
Optimal Timing in Dynamic and Robust Attacker
Engagement During Advanced Persistent Threats

Jeffrey Pawlick
NYU Tandon School of Eng. and

US Army Research Lab
Adelphi, MD, USA
jpawlick@nyu.edu

Thi Thu Hang Nguyen
LAAS-CNRS

7 Avenue du Colonel Roche
31077 Toulouse, France

tthnguye@laas.fr

Edward Colbert
US Army Research Lab

and Virginia Tech
Arlington, VA, USA

ecolbert@vt.edu

Quanyan Zhu
NYU Tandon School of Eng.

5 MetroTech Center
Brooklyn, NY, USA

quanyan.zhu@nyu.edu

Abstract—Advanced persistent threats (APTs) are stealthy
attacks which make use of social engineering and deception to
give adversaries insider access to networked systems. Against
APTs, active defense technologies aim to create and exploit
information asymmetry for defenders. In this paper, we study a
scenario in which a powerful defender uses honeynets for active
defense in order to observe an attacker who has penetrated
the network. Rather than immediately eject the attacker, the
defender may elect to gather information. We introduce an
undiscounted, infinite-horizon Markov decision process on a
continuous state space in order to model the defender’s problem.
We find a threshold of information that the defender should
gather about the attacker before ejecting him. Then we study
the robustness of this policy using a Stackelberg game. Finally,
we simulate the policy for a conceptual network. Our results
provide a quantitative foundation for studying optimal timing
for attacker engagement in network defense.

Index Terms—Security, Markov decision process, Stackelberg
game, advanced persistent threat, attacker engagement

I. INTRODUCTION

Traditional cybersecurity techniques such as firewall de-
fense and role-based access control have been shown to be
insufficient against advanced and persistent threats (APTs).
Recent breaches of the Democratic National Committee
[14] and the U.S. Office of Personal Management [2] have
highlighted that advanced actors are capable of undermining
these defenses through social engineering, zero-day exploits,
and deceptively mimicking benign code. Intruders establish
themselves with a network using techniques such as spear-
phishing or direct physical access. Bring your own device
(BYOD) aspects of wireless networks expose additional

This work is partially supported by an NSF IGERT grant through the
Center for Interdisciplinary Studies in Security and Privacy (CRISSP) at
New York University, by the grant CNS-1544782, EFRI-1441140, and SES-
1541164 from National Science Foundation (NSF) and de-ne0008571 from
the Department of Energy.

Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-17-2-0104.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation
herein.

PHYSICAL SENSORS

DATABASES
ACCESS
POINTS

ACTUATOR & CONTROLLERS

HONEYPOT

ADMIN

Fig. 1: A honeynet employed in a process control network.
Dashed (solid) lines represent wireless (wired) connections.
At the top right, a honeynet disguised as a set of sensors and
controllers records activity in order to learn about attackers.

routes for malware entry [7]. After entry, attackers move lat-
erally within the network to escalate privileges and advance
towards a target asset.

A. Active Cyber Defense and Honeynets

Often security research studies deceptive attackers and
purely reactive defenders. But new techniques aim to allow
defenders to gain the upper hand in information asymmetry.
The U.S. Department of Defense has defined active cyber
defense as “synchronized, real-time capability to discover, de-
tect, analyze, and mitigate threats and vulnerabilities... using
sensors, software, and intelligence...” [9]. These techniques
both investigate attackers and manipulate their beliefs [13].
Honeynets and virtual attack surfaces are emerging tech-
niques which accomplish both purposes. They create false
network views in order to lure the attacker into a designated
part of a network where he can be contained and observed
within a controlled environment [1]. Figure 1 gives a concep-
tual example of a honeynet placed within a process control
network in critical infrastructure or a SCADA1 system. A
wired backbone connects wireless routers that serve sensors,
actuators, controllers, and access points. A honeynet emulates
a set of sensors and controllers and records attacker activities.
Engaging with an attacker in order to gather information

1Supervisory Control and Data Acquisition

ar
X

iv
:1

70
7.

08
03

1v
3

 [
cs

.C
R

]
 2

2
Ja

n
20

19

http://arxiv.org/abs/de-ne/0008571

allows defenders to update their threat models and develop
more effective defenses.

