoretical analysis, we assume that
there exists a null version v0 with Xv0 = 0 and Yv0 = 0. If
a user decides not to watch any video, then we say that the
user watches the null version v0. With the introduction of the
null version, we can assume that each user always watches a
video version.

Each network cache c ∈ C has a storage of size Bc to store
some video versions. Specifically, let pc,v be the indicator
function that v is present in the storage of c, then we have∑
v Yvpc,v ≤ Bc, for all c. Each network cache c determines

which video versions to store, and thereby determines the
values of pc,v , subject to its storage constraint. We assume
that there exists at least a network cache c with infinite storage
Bc =∞ and stores all video versions, which we call the root
node. Such an assumption is to ensure that at least one copy
of each video version exists in the network. We refer to the
problem of determining pc,v as the content placement (CoP)
problem.

At the user end, each user s is interested in watching a
video. Let Is be the set of video versions that correspond to

1The terms “user” and “user device” are used interchangeably.
2Our model and algorithms can be generalized to the multi-route scenario.

the interested video of user s. Each user device s needs to
determine which video version to watch, as well as which
network cache to obtain the video version from. Let zs,c,v
be the indicator function that user s decides to watch video
version v, and to obtain it from network cache c. We refer
to the problem of determining zs,c,v as the cache-version
selection (CaVe) problem. Since user s needs to obtain exactly
one video version, we require that

∑
c,v∈Is zs,c,v = 1, for all

s. Moreover, user s can only obtain video version v from
network cache c if c indeed stores v, that is, pc,v = 1. Hence,
we also need zs,c,v ≤ pc,v , for all s, c, v.

Recall that the bit rate of video version v is Xv and H l
s,c = 1

if link l is on the route between s and c. When user s obtains
v from c, it incurs an amount of Xv traffic on each link along
the route between s and c. The total amount of traffic on link
l can then be expressed as

∑
s,c,vXvH

l
s,czs,c,v . We consider

that each link l has a finite capacity of Rl, and hence we
require that

∑
s,c,vXvH

l
s,czs,c,v ≤ Rl, for all l ∈ L.

Finally, each user obtains some utility based on its perceived
video quality. In particular, we consider that each user s
obtains a utility of Us(Xv) when watching a video version
with bit rate Xv . We assume that Us(·) is a non-decreasing
and concave function. Different users may have different utility
functions since they may be watching videos on different
types of devices. For example, users watching videos on
smartphones typically enjoy lower utility than those watching
videos on TVs.

We aim to maximize the total utility of all users in the
network by choosing the optimal p := [pc,v] and z := [zs,c,v],
subject to all aforementioned constraints. Formally, we have
the following CaVe-CoP optimization problem.3

CaVe-CoP

max
∑

s,c,v∈Is

Us(Xv)zs,c,v (1a)

s.t.
∑
v

Yvpc,v ≤ Bc, ∀c ∈ C, (1b)∑
c,v∈Is

zs,c,v = 1, ∀s ∈ S, (1c)

zs,c,v ≤ pc,v, ∀s ∈ S, c ∈ C, v ∈ V,
(1d)∑

s,c,v

XvH
l
s,czs,c,v ≤ Rl, ∀l ∈ L, (1e)

pc,v ∈ {0, 1}, zs,c,v ∈ {0, 1}, ∀s ∈ S, c ∈ C, v ∈ V.
(1f)

While the utility maximization problem studied in this
paper may look similar to many existing studies on network
utility maximization (NUM), we note that there are two major
challenges that distinguish our problem from other NUM
problems: First, most existing studies on NUM problems
assume that the source and destination of each flow is fixed
and given. In contrast, multiple network caches may store

3In practice the CaVe-CoP problem will be solved repeatedly over time
with different parameters to cope with network changes.

the same video version depending on the solution to the
content placement problem. Hence, not only does a user have
multiple choices of network caches to obtain the video version
from, but the problem of selecting cache is fundamentally
intertwined with the problem of content placement. Second,
although the problem of version selection may seem to be
a special case of the rate control problem, we note that the
problem of version selection is fundamentally intertwined with
the problem of selecting cache since each cache may only
store a subset of versions for a given video. The possibility of
placing different versions of the same video at different caches
also distinguishes this work from some recent studies on
throughput-optimal algorithms with caches. Araldo et al. [5]
studied a similar problem to ours. However, they only derived
heuristics without meaningful performance guarantees.

The decision variables in CaVe-CoP are p and z. We note
that there is a practical timescale separation between the
update for p and that for z. When a user device changes
its values for z due to e.g. network congestion, it simply
requests new packets from a different network cache and/or
with a different video version. Hence, z can be updated rather
frequently, for example, once every 100 milliseconds. On the
other hand, when a network cache changes its values for pc,v ,
it needs to obtain all video versions with pc,v = 1. Hence, p
can only be updated infrequently.

Our proposed solution for CaVe-CoP is based on the obser-
vation of the timescale separation between the update for p
and that for z. In Section III, we will first consider the CaVe
problem by finding the optimal z for given p. Next, in Section
IV, we will consider the CoP problem. In order to find the
optimal p, we will introduce pseudo-variables z′ := [z′s,c,v]
and p′ := [p′c,v] that are updated at the same frequency as p
to address the issue with timescale separation.

Finally, we note that CaVe-CoP is an integer programming
problem since pc,v and zs,c,v are integers. To obtain tractable
results, we will relax (1f) and allow pc,v and zs,c,v to be
any real number between 0 and 1. As we will demonstrate
in Section III, our solution to the CaVe problem will always
yield integer values for zs,c,v . We will also discuss how to
obtain integer solutions for pc,v in Section IV.

III. THE CACHE-VERSION SELECTION PROBLEM (CAVE)

In this section, we study the CaVe problem. We consider
that the contents that each network cache store are given and
fixed, and aims to determine both the video version to watch
and the network cache to obtain contents from for each user.
In terms of the optimization problem (1a)–(1f), we focus on
finding the optimal z := [zs,c,v] to maximize total utility in
the network when p := [pc,v] is given and fixed.

