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Abstract—We design a lightweight beam-searching algorithm
for mobile millimeter-wave systems. We construct and maintain
a set of path skeletons, i.e., potential paths between a user and the
serving base station to substantially expedite the beam-searching
process. To exploit the spatial correlations of the channels, we
propose an efficient algorithm that measures the similarity of
the skeletons and re-executes the beam-searching procedure only
when the old one becomes obsolete. We identify and optimize
several tradeoffs between: i) the beam-searching overhead and
the instantaneous rate of the users, and ii) the number of users
and the update overhead of the path skeletons. Simulation results
in an outdoor environment with real building map data show that
the proposed method can significantly improve the performance
of beam-searching in terms of latency, energy consumption and
achievable throughout.

Index Terms—Millimeter-wave, beam alignment, spatial chan-
nel response, spatial correlation, beam-searching, mobile net-
works

I. INTRODUCTION

Millimeter-wave (mmWave) communication is regarded as
a promising solution to support high data rate demands in
the next generations of wireless networks [1]. To compensate
for the severe propagation loss in this band, both transmitters
(Txs) and receivers (Rxs) rely on directional communications
using a relatively large number of antennas, feasible thanks to
the short wavelength. The use of directional communications,
especially with analog or hybrid beamforming architectures
[2], complicates the channel estimation and beamforming
tasks, since the channel dimension is large and it is available
through the eyes of the analog filters (which are low-rank and
non-invertible). The problem becomes even more challenging
in a mobile network, where the mobility demands frequent
re-executions of the optimal beamforming task to overcome
misalignment between Tx and Rx beams [3]. Therefore, there
is a natural tradeoff between the total beamforming overhead
(which is a function of the number of re-executions of the
task) and the instantaneous rate of the user.

To address the problem in a stationary environment, the
existing approaches usually search over a codebook (a set
of potential beams) to find the optimal beam pairs for Tx
and Rx. In particular, the existing mmWave standards [4],
[5] define a multi-resolution codebook and use an exhaustive
beam-searching algorithm to find the direction with the max-
imum link budget. However, this approach is time-consuming
because it includes many iterations of sending pilot signals
and waiting for control/feedback frames. Generally speaking,
the overhead increases with the number of beam directions

and Tx/Rx may remains most of the time in the beam
scanning phase rather than the data transmission phase [6].
Other approaches, such as sparsity-aware beamforming [7] or
subspace estimation [8], face a similar problem: their over-
heads hinder their applicability in mobile mmWave networks.
Although the recent compressive-sensing based approaches
[7], [9], [10] need a logarithmic number of measurements in
beam-searching, they do not work with the existing mmWave
devices because they require an adopted phase-array antennas
[10] or phase coherent measurements [9].

The spatial channel response (SCR) of mmWave systems
has two fundamental properties. First, it is sparse in the angular
domain [6], [7], [11], [12]. In other words, there are a few
significant line of sight (LoS) and non-LoS (NLoS) paths
between Tx and Rx, hereafter referred to as a path skeleton
[6]. Due to the lack of SCR knowledge, Tx/Rx in the beam-
searching phase scans all directions exhaustively to find the
best beamforming/combining direction. A disadvantage of this
method is that the overhead increases almost linearly with the
number of beam directions. The second property of SCR is the
strong correlation of the values in proximity locations as the
Rx experiences almost the same scattering environment [6],
[12], [13]. This is also known as the robustness of the channel
second-order statistics to the small mobility [3].

Spatial correlation of mmWave SCRs have received a con-
siderable attention in the recent years in order to alleviate
the beamforming overhead. For example, Sur et al. in [6]
presented a model that captures spatial and blockage-invariant
correlation among beams to predict beam directions when
human bodies block the links. However, this model is based
on static links and it cannot capture the Rx mobility and is
limited to an indoor environment.