B. Timing in Attacker Engagement

Our work considers this seldom studied case of a powerful
defender who observes multiple attacker movements within a
network. This sustained engagement with an attacker comes
at the risk of added exposure. The situation gives rise to
an interesting trade-off between information gathering and
short-term security. How long should administrators allow an
attacker to remain in a honeypot before ejecting the attacker?
How long should they attempt to lure an attacker from an
operational system to a honeypot? Our abstracts away from
network topology or protocol in order to focus exclusively
on these questions of timing in attacker engagement.

C. Contributions

We make the following principle contributions:

1) We introduce an undiscounted, infinite-horizon Markov
decision process (MDP) on a continuous state space to
model attacker movement constrained by a defender
who can eject the attacker from the network at any
time, or allow him to remain in the network in order
to gather information.

2) We analytically obtain the value function and optimal
policy for the defender, and verify these numerically.

3) To test the robustness of the optimal policy, we develop
a zero-sum, Stackelberg game model in which the
attacker leads by choosing a parameter of the game.
We obtain a worst-case bound on the defender’s utility.

4) We use simulations to illustrate the optimal policy for
a conceptual network.

D. Related Work

Game-theoretic design of honeypot deployment has been
an active research area. Signaling games are used to model
attacker beliefs about honeypots in [4], [11]. Honeynet de-
ployment from a network point of view is systematized in
[1]. Ref. [8] develops a model for lateral movements and
formulates a game by which an automated defense agent
protects a network asset. Durkota et al. model dynamic
attacker engagement using attack graphs and a MDP [5].
Zhuang et al. study security investment and deception using
a multiple round signaling game [17]. Our work fits within
the context of these papers, but we focus on questions
of timing. Other recent work has studied timing for more
general interactions in cyber-physical systems [10], [12] and
network security in general [15]. On the contrary, we focus on
timing in attacker engagement. Finally, this paper fits within
the general category of optimal stopping problems. Optimal
stopping problems with a finite horizon can be solved directly
by dynamic programming, but our problem has an infinite
horizon (and is undiscounted).

Time (0,0)

Residual Utility 𝑈𝑖
System 𝑆𝑖 = 𝑁

System 𝑆𝑖 = 𝐻
j

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4

𝑇𝐴
0 𝑇𝐴

1 𝑇𝐴
2 𝑇𝐴

3 𝑇𝐴
4

Ejection

𝑈0

Fig. 2: A moves throughout a network between honeypots H
and normal systems N. D can earn a total of U0 utility for
investigating A. When A is in a honeypot, D learns and the
residual utility for future investigation decreases. Near U i =
0, the risk of exposure outweighs the benefit of surveillance,
and D ejects A at stage i = 4 (in this example).

II. PROBLEM FORMULATION

A discrete-time, continuous state MDP can be summarized
by the tuple 〈X,A, µ, q〉 , where X is the continuous state
space, A is the set of actions, µ : X×A→ R is the reward
function, and q : X×A×X→ R+ is the transition kernel. In
this section, we describe each of the elements of 〈X,A, µ, q〉 .
A. State Space X

An attacker A moves throughout a network containing two
types of systems S: honeypots H and normal systems N.
At any time, a network defender D can eject A from the
network. L denotes having left the network. Together, we
have S ∈ S , {H,N,L}.

Let i ∈ 0, 1, 2, . . . denote the discrete stage of the game,
i.e., i indicates the order of the systems visited2. D observes
the types Si of the systems that A visits. The attacker, on
the other hand, does not know the system types.

We assume that there is a maximum amount of information
that D can learn from investigating A. Let U0 denote the
corresponding utility that D receives for this information.
At stage i ∈ 0, 1, 2, . . . , let U i ∈ U , [0, U0] denote
the residual utility available to D for investigating A. For
instance, at i = 5, D may have recorded the attacker’s
time of infiltration, malware type and operating system, but
not yet any privilege escalation attempts, which could reveal
the attacker’s objective. In that case, D may estimate that
U5 ≈ 0.6U0, i.e., D has learned approximately 60% of all
possible information about A.
D should use U i together with Si to form his policy. For

instance, with U5 ≈ 0.6U0, D may allow A to remain in a
honeypot S5 = H . But after observing a privilege escalation
attempt, with U6 ≈ 0.8U0, D may eject A from S6 = H,
since there is little more to be learned about him. Therefore,
U i and Si are both states. The full state space is X = U×S.
Figure 2 summarizes the interaction.