A. Overview of the Solution

We begin by rewriting the optimization problem (1a)–(1f)
for the CaVe problem. Since p is given and fixed, constraint
(1b) no longer applies. Further, we relax the constraint (1f) by
allowing zs,c,v to be any real number between 0 and 1. The

resulting optimization problem, which we call CaVe-Primal,
can then be described as follows:

CaVe-Primal

max
∑

s,c,v∈Is

Us(Xv)zs,c,v (2a)

s.t.
∑
c,v∈Is

zs,c,v = 1, ∀s ∈ S, (2b)

zs,c,v ≤ pc,v, ∀s ∈ S, c ∈ C, v ∈ V, (2c)∑
s,c,v

XvH
l
s,czs,c,v ≤ Rl, ∀l ∈ L, (2d)

0 ≤ zs,c,v ≤ 1, ∀s ∈ S, c ∈ C, v ∈ V. (2e)

We will consider a dual problem to CaVe-Primal. We
associate a Lagrange multiplier, λl, for each link capacity
constraint (2d), for all l ∈ L. Let λ := [λl] be the vector of
Lagrange multipliers. The Lagrangian is obtained as follows:

L(z,λ)

:=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑
l

λl

(∑
s,c,v

zs,c,vH
l
s,cXv −Rl

)
(3)

The dual objective, D(λ), is defined as the maximum value
of L(z,λ) over z subject to the constraints (2b), (2c), and
(2e). We call the underlying optimization problem CaVe-
Lagrangian. It can be written as follows:

CaVe-Lagrangian

max L(z,λ) (4a)

s.t.
∑
c,v∈Is

zs,c,v = 1, ∀s ∈ S, (4b)

zs,c,v ≤ pc,v, ∀s ∈ S, c ∈ C, v ∈ V, (4c)
0 ≤ zs,c,v ≤ 1, ∀s ∈ S, c ∈ C, v ∈ V. (4d)

Remark 1: In defining the CaVe-Lagrangian problem, we
only relax the link capacity constraint (2d), and keep other
constraints (2b), (2c) and (2e) intact. This is because the link
capacity constraint (2d) can be temporarily violated as packets
that cannot be served immediately can be queued in the buffer.
On the other hand, constraints (2b) and (2c) need to be satisfied
at all time in practical systems.

The dual problem is to minimize D(λ) while ensuring that
all Lagrange multipliers λl are non-negative. We call this the
CaVe-Dual and mathematically write it as:

CaVe-Dual

min D(λ) (5a)

s.t. λl ≥ 0, ∀λl ∈ L. (5b)

Theorem 1 (Strong Duality): CaVe-Primal and CaVe-Dual
have the same optimal value.

Proof: The objective function of CaVe-Primal is a linear
function of z, and hence is concave. The set of z that satisfies
the three unrelaxed constraints, namely, (2b), (2c), and (2e),
is nonempty and convex.

Furthermore, the relaxed constraint (2d) is linear and thus
convex. To get strict inequalities in (2d), we can set zs,c,v to
be 1 if c is the root node and v is the null version, and 0
otherwise. It is straightforward to see that (2b), (2c), and (2e)
are satisfied, while (2d) is satisfied with strict inequalities.

Hence, this theorem holds following Theorem 6.2.4 (Strong
Duality Theorem) in [6].

Based on Theorem 1, we can solve the CaVe-Primal prob-
lem by solving CaVe-Dual. Solving CaVe-Dual involves two
steps: First, for a given vector λ, we need to find D(λ) by
solving CaVe-Lagrangian. Second, we need to find the optimal
λ to solve CaVe-Dual. We introduce our solutions to these two
steps below.

B. The Solution to CaVe-Lagrangian

We rewrite (3) as:

L(z,λ)

=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑
l

λl

(∑
s,c,v

zs,c,vH
l
s,cXv −Rl

)
=
∑
s

∑
c,v∈Is

zs,c,v
(
Us(Xv)−Xv

∑
l:Hl

s,c=1

λl
)

+
∑
l

λlRl

(6)

We note that the above expression provides a natural user-
by-user decomposition. Specifically, by defining zs as the
vector containing all [zs,c,v] for a given s, and defining

Ls(zs,λ) :=
∑
c,v∈Is

zs,c,v
(
Us(Xv)−Xv

∑
l:Hl

s,c=1

λl
)
, (7)

we have

L(z,λ) =
∑
s

Ls(zs,λ) +
∑
l

λlRl. (8)

As λ is given in CaVe-Lagrangian, the last term
∑
l λlRl is

a constant. Hence, L(z,λ) is maximized if one can maximize
Ls(zs,λ) for each user s. Moreover, recall that pc,v is the
indicator function that network cache c stores video version
v. Therefore, the constraint (4c) is equivalent to saying that
zs,c,v needs to be 0 if pc,v = 0. We can now define CaVe-Users
as follows:

CaVe-Users

max
∑

c,v:v∈Is,pc,v=1

zs,c,v
(
Us(Xv)−Xv

∑
l:Hl

s,c=1

λl
)

(9a)

s.t.
∑

c,v:v∈Is,pc,v=1

zs,c,v = 1, (9b)

0 ≤ zs,c,v ≤ 1, ∀c ∈ C, v ∈ V. (9c)

It is clear that the optimal vector z that solves CaVe-
Users, for all s, is also the optimal vector that solves CaVe-
Lagrangian. To solve CaVe-Users, note that the only decision
variable in CaVe-Users is the vector zs, while Us(Xv), Xv ,
and λl are all constants. Hence, the following algorithm solves
CaVe-Users: First, find (c∗, v∗) that has the maximum value
of Us(Xv) − Xv

∑
l:Hl

s,c=1 λl among all (c, v) with v ∈ Is

and pc,v = 1. Ties can be broken arbitrarily. Second, set
zs,c∗,v∗ = 1, and zs,c,v = 0 for all other (c, v). Alg. 1
summarizes the algorithm. We note that, even though we have
relaxed the constraint and allowed zs,c,v to be any real number
between 0 and 1, the optimal solution produced by Alg. 1
is always an integer one. Besides, note that c∗ and v∗ are
updated iteratively as λ is updated. It means the cache-version
selection of each user is dynamic and adaptive to the network
congestion.