Zhou et al. in [12] proposed a beam steering approach in
an office environment that leverages the correlation of the
mmWave spatial channel in near locations to predict and re-
establish the blocked links. Although the results are promising
in terms of throughput gain, the computational complexity
of the proposed approach makes it impractical in real-world
scenarios with cheap mmWave mobile devices. Moreover, the
re-execution of the beam-searching is based on a constant
Euclidean distance, which is very heuristic and may vary con-
siderably in different user mobility and networking scenarios.
Indeed, as we show in this paper, having a small Euclidean
distance does not necessarily imply a small/negligible change
in the SCR.

The existing approaches are either not suited to an outdoor
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mobile network or very heuristic, hindering a proper control
of the tradeoff among the instantaneous rate and beamforming
update overheads in various user mobility scenarios.

In this paper, we address the problem of the beamforming
overhead and investigate an efficient beamforming algorithm
in an outdoor environment. Inspired by the path skeleton
approach [6], we assume that every Tx maintains a database
including path skeletons of different locations in its coverage
areas. First, we consider a negligible overhead to construct and
update this database and develop an algorithm to track the cor-
relation between path skeletons in different locations through
a specific trajectory. We show that our algorithm requires the
minimum number of coarse beam-searching in comparison to
the existing methods [5] while keeping the throughput and
achieved rate in a near-optimal level. Moreover, we show that
our approach is also efficient in terms of energy consumptions,
computational and signaling complexity. We then characterize
the cost of database maintenance and show that it is inversely
proportional to the number of users. It suggests that as the
number of users increases, the overhead for the database
update decreases drastically and therefore we can optimize
the aforementioned tradeoff at almost no cost.

The rest of this paper is organized as follows. We introduce
the system model in Section II. We describe our proposed
method to track the correlation between path skeletons in
Section III. We also present the ray tracing simulation results
of running our algorithm in a real urban environment in
Section III. We consider the overhead of building and updating
the database in Section IV. The summary of our findings is
presented in Section V.

Notations: Bold upper-case X, bold lower-case x and nor-
mal font x denote matrices, vectors and scalars, respectively.
For any vector x (or matrix X), ‖x‖2, xT and xH are its
l2-norm, transpose, and conjugate transpose, respectively. For
any integer L, we define set [L] = {1, 2, ..., L}. IL denotes an
L× L identity matrix.

II. SYSTEM MODEL

We consider the downlink of a mmWave network with mul-
tiple base stations (BSs) and user equipment (UEs). Without a
loss of generality and to keep the notations simple, we focus
on a specific UE and its serving BS. We consider BS as the Tx
and UE as the Rx. We assume that the Tx location is constant
but the Rx is mobile and moves through a specific trajectory.
Blue and green lines in Fig. 1 show different Rx trajectories.

We assume that Tx and Rx utilize uniform linear arrays
(ULA) with NTx and NRx antennas, respectively. The sep-
aration between both transmit and receive antenna elements
is λ/2, where λ is the wavelength. We consider one radio-
frequency chain both in the Tx and in the Rx. The channel
follows a narrow band cluster model with L paths, and block
fading, where the small scale fading is constant over a coherent
interval (CI). The channel matrix H ∈ CNRx×NTx in one CI
can be expressed as [14]:

H(xi,yi) =

√
NTxNRx

L

L∑
`=1

ḡ`ie
j2πfd`iaRx(θ`i)a

H
Tx(φ`i),

(1)

Figure 1: Simulation area in the central part of Stockholm city.
The blue star shows the location of the Tx1 and the red star
shows the location of the Tx2. Blue and green lines illustrate
the first and the second trajectory respectively. Point H shows
the handover location.

where ḡ`i ∼ CN (0, 10−0.1PLi) is the complex gain of the `-
th path that includes path loss and small-scale fading. PLi is
the omnidirectional path loss that is a function of the distance
between the Tx and a specific Rx in location (xi, yi) where i is
the location index. fd`i is the Doppler shift of the `-th path that
is characterized by the the direction of received paths relative
to the motion of the Rx in location index i (see [7], [14] for
more details). aTx ∈ CNTx and aRx ∈ CNRx are unit-norm
array response vectors at the Tx and the Rx, respectively.