2We consider a large network in which A does not revisit individual
honeypots or normal systems, although he may visit multiple honeypots and
multiple normal systems.

B. One-Stage Actions A
Let ℵ0 denote the cardinality of the set of natural numbers

and R+ denote the set of non-negative real numbers. Then
define TD = {T 0

D, T
1
D, T

2
D, . . .} ∈ Rℵ0+ such that T iD denotes

the time that D plans to wait at stage i before ejecting A
from the network. The single-stage action of D is to choose
T iD ∈ A = R+.

C. Reward Function µ

To formulate the reward, we also need to define TA =
{T 0

A, T
1
A, T

2
A, . . .} ∈ Rℵ0+ . For each i ∈ 0, 1, 2, . . . , T iA

denotes the duration of time that A plans to wait at stage
i before changing to a new system3. Let CN < 0 denote
the average cost per unit time that D incurs while A resides
in normal systems4. This cost may be estimated by a sum
of the costs φmj < 0 per unit time of each vulnerability
j ∈ 1, 2, . . . , J on each the systems m ∈ 1, 2, . . . ,M in
the network, weighted by the likelihoods ρmj ∈ [0, 1] that A
exploits the vulnerability:

CN =
1

M

M∑
m=1

CmN =
1

M

M∑
m=1

J∑
j=1

ρmj φ
m
j .

We also let CH ≤ 0 denote a cost that D pays to maintain
A in a honeypot. This cost could represent, e.g., the expense
of hiring personnel to monitor the honeypot or the expense
of redeployment. Next, let R++ denote the set of strictly
positive real numbers. Let v ∈ R++ denote the utility per
unit time that D gains from learning about A while he is in
honeypots.

Define the function µ : U × S × R+ → R such that
µ(U i, Si, T iD |T iA) gives the one-stage reward to D if the
residual utility is U i, A is in system Si, A waits for T iA
before moving, and D waits for T iD before ejecting A. Let
T i , min(T iA, T

i
D) denote the time for which A remains at

system Si before moving or being ejected. Also let 1{P} be
the indicator function which returns 1 if it the statement P
is true. We have µ(U i, Si, T iD |T iA) =

1{S = N}CNT i + 1{S = H}
(
min

(
T iv, U i

)
+ CHT

i
)
.

D. Transition Kernel q

Let R+ denote the set of non-negative real numbers. For
stage i ∈ 0, 1, 2, . . . , and given attacker and defender move
times T iA and T iD, respectively, define the transition kernel
q : U × S × R+ × U × S → R+ such that, for all residual
utilities U i ∈ U and system types Si ∈ Sˆ

Ui+1∈U

ˆ
Si+1∈S

q
(
U i+1, Si+1, T iD, U

i, Si |T iA
)

= 1,

where U i+1 and Si+1 denote the residual utility and system
type, respectively, at the next stage.

3D plans to wait, because A may move before D ejects him. Similarly,
A plans to wait, because he may be ejected from the network before this
time has elapsed. But hereafter, we simply say A and D wait.

4Future work can consider different costs for each individual system in a
structured network.

Let p ∈ [0, 1] denote the fraction of normal systems in the
network5. For a real number y, let δ(y) be the Dirac delta
function. For brevity, let Φ(U i, T) , max{U i − vT, 0}. If
T iA > T iD, then D ejects A from the system, and we have
q(U i+1, Si+1, T iD, U

i, Si |T iA) =

1
{
Si = L ∩ Si+1 = L

}
δ
(
U i+1 − U i

)
+

1
{
Si = N ∩ Si+1 = L

}
δ
(
U i+1 − U i

)
+

1
{
Si = H ∩ Si+1 = L

}
δ
(
U i+1 − Φ(U i, T iD)