Algorithm 1 CaVe-Users Algorithm
Obtain p and λ
zs,c,v ← 0,∀c, v
(c∗, v∗) ← argmaxc,v∈Is:pc,v=1 Us(Xv) −Xv

∑
l:Hl

s,c=1 λl

zs,c∗,v∗ ← 1

C. The Solution to CaVe-Dual

Our solution to CaVe-Dual is shown in Alg. 2, where each
link l updates its own λl. We have the following lemma and
theorem.

Algorithm 2 CaVe-Linkl Algorithm
t← 0, λl ← 0
while true do

Obtain z from Alg. 1

λl ←
[
λl + ht(

∑
s,c,vXvH

l
s,czs,c,v −Rl)

]+
t← t+ 1

Lemma 1: Given λ, let z∗ be the vector that solves CaVe-
Users. Then g := [gl] := [Rl −

∑
s,c,vXvH

l
s,cz
∗
s,c,v] is a

subgradient of D(λ).
Proof: z∗ solves CaVe-Users and thus solves CaVe-

Lagrangian. By definition, D(λ) = L(z∗,λ) for the given
λ. Therefore, for any λ̃ := [λ̃l] where λ̃l ≥ 0,

D(λ̃)−D(λ) ≥ L(z∗, λ̃)− L(z∗,λ)

= −
∑
l

(λ̃l − λl)
(∑
s,c,v

z∗s,c,vH
l
s,cXv −Rl

)
= (λ̃− λ)Tg.

Hence, g is a subgradient of D(λ).
Theorem 2: Let {ht} be a sequence of non-negative numbers

with
∑∞
t=0 ht = ∞ and limt→∞ ht = 0, then Alg. 2 solves

CaVe-Dual.
Proof: Note that the objective function of CaVe-Dual is

convex in λ, and the feasible region is a nonempty, convex,
closed subset of R|L|. With Lemma 1 and the step size
sequence specified in the theorem, Alg. 2 solves CaVe-Dual
following Theorem 8.9.2 in [6].

D. The Solution to CaVe-Primal

We have the following theorem regarding the optimality of
z obtained by running Alg. 1 and Alg. 2 iteratively:

Theorem 3: Let z∗ be the vector that solves CaVe-Primal,
λk be the vector produced by Alg. 2 after k iterations, and
zk be the vector produced by Alg. 1 when λ = λk. Let z̄t

be the weighted average of zk after the first t iterations, i.e.

z̄t := limT→∞

∑t+T
k=t+1 hkz

k∑t+T
k=t+1 hk

. Then, for any ε > 0, there exists
an integer K such that for every t > K,

1) z̄t satisfies all CaVe-Primal constraints;
2)
∑
s,c,v Us(Xv)z

∗
s,c,v −

∑
s,c,v Us(Xv)z̄

t
s,c,v ≤ ε.

Proof: For 1), first it is straightforward to see that zk for
any k satisfies the constraints (2b), (2c), and (2e), since they
are not relaxed when formulating CaVe-Lagrangian and CaVe-
Users. Hence, it is easy to show that z̄t satisfies these three
constraints. As for the remaining constraint (2d), Theorem 2
shows that for any ε > 0, there exists an integer K such that
for every integer t > K and for all l, |λtl − λ∗l | < ε/2, where
λ∗ is the optimal point of CaVe-Dual. Hence, for any integer
T > 0, λt+T+1

l < λt+1
l +ε. Meanwhile, we know from Alg. 2

that λk+1
l ≥ λkl + hk(

∑
s,c,vXvH

l
s,cz

k
s,c,v − Rl). Therefore,

λt+T+1
l ≥ λt+1

l +
∑t+T
k=t+1 hk(

∑
s,c,vXvH

l
s,cz

k
s,c,v −Rl). So

we have∑t+T
k=t+1 hk(

∑
s,c,vXvH

l
s,cz

k
s,c,v −Rl)∑t+T

k=t+1 hk
<

ε∑t+T
k=t+1 hk

.

That is,

∑
s,c,v

XvH
l
s,c

∑t+T
k=t+1 hkz

k
s,c,v∑t+T

k=t+1 hk
< Rl +

ε∑t+T
k=t+1 hk

.

Let T →∞, and we have∑
s,c,v

XvH
l
s,cz̄

t
s,c,v ≤ Rl,

for all l. Hence, z̄t satisfies the constraint (2d), and 1) is
proved. Since we also have λt+T+1

l > λt+1
l − ε, we know∑

s,c,vXvH
l
s,cz̄

t
s,c,v ≥ Rl, and thus

∑
s,c,vXvH

l
s,cz̄

t
s,c,v =

Rl.
To prove

∑
s,c,v Us(Xv)z

∗
s,c,v −

∑
s,c,v Us(Xv)z̄

t
s,c,v ≤ ε,

we note that based on Theorem 1,
∑
s,c,v Us(Xv)z

∗
s,c,v =

D(λ∗). Because of Theorem 2, for any ε > 0, there exists
an integer K such that for every integer t > K and for all l,
|D(λt)−D(λ∗)| < ε. By definition,

D(λt) =
∑
s,c,v

Us(Xv)z
t
s,c,v −

∑
l

λtl

(∑
s,c,v

XvH
l
s,cz

t
s,c,v −Rl

)

=
∑
s,c,v

Us(Xv)z
t
s,c,v −

∑
l

λ∗l

(∑
s,c,v

XvH
l
s,cz

t
s,c,v −Rl

)

+
∑
l

(λ∗l − λtl)
(∑
s,c,v

XvH
l
s,cz

t
s,c,v −Rl

)

We know that D(λt) ≥ D(λ∗) − ε, |λtl − λ∗l | < ε/2,
and

∑
s,c,vXvH

l
s,cz

t
s,c,v − Rl is bounded for all l, t since

0 ≤ zts,c,v ≤ 1. Let B := |L|
2 maxzt,l,t |

∑
s,c,vXvH

l
s,cz

t
s,c,v−

Rl|+ 1. We then have

D(λ∗) ≤
∑
s,c,v

Us(Xv)z
t
s,c,v

−
∑
l

λ∗l

(∑
s,c,v

XvH
l
s,cz

t
s,c,v −Rl

)
+ εB.