Since we use ULA, aTx(φ`i) is [2]

aTx(φ`i) =
1√
NTx

[1, ejπ sin(φ`i), ..., ejπ(NTx−1) sin(φ`i)]H,

(2)
where φ`i ∈ [0, 2π) and θ`i ∈ [0, 2π) are angle of departure
(AoD) and angle of arrival (AoA) of the `-th path in the
location index i, respectively. The array response vector at
the Rx, aRx(θ`i), can be expressed in a similar fashion by
replacing NTx and φ`i by NRx and θ`i, respectively. For the
sake of notation simplicity, we drop subscript (xi, yi) from H
when it is clear from the context.

With the unit-norm beamforming vector f ∈ CNTx in the
Tx and the unit-norm combining vector w ∈ CNRx in the Rx,
the received signal of path ` in one CI is

y` = w`HfH` s + wH
` n`, (3)

where s is the transmitted symbol and n` ∼ CN (0, σ2) is the
Gaussian noise vector. For the sake of simplicity, we consider
s as the `-th column of

√
P/LIL where the total transmission

power P is equally divided among L paths. Since w` is unit-
norm, we have that wH

` n` ∼ CN (0, σ2). We express the
beamforming vector, f , and the combining vector, w, as

f(φ,NTx) =
1√
NTx

[1, ejπ sin(φ), ..., ejπ(NTx−1) sin(φ)]H, (4)

w(θ,NRx) =
1√
NRx

[1, ejπ sin(θ), ..., ejπ(NRx−1) sin(θ)]H.

(5)
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Equations (4) and (5) indicate that only the phase of elements
in beamforming and combining vectors can be varied. We
only consider horizontal (2D) beamforming/combining and the
extension to 3D is straightforward. Each path can be LoS or
NLoS.

We define a path skeleton as a set of L paths that approx-
imate the SCR between the Tx and Rx. The path skeleton
can be obtained after running exhaustive beam-searching in
all directions and applying the so-called path skeleton con-
struction procedure in [6]. The Tx and Rx then search over
this skeleton, instead of an exhaustive search, to substantially
reduce the cost of channel estimation and beamforming design.
We assume that Tx (BS) can store the path skeletons in
different locations of its coverage area in a database, which
should be regularly maintained. However, this task involves
two costs: the maintenance cost and the query cost. The
maintenance cost is the overhead of building and updating the
database. The query cost is the number of times we inform the
Rx about a new path skeleton. We first focus on the case where
the maintenance cost is negligible and optimize the Rx (user)
rate experience with a given limited query budget. We then
relax the negligible maintenance cost and propose a simple
approach to update the database, whose cost is a decreasing
function of the number of Rxs.

Formally, we define a path skeleton based on the large-scale
parameters of each path p` = {θ`, φ`, g̃`}, ` ∈ [L] between a
Tx in a fixed location and a mobile Rx in location (xi, yi) as

PS(xi,yi) =

√
NTxNRx

L

L∑
`=1

g̃`iaRx(θ`i)a
H
Tx(φ`i) (6)

where g̃`i =
√
PLi. At this location, the large-scale parame-

ters θ`i, φ`i and g̃`i correspond to the AoA, AoD and the gain
of the `-th path.

In this work, we omit the interference effects of other Txs
and leave it as the future work.

III. PROPOSED ALGORITHM WITH NEGLIGIBLE DATABASE
MAINTENANCE COST

In this section, we consider the low overhead PS database
maintenance scenario. This assumption essentially means all
the PSs are available a priori at every Tx for all locations
inside its coverage areas. Consequently, we only focus on the
query cost and develop optimization problems to maximize
the Rx instantaneous rate given a fixed query budget. In
summary, our solution approach measures the change in the
PSs as the Rx moves and initiates a query automatically only
when a substantial change in PSs, and consequently in the
optimal beamforming vectors, is observed. We will consider
the database maintenance cost in Section IV.

Notice that our proposed algorithm is based on the downlink
transmission; however, it can be applied to the uplink case by
replacing the roles of the beamformer (f ) and combiner (w)
and modifying the channel matrix H.