)
. (1)

If T iA ≤ T iD, then A changes systems, and we have
q
(
U i+1, Si+1, T iD, U

i, Si |T iA
)

=

p1
{
Si = N ∩ Si+1 = N

}
δ
(
U i+1 − U i

)
+

(1− p)1
{
Si = N ∩ Si+1 = H

}
δ
(
U i+1 − U i

)
+

p1
{
Si = H ∩ Si+1 = N

}
δ
(
U i+1 − Φ(U i, T iA)

)
+

(1− p)1
{
Si = H ∩ Si+1 = H

}
δ
(
U i+1 − Φ(U i, T iA)

)
.
(2)

E. Infinite-Horizon, Undiscounted Reward

For stage i ∈ 0, 1, 2, . . . , define the stationary deterministic
feedback policy θ : U× S→ R+ such that T iD = θ(U i, Si)
gives the time that D waits before ejecting A if the residual
utility is U i and the system type is Si. Let Θ denote the space
of all such stationary policies. Define the expected infinite-
horizon, undiscounted reward by Viθ : U× S→ R such that
Viθ(U i, Si) gives the expected reward from stage i onward
for using the policy θ when the residual utility is U i and the
type of the system is Si. We have

Viθ
(
U i, Si

)
= E

{ ∞∑
k=i

µ
(
Uk, Sk, θ

(
Uk, Sk

)
|T kA

)}
,

such that the states transition according to Eq. (1-2). Given
an initial system type S0 ∈ {H,N}, the overall problem for
D is to find θ∗ such that

θ∗ ∈ arg max
θ∈Θ

V0
θ

(
U0, S0

)
.

The undiscounted utility function demands Proposition 1.

Proposition 1. Viθ∗(U i, Si) is finite.

Proof: See Appendix A.
It is also convenient to define the value function as the

reward for the optimal policy:

Vi
(
U i, Si

)
, Viθ∗

(
U i, Si

)
= max

θ∈Θ
Viθ
(
U i, Si

)
.

The Bellman principle [3] implies that for an optimal sta-
tionary policy θ∗, and for i ∈ 0, 1, 2, . . . , θ∗

(
U i, Si

)
∈

arg max
T i
D∈R+

µ
(
U i, Si, T iD |T iA

)
+

ˆ
Ui+1∈U

ˆ
Si+1∈S

Vi+1
(
U i+1, Si+1

)
q(U i+1, Si+1, T iD, U

i, Si |T iA).

5Again, in a formal network, the kernel will differ among different
honeypots and different normal systems. The fraction p is an approximation
which is exact for a fully-connected network.

III. ANALYSIS AND RESULTS

In this section, we solve for the value function and optimal
policy. We start by obtaining the optimal policy in honeypots,
and reducing the space of candidates for an optimal policy
in normal systems. Then we present the value function
and optimal policy separately, although they are derived
simultaneously.

A. Reduced Action Spaces

Lemma 1 obtains the optimal waiting time for Si = H.

Lemma 1. (Optimal Policy for Si = H) In honeypots,
for any i ∈ 0, 1, 2, . . . and U i ∈ U, the value function is
optimized by playing T iD = U i/v.

Proof: The value of the game is maximized if A passes
through only honeypots and D ejects A when the residual
utility is 0. D can achieve this by playing T iD = U i/v if
T iA > U i/v. On the other hand, if T iA ≤ U i/v, then it is
optimal for D to allow A to change systems. This is optimal
because the value function at stage i+1 is non-negative, since
in the worst case D can eject A immediately if A arrives
at a normal system. D can allow A to change systems by
playing any T iD ≥ T iA, although it is convenient for brevity
of notation to choose T iD = T iA.

Lemma 2 narrows the optimal waiting times for Si = N.

Lemma 2. (Reduced Action Space for Si = N) In normal
systems, for any i ∈ 0, 1, 2, . . . and U i ∈ U, the value
function is optimized by playing either T iD = 0 or T iD = T iA.