Taking weighted average of both sides from k = t+1 to t+T ,
and then letting T →∞, we have

D(λ∗) ≤
∑
s,c,v

Us(Xv)z̄
t
s,c,v

−
∑
l

λ∗l

(∑
s,c,v

XvH
l
s,cz̄

t
s,c,v −Rl

)
+ εB.

Note that
∑
s,c,vXvH

l
s,cz̄

t
s,c,v = Rl. Therefore,∑

s,c,v

Us(Xv)z
∗
s,c,v = D(λ∗) ≤

∑
s,c,v

Us(Xv)z̄
t
s,c,v + εB,

and this concludes the proof of 2).

IV. THE CONTENT PLACEMENT PROBLEM (COP)

We now discuss the content placement (CoP) problem,
which entails deciding pc,v , the indicator function that network
cache c stores video version v, for all c and v. As discussed
in Section II, a major challenge to our optimization problem
(1a)–(1f) is that the vector p needs to be updated much less
frequently than the vector z. To address this challenge, we
introduce pseudo-variables z′ := [z′s,c,v] and p′ := [p′s,c,v],
which can be updated much more frequently than p, to replace
z and p.4 We only update p, the real content placement, after
p′ converges. Also, we relax (1f) by allowing p′c,v and z′s,c,v
to be any real number between 0 and 1. We can now rewrite
(1a)–(1f) as:

CoP-Primal

max
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v (10a)

s.t.
∑
v

Yvp
′
c,v ≤ Bc, ∀c ∈ C, (10b)∑

c,v∈Is

z′s,c,v = 1, ∀s ∈ S, (10c)

z′s,c,v ≤ p′c,v, ∀s, c, v, (10d)∑
s,c,v

XvH
l
s,cz
′
s,c,v ≤ Rl, ∀l ∈ L, (10e)

0 ≤ p′c,v ≤ 1, 0 ≤ z′s,c,v ≤ 1, ∀s, c, v. (10f)

A. Overview of the Solution

Similar to our solution to the CaVe problem, we will
consider a dual problem to the CoP-Primal problem. Let
µ′ := [µ′s,c,v], and λ′ := [λ′l] be the vectors of Lagrange

4The pseudo-variables carry state information that needs to be shared
between user applications and the network in the implementation.

multipliers associated with each constraint in (10d) and (10e)
respectively. The Lagrangian is then

L′(p′, z′,λ′,µ′)

:=
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v −

∑
l

λ′l
(∑
s,c,v

XvH
l
s,cz
′
s,c,v −Rl

)
−
∑
s,c,v

µ′s,c,v(z
′
s,c,v − p′c,v). (11)

The dual objective, D′(λ′,µ′), is defined as the maximum
value of L′(p′, z′,λ′,µ′) over p′ and z′ subject to constraints
(10b), (10c) and (10f). We call the optimization problem CoP-
Lagrangian:

CoP-Lagrangian

max L′(p′, z′,λ′,µ′) (12a)

s.t.
∑
v

Yvp
′
c,v ≤ Bc, ∀c ∈ C, (12b)∑

c,v∈Is

z′s,c,v = 1, ∀s ∈ S, (12c)

0 ≤ p′c,v ≤ 1, 0 ≤ z′s,c,v ≤ 1, ∀s, c, v. (12d)

Remark 2: We note that an important difference between
CoP-Lagrangian and CaVe-Lagrangian is that CoP-Lagrangian
relaxes the constraint (10d) as well. Since the pseudo-variable
z′s,c,v in CoP-Primal bears no physical meaning, this constraint
can now be temporarily violated in practice.

The dual problem, which we call CoP-Dual, is to find the
Lagrange multipliers that minimize D′(λ′,µ′):

CoP-Dual

min D′(λ′,µ′) (13a)

s.t. λ′l ≥ 0, ∀l ∈ L, (13b)
µ′s,c,v ≥ 0, ∀s ∈ S, c ∈ C, v ∈ V. (13c)

It is straightforward to show the following theorem:
Theorem 4: CoP-Primal and CoP-Dual have the same opti-

mal value.
Proof: We use the same justification as in the previous

section. The objective function of CoP-Primal is a linear
function, and hence is concave. The set of z′ and p′ that
satisfies the three unrelaxed constraints, namely, (10b), (10c),
and (10f), is nonempty and convex.

Furthermore, the relaxed constraints (10d) and (10e) are
linear and thus convex. To get strict inequalities in (10d) and
(10e), we i) choose 0 < ε < min{minl Rl

|S||V|
mins |Is|−1
maxv Xv

, minc Bc

2
∑

v Yv
};

ii) set p′c,v to be 1 if c is the root node and v is the null version,
and 2ε otherwise; iii) set z′s,c,v to be 1 − ε if c is the root
node and v is the null version, and ε

|C|(|Is|−1) otherwise. It is
straightforward to see that (10b), (10c), and (10f) are satisfied,
while (10d) and (10e) are satisfied with strict inequalities.

Hence, this theorem holds following Theorem 6.2.4 (Strong
Duality Theorem) in [6].