A. Beamforming Design

In the pilot transmission phase, the Rx asks the database for
the PS of its current location (xi, yi). Then, a sequence of pilot

signals, Pilot`i = (PL , f(φ`i),w(θ`i)), ` ∈ [L], are sent along
L paths in the skeleton, whose cardinality is much smaller
than the total number of paths between the Tx and Rx, to find
the existing non-blocked paths. More specifically, Rx measures
signal strength in all p` ∈ PS(xi,yi) and constructs H from (1).
If all paths p` ∈ PS(xi,yi) are blocked or weakened due to the
presence of some potential obstacles or the dynamics of the
environment, the path skeleton finder procedure is called to
refresh this entry (PS(xi,yi)) of the database.

In the data transmission phase, the beamforming vector f
and combing vector w are designed to maximize the link
budget, namely:

maximize
f ,w

|wHHf |2 (7a)

subject to f ∈ F , (7b)

w ∈ W, (7c)

where F and W are predefined beamforming and combing
codebooks, respectively. Vectors f and w follow the functions
given by (4) and (5). When there is no restriction on using
any phase shift φ at the Tx and θ at the Rx and the number
of antenna elements (NTx and NRx) grows large, the optimal
solution of (7) is identical to the antenna response toward the
strongest path. That is, f? = aTx(φ`) and w? = aRx(θ`),
where ` = argmax` ḡ`i. Notice that ḡ`i, ` ∈ [L] are found in
the channel estimation over the PS. In summary, finding and
applying the optimal beamforming in the asymptotic regime is
very efficient: Rx should feed back to Tx the index of the path
with maximum received signal strength. In this paper, we use
this approach, which is asymptotically optimal in the sense of
(7).

Given designed f` and w`, the received SNR follows

SNR =
P |wH

`Hf`|2

BN0
, (8)

where, N0 is the noise spectral density and B is the signal
bandwidth in the data transmission phase. The achievable rate
per second is then Rate = B log(1 + SNR) and we can find
the achievable throughput in location index i by multiplying
Ratei by the reaming data transmission time. A faster beam-
searching leads to a longer data transmission time and perhaps
a higher achievable throughput.

B. Tracking Spatial Correlation

To run the channel estimation (or equivalently beam-
searching over the skeleton) on every new location, the Tx
should inform the receiver about the set of paths in the skele-
ton. However, for most mobility models, the skeleton is almost
the same over many CIs, essentially over several consecutive
locations of the trajectory. To reduce unnecessary skeleton
inquiry and feedback overhead, Tx continuously monitors the
variations of the skeletons in different locations and reports the
new one only when a significant change is detected. Formally,
assume that Tx has already reported PS(x0,y0) as the reference
skeleton. For any new location (xi, yi), we define

d(xi, yi;x0, y0) = ‖PS(xi,yi) − PS(x0,y0)‖2. (9)
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Rx and Tx know PS(x0,y0) and H(x0,y0). At any new location
(xi, yi), they use the skeleton of (x0, y0) to estimate PS(xi,yi)

and H(xi,yi). Then, Tx translates condition d(xi, yi;x0, y0) ≤
T to the validity of the existing skeleton. The beamforming
vectors for (xi, yi) match to the strongest path in H(xi,yi).
If d(xi, yi;x0, y0) > T , Tx detects a significant change in
the dominant paths of the channel, informs the Rx about
the new skeleton, and asks for the beam-searching over the
new skeleton. Then, this new skeleton is considered as the
reference skeleton. This condition can be interpreted as if a
set of pilot messages based on PS(xi,yi) are sent to the Rx
in location index j. Since the distance between skeletons in
location index i and j is higher than the threshold T , additional
terms aHTx(φ`j)a

H
Tx(φ`i) appear in (6) and cause worse channel

estimation result.
The performance of the proposed algorithm is dependent

on the mobility model, network topology, and the decision
threshold T . Among them we can only control T . Higher
thresholds leads to fewer overheads of the feedback channel
to send the new skeleton but also the adoption of suboptimal
beamforming solutions: f and w are designed based on the
skeleton in reference location (PS(x0,y0)) not necessarily the
skeleton at the current location (xi, yi). Lower T improves the
rate performance at the expense of higher feedback overhead.
To properly set this hyper-parameter of the algorithm, we run
the proposed algorithm on a dataset of various trajectories and
find an optimal T from the following optimization problem:

T ? = argmax
T>0

∑
i∈[M ]

Ratei(T ) (10a)

subject to U < Umax. (10b)

where Umax is a maximum tolerable number of skeleton
queries (database query budget) and M is the length of
the trajectory. The optimization problem (10) includes a
one-dimensional search over T > 0 and can be solved nu-
merically. Examples of the trajectories in the training dataset
are shown in Fig. 1. Once T is obtained, this can be applied
to users with similar mobility patterns.

Reference [12] considers d(xi, yi;x0, y0) =√
(xi − x0)2 + (yi − y20), Euclidean distance, to assess

the PS correlation in different locations. This metric is
both mobility-agnostic and topology-agnostic. To illustrate,
consider the following example. Let Tx2 serves an Rx that
is moving from location A to location B, see Fig. 1. Due to
the small distance between location A and B (about 5 m),
the Euclidean approach declares that the spatial channels in
location A and B are highly correlated. However, the presence
of a building obstacle between two locations completely
changes the AoAs and AoDs and consequently the spatial
channels. Thus, skeletons in location A and location B are
not correlated. However, our proposed metric considers the
actual distance between spatial channels (in norm-2 sense)
and tracks the validity of the existing paths between the Tx
and the Rx. Now, consider the Rx moves from location A to
location C that is about 15 m far away. Although based on the
Euclidean distance approach the spatial channel correlation
weakens due to the long distance between the two locations,

Algorithm 1 Tracking spatial correlation
Inputs: A Trajectory = {(x1, y1), ..., (xM , yM )} of M coor-
dinates, T and B.

1: Initialization: Set (x0, y0)← (x1, y1),PS0 ← skeleton at
(x1, y1) and U = 0

2: for i = 1, ...,M do
3: Send pilots over PS(x0,y0) and observe {ḡ`}`∈[L]
4: if d(xi, yi;x0, y0) < T then
5: f? = aTx(φ`), ` = argmax` ḡ`
6: w? = aRx(θ`), ` = argmax` ḡ`
7: else
8: // Update reference point
9: (x0, y0)← (xi, yi)

10: PS(x0,y0) ← PS(xi,yi) and inform user
11: Send pilots over PS(x0,y0)

12: f? = aTx(φ`), ` = argmax` ḡ`
13: w? = aRx(θ`), ` = argmax` ḡ`
14: U ← U + 1
15: end if
16: Ratei = B log(1 + SNRi)
17: end for
18: Outputs: Ratei(T ) and U

the AoAs and AoDs in the two locations are quite similar
so SCRs and equivalently PS should be indeed correlated.
Hence, the norm-2 distance of channels as the metric to track
spatial correlation in different locations can be much more
accurate than a simple Euclidean distance approach.

C. Efficiency of the Proposed Algorithm

Efficiency can be defined based on four parameters:
computational complexity, signaling complexity, through-
put efficiency, and energy consumption. In the context of
beamforming for mmWave networks, an efficient algorithm
should keep the throughput and energy consumption at an
optimal level with manageable computational and signaling
complexities.

Given the presence of an updated skeleton database,
Algorithm 1 adds negligible numbers of computations to
the system. However, this computation uses historical data
about the environment to decrease the number of running
coarse beam-searchings in all directions and they trigger if
the dynamics of the environment change the skeletons in
the database. Moreover, based on our proposed beamforming
design, in order to find the existing paths between Tx and Rx
in reference locations, our algorithm searches only over the
skeleton instead of all the space, leading to substantially less
signaling complexity.

In terms of throughput, our algorithm checks the distance
between spatial channels in different locations and updates
the beamforming and combining vectors if they have been
designed based on an obsolete channel, thereby guaranteeing
a close-to-optimal performance of the channel estimation and
beamforming design. Moreover, due to a faster beamforming
design, we expect a longer data transmission time and there-
fore a gain in the achievable throughput.
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Figure 2: The index of the updated reference locations by
running (a) benchmarks, and (b) Algorithm 1.