Proof: First, note that it is always suboptimal for D
to eject A at a time less that T iA. That is, for stage i ∈
0, 1, 2, . . . , Vi

θ̃
(U i, N) < Vi

θ̂
(U i, N) for 0 = θ̂(U i, N) <

θ̃(U i, N) < T iA. Second, note that D receives the same utility
for ejecting A at any time greater than or equal to T iA, i.e.,
Vi
θ̃
(U i, N) = Vi

θ̂
(U i, N) for T iA ≤ θ̂(U i, N) ≤ θ̃(U i, N).

Then either 0 or T iA is optimal.
Remark 1 summarizes Lemmas 1-2.

Remark 1. Lemma 1 obtains the unique optimal waiting time
in honeypots. Lemma 2 reduces the candidate set of optimal
waiting times in normal systems to two times: T iD ∈ {0, T iA}.
These times are equivalent to stopping the Markov chain and
allowing it to continue, respectively. Thus, Lemmas 1-2 show
that the MDP is an optimal stopping problem.

B. Value Function Structure

To solve the optimal stopping problem, we must find the
value function. We obtain the value function for a constant
attacker action, i.e., T 0

A = T 1
A = , T̄A. This means that

Vi ≡ V. Define the following notation:

δ , T̄Av, δD1 , T̄A (v + CH) , (3)

λDN ,
−CN
1− p , χDH ,

v + CH
v

. (4)

Note that δ and δD1 are in units of utility, λDN is in units of
utility per second, and χDH is unitless.

First, V(U i, L) = 0 for all U i ∈ U, because no further
utility can be earned after D ejects A. Next, V(0, S) = 0 for
both S ∈ {H,N}, because no positive utility can be earned
in either type of system. V can now be solved backwards in
U i from U i = 0 to U i = U0 using these terminal conditions.
Depending on the parameters, it is possible that ∀U i ∈ U,
θ∗(U i, N) = 0 and V(U i, N) = 0, i.e., D should eject A
from all normal systems immediately. We call this the trivial
case. Lemma 3 describes the structure of the optimal policy
outside of the trivial case.

Lemma 3. (Optimal Policy Structure) Outside of the trivial
case, there exists a residual utility ω ∈ U such that:

• for U i < ω, θ∗(U i, N) = 0 and V(U i, N) = 0,
• for U i > ω, θ∗(U i, N) = T̄A and V(U i, N) > 0.

Proof: See Appendix B.

C. Value Function Threshold

Next, for x ∈ R, define

k [x] ,

{
bx/δc , if x ≥ 0

0, if x < 0
, (5)

where b•c is the floor function. The floor function is required
because µ is nonlinear in U i. Then Theorem 1 gives ω in
closed form.

Theorem 1. (Threshold ω) Outside of the trivial case, the
threshold ω of residual utility beyond which D should eject
A is given by

ω = δ

(
k [ω] +

λDN

(v + CH) (1− p)k[ω]
− 1− (1− p)k[ω]

p (1− p)k[ω]

)
,

where k[ω] is defined as in Eq. (5), and it can be shown that

k [ω] =

⌊
log1−p

(
1 +

pCN
(1− p) (v + CH)

)⌋
,

if the argument of the logarithm is positive. If not, then the
optimal policy is for D to eject A from normal systems
immediately.

Proof: See Appendix C.
Remark 2 gives some intuition about Theorem 1.

Remark 2. Numerical results suggest that in many cases
(such as those in Fig. 3), k[ω] = 0. In that case, we have
ω = −δCN/ ((v + CH)(1− p)) . The threshold ω increases
as the cost for normal systems (CN) increases, decreases
as the rate at which utility is gained in normal systems (v)
increases, and decreases as the proportion of normal systems
(p) increases.

Finally, Theorem 2 summarizes the value function.

0

2

4

6

8

10

0 2 4 6 8 10

V
al
u
e

Residual Utility U i

Value Function: V(U i, Si)

Recursive H

Recursive N

Calculated H

Calculated N

(a) p = 0.60, ω ≈ 0.83, δ = 3.0

0

2

4

6

8

10

0 2 4 6 8 10

V
al
u
e

Residual Utility U i

Value Function: V(U i, Si)

Recursive H

Recursive N

Calculated H

Calculated N

(b) p = 0.85, ω ≈ 2.2, δ = 3.0

Fig. 3: Value functions with p = 0.60 and p = 0.85. The top and bottom curves depict V(U i, H) and V(U i, N), respectively,
as a function of U i. The circles plot the analytical V(U i, S), S ∈ {H,N} from Theorem 2, and the solid lines verify this
using an iterative numerical method.