We will solve CoP-Primal by solving CoP-Dual. We discuss
our solutions to CoP-Lagrangian and CoP-Dual below.

B. The Solution to CoP-Lagrangian

We first rewrite L′(p′, z′,λ′,µ′) as:

L′(p′, z′,λ′,µ′)

=
∑
s

∑
c,v

z′s,c,v

Us(Xv)−Xv

∑
l:Hl

s,c=1

λ′l − µ′s,c,v


+
∑
c

∑
v

p′c,v
∑
s

µ′s,c,v +
∑
l

λ′lRl. (14)

Let z′s be the vector containing all [z′s,c,v] for a given s
and p′c be the vector containing all [p′c,v] for a given c. Also,
let L̄s(z′s,λ

′,µ′) :=
∑
c,v z

′
s,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1 λ
′
l−

µ′s,c,v], L̂c(p
′
c,µ
′) :=

∑
v p
′
c,v(
∑
s µ
′
s,c,v), and B(λ′) :=∑

l λlRl. Then, we have

L′(p′, z′,λ′,µ′)

=
∑
s

L̄s(z
′
s,λ
′,µ′) +

∑
c

L̂c(p
′
c,µ
′) +B(λ′), (15)

which gives rise to a natural decomposition among all users
and network caches. Specifically, consider the two subprob-
lems, namely, CoP-Users and CoP-Cachec, below. For fixed
vectors λ′ and µ′, CoP-Lagrangian can be solved by solving
CoP-Users for each s and CoP-Cachec for each c.

CoP-Users

max
∑
c,v

z′s,c,v
(
Us(Xv)−Xv

∑
l:Hl

s,c=1

λ′l − µ′s,c,v
)

(16a)

s.t.
∑
c,v∈Is

z′s,c,v = 1, (16b)

0 ≤ z′s,c,v ≤ 1, ∀c ∈ C, v ∈ V. (16c)

CoP-Cachec

max
∑
v

p′c,v
∑
s

µ′s,c,v (17a)

s.t.
∑
v

Yvp
′
c,v ≤ Bc, (17b)

0 ≤ p′c,v ≤ 1, ∀v ∈ V. (17c)

CoP-Users can be solved by the following algorithm: First,
find (c∗, v∗) that has the maximum value of Us(Xv) −
Xv

∑
l:Hl

s,c=1 λ
′
l−µ′s,c,v among all (c, v) with v ∈ Is. Ties can

be broken arbitrarily. Second, set z′s,c∗,v∗ = 1, and z′s,c,v = 0
for all other (c, v). Alg. 3 shows the algorithm.

On the other hand, CoP-Cachec can be solved by the
following greedy algorithm: First, sort all video versions v in
decreasing order of

∑
s µ
′
s,c,v

Yv
so that

∑
s µ
′
s,c,1

Y1
≥

∑
s µ
′
s,c,2

Y2
≥

. . . . Second, starting from v = 1, set pc,v to be the largest
possible value without violating any constraints. Specifically,
set p′c,v = min{1, (Bc−

∑
v′<v Yv′p

′
c,v′)/Yv}. It is straightfor-

ward to verify that this greedy algorithm achieves the optimal
solution for CoP-Cachec, since it is a fractional knapsack
problem.

Remark 3: Recall that pc,v is the indicator function that c
stores v, which needs to be an integer. The optimal solution to

CoP-Cachec may not be integer. However, from the description
of our greedy algorithm, it is obvious that, for each c, there
is at most one v with non-integer pc,v . In practice, we make
each network cache c store only video versions with pc,v = 1.
Since all but one version have integer pc,v , this approach is
close to optimal.

C. The Solution to CoP-Dual

The CoP-Dual problem involves two Lagrange multipliers,
λ′ and µ′. They are updated as in Alg. 4 and 5. The following
lemma and theorem, whose proofs are omitted due to space
constraint, show that these algorithms solve CoP-Dual.

Lemma 2: Given λ′ and µ′, let z′∗ and p′∗ be the vectors
that solve CoP-Users and CoP-Cachec. Then the vector g′ :=
[[Rl−

∑
s,c,vXvH

l
s,cz
′∗
s,c,v], [p

′∗
c,v − z′∗s,c,v]] is a subgradient of

D′(λ′,µ′).
Proof: Since z′∗ and p′∗ solves CoP-Users and CoP-

Cachec respectively, they jointly solve CoP-Lagrangian for the
given λ′ and µ′. That is, D′(λ′,µ′) = L′(p′∗, z′∗,λ′,µ′).
Therefore, for any λ̃′ := [λ̃′l] and µ̃′ := [µ̃′s,c,v], where λ̃l ≥ 0
and µ̃′s,c,v ≥ 0,

D′(λ̃′, µ̃′)−D′(λ′,µ′)
≥ L′(p′∗, z′∗, λ̃′, µ̃′)− L′(p′∗, z′∗,λ′,µ′)

= −
∑
l

(λ̃′l − λ′l)
(∑
s,c,v

z′∗s,c,vH
l
s,cXv −Rl

)
−
∑
s,c,v

(µ̃′s,c,v − µ′s,c,v)(z′∗s,c,v − p′∗c,v)

= [λ̃′ − λ′, µ̃′ − µ′]Tg′.
Hence, g′ is a subgradient of D′(λ′,µ′).

Theorem 5: Let {ht} be a sequence of non-negative numbers
with

∑∞
t=0 ht = ∞ and limt→∞ ht = 0, then Alg. 4 and 5

together solve CoP-Dual.
Proof: The proof is virtually the same as that of Theo-

rem 2. Note that the objective function of CoP-Dual is convex
in λ′ and µ′, and the feasible region is a nonempty, convex,
closed subset of R|L|+|S||C||V|. With Lemma 2 and the step
size sequence specified in the theorem, Alg. 4 and 5 together
solve CaVe-Dual following Theorem 8.9.2 in [6].