In terms of energy efficiency, our approach keeps the
number of pilots at a minimal level by searching only over the
skeleton and reducing the database query frequency. Thus our
approach is energy efficient, as we observe in the numerical
results.

D. Numerical Results

We numerically evaluate the performance of our proposed
approach in an urban environment using a ray tracing tool [15].
From the ray tracing output, we can obtain the existing paths
between the Tx and the Rx in a specific location. To ensure
high angular resolutions, we measure the AoAs and the AoDs
with step sizes of 0.1 degrees. We extract the 200 m×200
m real building map of a central part of Stockholm city and
use it as the input data for the ray tracing simulation. Fig. 1
shows the simulation area. We randomly assign glass or brick
materials to the buildings. The general simulation parameters
are listed in Table I. We consider two different Rx trajectories.
We assume a normal pedestrian walk with speed 5 km/h.

Table I: Simulation parameters.

BS transmit power 30 dBm
Path loss exponent 3

Operating frequency 28 GHz
Signal bandwidth in data transmission phase 500 MHz

Thermal noise power -174 dBm/Hz
Rx height 1.5 m
Tx height 6 m

Number of Tx antennas 8
Number of Rx antennas 8

Brick penetration loss [16] 28.3 dB
Glass penetration loss [16] 3.9 dB
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Figure 3: Diff-NR in adjacent locations based on (a) bench-
marks, and (b) Algorithm 1.

1) First Scenario: In this scenario, we consider one Tx
on the wall of a building with a height of 6 m and blue Rx
trajectory of Fig. 1. Rx is served by Tx1 along this trajectory.
The trajectory length is 140 m, including 140 equidistant
locations (once every meter), the Euclidean distance between
Tx and Rx varies from 24 m to 119 m. In the first benchmark,
we simulate a baseline where Tx extracts the PSs from the
database in all locations so the database query budget is equal
to the length of the trajectory. In the second benchmark,
we simulate the approach of [12] where the beamforming
and combining directions updates based on a fixed Euclidean
distance as shown in Fig. 2(a). The distance between two
consecutive updates is 3 m, which is chosen to keep the same
total number of updates as our approach (50 updates budget).
In Fig. 2(b), the green curve shows distance between PS(xi,yi)

in the location index i and the reference skeleton, PS(x0,y0).
Based on Algorithm 1, the reference location is updated once
the green curve is higher than the threshold T , set to be 0.42
for our environment as the optimal solution of (10) with a
query budget of Umax = 50. We have marked the update
points by stems. The irregular inter-stem distance is due to
the mobility of the user and similarity of the channels for
some intervals.

We define difference normalized rate (Diff-NR) in two
adjacent locations (xi, yi) and (xi+1, yi+1) as

Diff-NR =
Ratei+1 − Ratei

Ratei
. (11)

In the first benchmark, clearly, Rx achieved rates in each loca-
tion is maximum because of using optimal beamforming and
combining directions in all locations but with the query cost
of 140. In the second benchmark, As shown in Fig. 3(a), the
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Figure 4: The index of the updated reference locations by
running (a) the benchmarks, and (b) Algorithm 1.

user experiences some high fluctuations in the instantaneous
rate, which are due to the fact that the channel correlation is
sometimes weak before 3 m distance and we need to update
the beamforming vectors in the meanwhile. Such fluctuations
may prohibit the support of a reliable connection to the user.
Fig. 3(b) shows Diff-NR of running Algorithm 1, indicating
a very similar pattern as the first benchmark. In other words,
Algorithm 1 with up to 50 queries to the skeleton database
can perform as good as the first benchmark, where we have
optimized the beamforming in all 140 locations of the trajec-
tory.