Theorem 2. (Value Function) The value function is given by

V
(
U i, Si

)
=

0, if Si = L

fD(U i), if Si = H{
fD(U i)− T̄AλDN

}
+
, if Si = N

,

where {•}+ denotes max{•, 0}, and fD : U→ R+ is

fD
(
U i
)
, χDH

(
U i − δk[U i]

)
(1− p)k[Ui]−k[Ui−ω]

+

δD1
p

(
1− (1− p)k[Ui]−k[Ui−ω]

)
+k[U i−ω]

(
δD1 − pλDN T̄A

)
.

Proof: See Appendix B.
Remark 3 discusses the interpretation of Theorem 2.

Remark 3. The quantity fD(U i) is the expected reward for
future surveillance, while T̄AλDN is the expected damage that
will be caused by A. In normal systems, when U i ≤ ω, we
have fD(U i) ≤ T̄Aλ

D
N , and the risk of damage outweighs

the reward of future surveillance. Therefore, it is optimal for
D to eject A, and V(U i, N) = 0. On the other hand, for
U i > ω, it is optimal for D to allow A to remain for T̄A
before moving, so V(U i, N) > 0. Figure 3 gives examples
of the value function.

D. Optimal Policy Function

Theorem 3 summarizes the optimal policy.

Theorem 3. (Defender Optimal Policy) D achieves an opti-
mal policy for Si ∈ {H,N} by playing

θ∗
(
U i, Si

)
=

U i/v, if Si = H

T̄A, if Si = N and U i ≥ ω
0, if Si = N and U i < ω

.

Proof: See Appendix B.
Remark 4 gives an observation about the optimal policy.

Remark 4. During attacker engagement, Theorem 3 only
requires estimating U i, i.e., the remaining information which

can be learned about the attacker. D will allow A to remain
in the network until U i < ω. The cumulative information
lost in stages k ∈ 0, 1, . . . , i need not be known, since it is
not part of the state.

IV. ROBUSTNESS EVALUATION

In this section, we evaluate the robustness of the policy θ∗

by allowing A to choose the worst-case T̄A.

A. Equilibrium Concept

Let us write Vθ(U i, Si | T̄A) and θ∗(U i, Si, | T̄A) to denote
the dependence of the value and optimal policy, respectively,
on T̄A. Next, define V̄ : R+ → R such that V̄(T̄A) gives the
expected utility to D over possible types of initial systems
for playing θ∗ as a function of T̄A. This is given by

V̄
(
T̄A
)

= pV
(
U0, N | T̄A

)
+ (1− p)V

(
U0, H | T̄A

)
. (6)

Definition 1 formulates a zero-sum Stackelberg equilibrium
[16] in which A chooses T̄A to minimize Eq. (6), and D plays
the optimal policy given T̄A from Theorem 3.

Definition 1. (Stackelberg Equilibrium) A Stackelberg equi-
librium (SE) of the zero-sum attacker-defender game is a
strategy pair (T̄ ∗A, θ

∗) such that

T̄ ∗A ∈ arg min
T̄A

V̄θ∗(Ui,Si | T̄A)

(
T̄A
)
,

and ∀U i ∈ U, ∀Si ∈ S,

θ∗
(
U i, Si | T̄ ∗A

)
∈ arg max

θ∈Θ
Vθ
(
U i, Si | T̄ ∗A

)
.

Definition 1 considers A as the Stackelberg game leader
because our problem models an intelligent defender who
reacts to the strategy of an observed attacker.

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2 4 6 8 10 12 14 16 18

A
ve

ra
ge

D
ef

en
d

er
U

ti
li

ty

T̄A

Average Defender Utility vs T̄A for δ > ω

Fig. 4: V̄θ∗(T̄A) for the case that δ < ω. Here, the worst case
value is V̄θ∗(T̄ ∗A) ≈ 1.8, which occurs as T̄A → 0.