Algorithm 3 CoP-Users Algorithm
1: Obtain µ′ and λ′

2: z′s,c,v ← 0,∀c, v
3: (c∗, v∗) ← argmaxc,v∈Is Us(Xv) − Xv

∑
l:Hl

s,c=1 λ
′
l −

µ′s,c,v
4: z′s,c∗,v∗ ← 1

D. The Solution to CoP-Primal

We have the following theorem regarding the optimality of
z′ obtained by running Alg. 3, Alg. 4, and Alg. 5 iteratively:

Theorem 6: Let z′∗ be the vector that solves CoP-Primal,
λ′k be the vector produced by Alg. 4 after k iterations, µ′k be
the vector produced by Alg. 5 after k iterations, and z′k be the

Algorithm 4 CoP-Linkl Algorithm
1: t← 0, λ′l ← 0
2: while true do
3: Obtain z′ from Alg. 3

4: λ′l ←
[
λ′l + ht(

∑
s,c,vXvH

l
s,cz
′
s,c,v −Rl)

]+
5: t← t+ 1

Algorithm 5 CoP-Cachec Algorithm
1: t← 0, µ′s,c,v ← 0
2: while true do
3: Obtain z′ from Alg. 3
4: µ′s,c,v ←

[
µ′s,c,v + ht(z

′
s,c,v − p′c,v)

]+ ∀s, v
5: Sort all versions so that

∑
s µ
′
s,c,1

Y1
≥

∑
s µ
′
s,c,2

Y2
≥ . . .

6: B′ ← Bc
7: for v = 1→ |V| do
8: p′c,v ← min{1, B′Yv

}
9: B′ ← B′ − Yvp′c,v

10: t← t+ 1

vector produced by Alg. 3 when λ′ = λ′k and µ′ = µ′k. Let
z̄′t be the weighted average of zk after the first t iterations,

i.e. z̄′t := limT→∞

∑t+T
k=t+1 hkz

′k∑t+T
k=t+1 hk

. Then, for any ε > 0, there
exists an integer K such that for every t > K,

1) z̄′t satisfies all CoP-Primal constraints;
2)
∑
s,c,v Us(Xv)z

′∗
s,c,v −

∑
s,c,v Us(Xv)z̄

′t
s,c,v ≤ ε.

Proof: The proof is virtually the same as that of Theo-
rem 3 and thus omitted.

V. IMPLEMENTATION ON NAMED DATA NETWORKING

In this section, we discuss the implementation of our
algorithms on Named Data Networking (NDN). We first
introduce the NDN architecture briefly, and then show how
we implement our algorithms following the NDN philosophy.

A. NDN Architecture

NDN is a future Internet architecture where every piece of
data is associated with a unique hierarchical name. When a
user wants to obtain a piece of named data, the user device
sends out an interest packet with the name of the data. Note
that usually the interest packet does not specify the destination
location. NDN routers have built-in caches. When a router
receives an interest packet, it first checks whether the named
data is cached or not. If cached, it directly replies with the
corresponding data packet. Otherwise, it forwards the interest
packet to the next hop according to the employed forwarding
strategy. The content producer e.g. video service provider is
responsible for generating data packets for a certain name
space. The data packet follows the reverse route of the interest
packet to the user.

B. Placement of Data

In our implementation, there are three types of data: packets
of video contents, decision variables (z′s,c,v and pc,v), and La-
grange multipliers (λl, λ′l, and µ′s,c,v). We assign each of them

a unique name. For example, a video version has a name prefix
such as /r/file1/v1, and µ′1,2,3 has /mu2/1_3. Each
prefix is appended a sequence number to uniquely identify
video packets and variables in different iterations. Naturally,
video contents are placed at network caches according to
the video versions.5 Decision variables z′s,c,v are stored and
updated at the corresponding user s. Decision variables pc,v
and Lagrange multipliers µ′s,c,v are stored and updated at the
corresponding network cache c. Finally, Lagrange multipliers
λl and λ′l of link l from node A to B are stored and updated
at node A that is closer to the cache.

C. Implementation of User Algorithms

From Alg. 1 and 3, we can see that each user s needs
to know the values of pc,v , λl, λ′l, and µ′s,c,v . Each user
periodically sends out interest packets for the named data of
these variables. Since the names of these data indicate the
entities that store them, routers can easily route the interest
packets to the correct destinations. Further, as data packets
traverse in the reverse route of their corresponding interest
packets, each router can cache all latest values of pc,v and λl
that pass through it.

With the information of pc,v and λl, each user s can find
the best video version v∗ and cache c∗ via Alg. 1. User s
then sends out interest packets for video version v∗ at a rate
indicated by Xv∗ . Note that these interest packets only contain
information about the video version v∗, and not the destination
c∗. Nevertheless, the following forwarding strategy ensures the
interest packet will be eventually forwarded to c∗ assuming
no link failure or topology change: When a router receives
an interest packet for video version v∗, it finds the network
cache c† that has the smallest cost, where the cost is defined
as
∑
l λl over all link l on the path to the network cache c,

among those that store v∗, i.e., pc,v∗ = 1. It then forwards the
interest packet to the next router on the path toward c†. Note
that routers store all values of pc,v and λl that pass through it
and thus do not need additional message passing.

With the information of pc,v , λ′l and µ′l, each user s can
decide the video version v∗ and network cache c∗ such that
z′s,c∗,v∗ = 1 via Alg. 3. Each user s then sends out a pseudo-
interest packet with the name of z′s,c∗,v∗ . We call it a pseudo-
interest packet since it is used to inform the caches the changes
of zs,c,v . The replied data packet from cache c∗ carries no
meaning payload and is ignored.