2) Second Scenario: In this scenario, there are two Txs.
Green line in Fig. 1 shows the Rx trajectory. The length of
this trajectory is 200 m and contains two parts. In the first
part Tx2 serves Rx. The second part is started from point H,
where Tx1 starts serving the user after a handover. Again,
we consider the baseline where each Tx queries PS sets from
its database in all locations as the first benchmark and also
consider the constant Euclidean distance query policy as a
the second benchmark as shown in Fig. 4(a). The result of
runing our algorithm is presented in Fig. 4(b). In this case,
we consider two different thresholds for each Tx. Based on
numerical results, we choose T1 = 0.7 as the threshold of Tx1
and T2 = 1 as the threshold of Tx2 that are the solutions of the
optimization problem in (10) with query budget 52. Reference
locations in each Tx coverage area will be updated based on
defined thresholds.

Fig. 5 illustrates Diff-NR in adjacent locations. It is evident
that the rate fluctuation decreases after the handover point in
location index of 75. In the first benchmark the query budget
is 200 and the achieved rate in all locations is optimal. In
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Figure 5: Diff-NR in adjacent locations based on (a) the
benchmarks, and (b) Algorithm 1.

the second benchmark the database query is requested every
4 m, shown in Fig. 4(a). Red curve in Fig. 5(a) shows the
Diff-NR in adjacent locations that indicates multiple severe
rate reductions as high as 10 times throughout the trajectory.
Indeed, Rx experiences low throughput in many locations of
the trajectory, further highlighting that updating beamforming
and combining vectors based on a constant Euclidean distance
is not an efficient solution in a dynamic environment. Fig. 5(b)
presents the results of running our proposed method, which
implies that with running our algorithm and the query cost
equal to 52, Rx achieved rate is near optimal in all locations
of the trajectory.

IV. NON-NEGLIGIBLE DATABASE MAINTENANCE COST

In this section, we consider the database maintenance cost
that includes the overhead of the building and updating
database in a Tx. We start by describing database building
and updating phases. Then, we show that the maintenance
overhead is inversely proportional to the number of users.
So in the outdoor environment with a large number of Rxs,
the overhead of building and updating the database could be
almost negligible.

A. Database Construction

Initially, Tx divides its coverage area to smaller sections
(grids) with pre-defined sizes as shown in Fig. 6. Tx assigns
a unique ID to each grid, approximates each grid with one
point, and considers one skeleton for that point. Therefore, the
database has the same number of skeletons as the number of
grid IDs. The grid size is equal in all sections and is chosen to
balance the location resolution and the complexity of building
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Figure 6: Tx divides its coverage area to grids with an equal
size.

a database. The beam-searching procedure runs once in each
grid in order to build PS set of grid IDs.

The database has two lists: the normal list and the watch
list. The normal list consists of updated PSs. The watch list
includes the grid IDs whose PSs should be updated. Once a
user is located in such grids, Tx may run the path skeleton
finder procedure and update the PSs for those grid IDs.
Clearly, all IDs are in the watch list initially. The main steps
of the initial build up of the database are as follows:

1) Tx sends a skeleton finder request to all users in every
grid ID, say x. If Tx distinguishes two or more than two
Rxs in grid ID-x, it will choose one of them randomly.

2) The selected Rx confirms this request by sending a skele-
ton finder acknowledgment and the discover procedure
(like the one in [6]) will be started afterward. Notice that
an Rx may not confirm the request, for example, due to
its low battery level.

3) The output of discovery process is the path skeleton in x,
which includes all paths between Tx and the grid ID-x.
Tx stores the skeleton, moves ID-x to its normal list, and
activates an aging counter for this skeleton. The counters
determine the age of each PS in the normal list.

Tx repeats the above process for all grid IDs of the watch list
and stores them in the normal list of the database.

In the database updating phase, Tx checks the aging coun-
ters of the PSs in the normal list. If an aging counter exceeds
a predefined threshold (T-Aging), Tx removes the ID from the
normal list and adds it to the watch list of the database. It
means that the skeleton discovery process runs again for this
grid ID. Fig. 7 summarizes the proposed building and updating
phases for a specific grid ID.

The T-Aging depends on the environment. For a highly
dynamic environment like crowded streets, it should be shorter
than a stationary environment, as the skeletons may change
more frequently in the former situation so Tx needs to update
its database in a shorter periods.

B. Database Maintenance Overhead

In this subsection, we show that the overhead of building
and updating the database is inversely proportional to the
number of users in the environment. We then present numerical
results of database maintenance overhead. In the database
building and updating phases the number of the times that a Tx

Figure 7: A flowchart of the building and the updating
database. The algorithm starts by extracting the grid-IDs from
the watch list of the database. When Tx detects a Rx in the
grid-ID, sends the skeleton finder request to it and stores the
PS set in the normal list and activates the aging threshold. If
the value of a aging counter exceeds the aging threshold, Tx
transfers its grid ID to the watch list again. In this case, the
algorithm returns to the skeleton finder loop.

sends the skeleton finder request to a specific Rx in a trajectory
is the main metric in analyzing the database overhead. We
assume that Rxs always confirm the skeleton finder requests
received from the Tx. In the dense urban environment, the
number of Rxs is essentially high so the probability that one
specific Rx receives several skeleton finder requests from the
Tx can be low. In other words, database maintenance overhead
is distributed among all Rxs in the Tx coverage area such
that the database overhead decreases as the number of the Rx
increase.

To have a better understanding of the interplay between the
number of Rxs and the database maintenance overhead, we
numerically evaluate the performance of the proposed method.
We consider different sets of Rx in our studied environment in
Fig. 1. We randomly assign different trajectories to each Rx.
We assume each Rx is moving through its trajectory with some
random speeds and directions. For instance in Fig. 6 we assign
the normal pedestrian speed walk 5 km/h to Rx1 and average
vehicle speed 30 km/h to the Rx2. Each Tx divides its coverage
areas to grids with an equal size. We choose grid size equal
to 2 m that is suitable for the crowded urban environment. We
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Figure 8: The value C for a Rx that is moving in a trajectory
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Figure 9: Average and standard deviation of C for different
number of Rxs/users.

also consider the aging threshold equals to 2 minutes in our
simulations. As mentioned in the previous subsection, grid size
and aging threshold are highly dependent on the measurement
environment and need to be very small in the dense urban
environment.

We define C as the database overhead in a specific time
duration. In other words, C is the number of the skeleton
finder requests that the Tx sends to a specific Rx in its
coverage area. First, we consider 100 Rxs that are moving
through different trajectories with different speeds in our
studied environment. All Rxs are located in different grids
in Tx1’s coverage area, see Fig. 1. First, we run the database
building and updating phases. We consider Rx1, a pedestrian,
that is moving through the trajectory that is shown with blue
line in Fig. 1 and compute C during the simulation time, 7
minutes. Fig. 8 shows the values of C in different time indexes.
In this case, the average amount of C is 2, which means Rx1
receives only 2 skeleton finder requests on average through its
trajectory. In other words, the database overhead are divided
between 100 Rxs in environment so mean values of C for
each Rx is essentially low.

Now we sweep the size of Rx sets and repeat the previous
simulation for each set. We plot the average amount of C for
each Rx set in Fig. 9. We also plot the standard deviation
of values C for each Rx set in Fig. 9 that expresses how
much different values of C, differ from the mean value for a
specific Rx set. From Fig. 9, it is evident that as the number
of Rxs increase, the mean value of C and also standard
deviation decreases, implying that the database overhead is
almost negligible in crowded environments.

V. CONCLUSION

In this work, we proposed an efficient algorithm that lever-
ages the correlation of path skeletons in order to decrease
the number of running the coarse beam-searching methods in
a mobile environment. We assume that each Tx is aware a
priori of the path skeleton sets in its coverage area and show
that the overhead of this assumption is almost negligible in
dense urban environments. The simulation results highlight
the efficiency of the proposed method and show that without
significant reduction in the achieved rate, and almost the
same throughput, our method can decrease the number of
running beam-searching. Moreover, the results confirm that re-
execution beam-searching based on a constant distance may
cause low throughput while our proposed method sustains the
performance in the Rx trajectory.
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