D. Implementations for Routers and Caches

We now discuss the implementations of Alg. 2, 4, and 5.
In Alg. 2, each router needs to know

∑
s,c,vXvH

l
c,vzs,c,v to

update λl for its links. We note that
∑
s,c,vXvH

l
c,vzs,c,v can

be estimated by the product of the rate of interest packets going
through the opposite link to l and video data packet size. As
the router knows the rate of interest packets going through
l, it can update λl directly without requesting additional
information. Likewise, Alg. 4, and 5 can be carried out if

5Videos are cached in full rather than at the packet level.

one knows z′s,c,v . This is achieved by user s sending out a
pseudo-interest packet as explained in Section V-C. Besides,
Rl, the maximum supportable data rate of link l, is obtained
from stress tests.

VI. EVALUATIONS

We present our simulation evaluation results in this section.
All simulations are conducted on ndnSIM [3], an ns-3 based
NDN simulator.

We consider the wireless edge network in Fig. 1 for evalu-
ation. Same as in [4], the topology of network caches follows
the three-tier hierarchy of the YouTube video delivery system.
There are 15 network routers with caches in total, including
the root node and 8 edge caches. Each edge cache serves 20
users who have different types of devices and are interested
in different videos.

We consider a catalog of 200 different videos, each with 5
different versions. The popularity of these videos follows the
Zipf distribution with the shape parameter equal to 1. The 5
versions correspond to video resolutions of 360p, 720p, 1080p,
1440p (2K), and 2160p (4K) respectively.6 The data rate of
streaming each video version is set based on measurement
results for YouTube videos with H.264 codec [7]. The access
link capacities between users and edge caches are 25 Mbps
each so that one can stream a 4K video. The capacities of
links between caches and the root node are 100 Mbps each
so that the number of concurrent 4K streams is low. We
assume each video is one-hour long, and the file sizes of video
versions are calculated accordingly. The root node holds all
video versions. Each edge (or primary), secondary, and tertiary
cache is assumed to be able to hold all versions of one, two,
and four videos respectively.

As for user utilities, we categorizes user devices into three
types: smartphones, laptops or tablets, and TVs. The utility
function of each user has the form U(Xv) = α ln min(Xv, X̄),
where α is a scaling factor capturing the effect of the screen
size, Xv is the data rate of video version v in Mbps, and X̄ is a
cutoff rate reflecting the limit of the device resolution. For the
three types, we set a scaling factor of 20, 40, 60 and a cutoff
rate corresponding to a 1080p, 2K, 4K video respectively.
Besides, we set U(0) = −100, which is much smaller than
all regular utilities.

To evaluate the performance of our algorithms, we imple-
ment and compare the following four policies:
• Optimal: This policy tries to find the optimal solution to

the CaVe-CoP problem by solving the integer program
numerically via the GLPK toolbox. Note that it is a cen-
tralized policy and involves solving a high-dimensional
problem.

• CaVe-CoP: This refers to our algorithms Alg. 1–5.
• CaVe-CAV: In this policy, each user employs our algo-

rithms for CaVe. For content placement, if a network
cache decides to store a video version, it needs to cache

6The aspect ratio is assumed to be 16 : 9 as in YouTube. For example, a
720p video has a resolution of 1280× 720.

0 10 20 30 40 50 60
Time (s)

−2500

0

2500

5000

7500

10000

12500

To
ta

lU
til

ity

LP
IP

CaVe-CoP
CaVe-CAV
Greedy-CoP

Fig. 2. Comparison of total utility.

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

%
St

al
lT

im
e

CaVe-CoP
CaVe-CAV
Greedy-CoP

Fig. 3. Comparison of % stall time.

all versions (CAV) of the same video. We note that
this content placement strategy is consistent with design
practices in commercial CDNs. As a result, each network
cache simply stores the most popular videos, subject to
its storage constraint.

• Greedy-CoP: In this policy, each user chooses the ver-
sion that matches its cutoff rate. Network caches employ
our algorithms for CoP.

For each simulation, we use the video contents that each
user actually receives to calculate the total utility of all users
and the average % stall time, i.e. the percentage of time that
video streaming stalls7, of all users. The metrics are calculated
at each CaVe iteration, i.e. every 0.1 s. We run CoP iterations
every 0.2 s, and apply content placement results at 20 s.

Fig. 2 and Fig. 3 present our simulation results. For our
simulated scenario, Optimal cannot find the exact integer
solution for utility. Instead, it reports a upper bound from linear
programming (LP) relaxation, and a lower bound by integer
programming (IP) heuristics. Note that Optimal reports ideal
utility instead of perceived utility. We can observe that our
Cave-CoP policy achieves near-optimal utility, significantly
outperforming the two baseline policies, even though they
involve subsets of our algorithms. Besides, our policy ap-
proaches zero stall time. Note that the jumps near 20 s in the
figures are due to applying content placement results.

7Video streaming stalls when all received video contents are consumed.

VII. RELATED WORK

There has been rich literature on adaptive video streaming.
An early work identified a cross layer framework for adaptive
video streaming in IP networks [8]. More recently, experiment-
based investigations have been conducted on YouTube [9] and
Netflix [10]. Liu et al. [11] made a case for a coordinated
control plane across CDNs for video streaming to provide
high quality of experience. Wireless edge networks are
promising to enhance the benefits of CDNs for adaptive video
streaming [12].

Content caching is crucial for practical adaptive video
streaming in wireless edge networks. Considering distributed
caches, Ramadan et al. [4] proposed the abstraction of “BIG”
cache to effectively utilize the resources. Applegate et al. [13]
studied optimal content placement of videos with a focus on
scalability. There have been many studies on joint optimiza-
tion of content caching and packet routing. Yeh et al. [14]
proposed a framework for joint forwarding and caching in
NDN. Wang et al. [15] employed stochastic network utility
maximization and developed a distributed forwarding and
caching algorithm. Ioannidis and Yeh [16] studied the routing
cost minimization problem of joint routing and caching, where
the cost is incurred per link. These studies are not directly
applicable to multi-version video streaming since different
versions of the same video can be stored in different caches.

Our work formulates the joint cache-version selection and
content placement problem as a network utility maximiza-
tion (NUM) problem, and uses the well-known primal dual
approach and dual decomposition [17]. However, there are
notable differences between our work and traditional NUM
research. Existing studies have explored various scenarios in-
cluding time varying channel with delay constraints [18], delay
sensitive fairness [19], multiple flow classes [20], multiple
protocols [21] and so on, while assuming a static source-
destination pair per user (flow). In contrast, in our work, a
user could obtain its desired content from in-network caches
as well as the content producer.

VIII. CONCLUSION

In this paper, we have studied the CaVe-CoP problem, i.e.
the joint optimization of cache-version selection and content
placement, for adaptive video streaming in wireless edge net-
works. Realizing that there is a practical timescale separation
between CaVe and CoP, we have proposed a set of algorithms
that provably optimize CaVe and CoP respectively. Further,
we show that our algorithms can be practically implemented
on NDN in a distributed fashion. Simulation evaluations on
ndnSIM demonstrate that our policy significantly outperforms
baseline policies with conventional heuristics.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 2017.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, Jul. 2014.

[3] S. Mastorakis, A. Afanasyev, and L. Zhang, “On the evolution of
ndnSIM: an open-source simulator for NDN experimentation,” ACM
Computer Communication Review, Jul. 2017.

[4] E. Ramadan, A. Narayanan, Z.-L. Zhang, R. Li, and G. Zhang, “BIG
cache abstraction for cache networks,” in 2017 IEEE 37th Int. Conf.
Distributed Computing Systems (ICDCS). IEEE, Jun. 2017.

[5] A. Araldo, F. Martignon, and D. Rossi, “Representation selection
problem: Optimizing video delivery through caching,” in 2016 IFIP
Networking Conf. and Workshops. IEEE, May 2016.

[6] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming:
theory and algorithms. John Wiley & Sons, 2006.

[7] M. McFly. (2018, Jan.) Test video quality 720p 1080p 1440p
2160p 4320p max bitrate which compresses YouTube. [Online].
Available: https://www.tutorialguidacomefare.com/test-video-quality-
720p-1080p-1440p-2160p-max-bitrate-which-compresses-youtube/

[8] T. Ahmed, A. Mehaoua, R. Boutaba, and Y. Iraqi, “Adaptive packet
video streaming over IP networks: a cross-layer approach,” IEEE J. Sel.
Areas Commun., vol. 23, no. 2, pp. 385–401, Feb. 2005.

[9] V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang, “Vivisecting YouTube:
An active measurement study,” in 2012 Proc. IEEE INFOCOM, Mar.
2012.

[10] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-
L. Zhang, “Unreeling Netflix: Understanding and improving multi-CDN
movie delivery,” in Proc. IEEE INFOCOM. IEEE, Mar. 2012.

[11] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang,
“A case for a coordinated internet video control plane,” ACM SIGCOMM
Computer Communication Review, vol. 42, no. 4, p. 359, sep 2012.

[12] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, “Collaborative
multi-bitrate video caching and processing in mobile-edge computing
networks,” in 2017 13th Annu. Conf. Wireless On-demand Network
Systems and Services (WONS). IEEE, Feb. 2017.

[13] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ra-
makrishnan, “Optimal content placement for a large-scale VoD system,”
IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 2114–2127, aug 2016.

[14] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “VIP: A
framework for joint dynamic forwarding and caching in named data
networks,” in Proc. 1st Int. Conf. Information-Centric Networking (ICN
’14). ACM Press, 2014.

[15] Y. Wang, W. Wang, Y. Cui, K. G. Shin, and Z. Zhang, “Distributed
packet forwarding and caching based on stochastic network utility
maximization,” IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1264–1277,
Jun. 2018.

[16] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” in Proc. 4th ACM Conf. Information-
Centric Networking (ICN ’17). ACM Press, 2017.

[17] D. Palomar and M. Chiang, “A tutorial on decomposition methods for
network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, pp. 1439–1451, aug 2006.

[18] I.-H. Hou and P. R. Kumar, “Utility-optimal scheduling in time-varying
wireless networks with delay constraints,” in Proc. 11th ACM Int. Symp.
Mobile Ad Hoc Networking and Computing. Chicago, Illinois, USA:
ACM, 2010, pp. 31–40.

[19] A. Eryilmaz and I. Koprulu, “Discounted-rate utility maximization
(DRUM): A framework for delay-sensitive fair resource allocation,” in
2017 15th Int. Symp. Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt), May 2017.

[20] R. Gupta, L. Vandenberghe, and M. Gerla, “Centralized network utility
maximization over aggregate flows,” in 2016 14th Int. Symp. Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
May 2016.

[21] V. Ramaswamy, D. Choudhury, and S. Shakkottai, “Which protocol?
Mutual interaction of heterogeneous congestion controllers,” IEEE/ACM
Trans. Netw., vol. 22, no. 2, pp. 457–469, Apr. 2014.

https://www.tutorialguidacomefare.com/test-video-quality-720p-1080p-1440p-2160p-max-bitrate-which-compresses-youtube/
https://www.tutorialguidacomefare.com/test-video-quality-720p-1080p-1440p-2160p-max-bitrate-which-compresses-youtube/

	I Introduction
	II System Model
	III The Cache-Version Selection Problem (CaVe)
	III-A Overview of the Solution
	III-B The Solution to CaVe-Lagrangian
	III-C The Solution to CaVe-Dual
	III-D The Solution to CaVe-Primal

	IV The Content Placement Problem (CoP)
	IV-A Overview of the Solution
	IV-B The Solution to CoP-Lagrangian
	IV-C The Solution to CoP-Dual
	IV-D The Solution to CoP-Primal

	V Implementation on Named Data Networking
	V-A NDN Architecture
	V-B Placement of Data
	V-C Implementation of User Algorithms
	V-D Implementations for Routers and Caches

	VI Evaluations
	VII Related Work
	VIII Conclusion
	References