2

3

4

5

6

7

8

5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

D
ef

en
d

er
U

ti
li

ty

T̄A

Average Defender Utility vs T̄A for δ > ω

Fig. 5: V̄θ∗(T̄A) for the case that δ > ω. Here, the worst case
value is V̄θ∗(T̄ ∗A) ≈ 3.0, which occurs for T̄A > ω ≈ 30.

B. Equilibrium Analysis

V̄θ∗(T̄A) takes two possible forms, based on the values of
δ and ω. Figure 4 depicts V̄θ∗(T̄A) for δ < ω, and Fig. 5
depicts V̄θ∗(T̄A) for δ > ω. Note that the oscillations are
not produced by numerical approximation, but rather by the
nonlinear value function. The worst-case T̄ ∗A is as small as
possible for δ < ω and is large for δ > ω. Theorem 4 states
this result formally.

Theorem 4. (Value as a function of T̄A) For low T̄A, we
have

lim
T̄A→0

V̄θ∗(T̄A) = U0

(
1 +

1

v

(
CH + CN

p

1− p

))
. (7)

Define T̄ω as T̄A such that U0 = ω. Then for T̄A ≥
max{r, T̄ω}, we have

V̄θ∗(T̄A) = U0 (1− p) v + CH
v

. (8)

Proof: See Appendix D.
Remarks 5-6 discuss Theorem 4 and Fig. 4-5.

Remark 5. The parameters of Fig. 4 and Fig. 5 differ only in
CN , which has a higher absolute value in Fig. 4. Since CN

only affects V̄θ∗(T̄A) as T̄A → 0, the plots are the same for
high T̄A.

Remark 6. The connection between Fig. 4 and Fig. 5 can be
visualized by translating the left sides of the curves vertically,
while the right sides remain fixed (at V̄θ∗(T̄A) ≈ 3.0). This
gives network designers an intuition of how the worst-case
value can be manipulated by changing the parameters of the
game.

Finally, Corollary 1 summarizes the worst-case value.

Corollary 1. (Worst-Case Value) The worst case value
V̄θ∗(T̄ ∗A) is approximated by6

U0min
T̄A

{(
1 +

1

v

(
CH + CN

p

1− p

))
, (1− p) v + CH

v

}
.

V. SIMULATION

In this section, we simulate a network which sustains five
attacks and implements D’s optimal policy θ∗. Consider
the example network depicted in Fig. 1 in Section I. This
network has 16 production nodes, including routers, wireless
access points, wired admin access, and a database. It also
has sensors, actuators, and controllers, which form part of
a SCADA system. The network has 4 honeypots (in the
top-right of the figure), configured to appear as additional
SCADA system components.

Figure 6 depicts a view of the network in MATLAB [6].
The red line indicates an example attack path, which enters
through the wireless access point at node 1, passes through
the honeynet in nodes 11, 18, and 19, and enters the SCADA
components in nodes 6 and 7. The transitions are realized
randomly.

Figure 7 depicts the cumulative utility of D over time for
five simulated attacks. Towards the beginning of the attacks,
D gains utility. But after learning nears completion (i.e.,
U i ≈ 0), the losses CN from normal systems dominate. The
filled boxes in each trace indicate the ejection point dictated
by θ∗. At these points, U i ≤ ω. The ejection points are
approximately at the maximum utility for traces 1, 3, and
5, and obtain a positive utility in trace 4. Trace 5 involves
a long period in which Si = N, and D sustains heavy
losses. Since the traces are realized randomly, θ∗ maximizes
expected utility rather than realized utility.

VI. DISCUSSION OF RESULTS

This paper aimed to assess how long an intelligent network
defender that detects an attacker should observe the attacker
before ejecting him. We found that the defender should keep
the attacker in a honeypot as long as information remains
to be learned and in a normal system until a threshold
amount of information remains. This threshold is ω, at
which the benefits of observation exactly balance the risks

6We say approximated because it has not been proven that the oscillations
as T̄A → 0 exclude a transient below U0

(
1 + 1

v

(
CH + CN

p
1−p

))
for

δ < ω or U0 (1− p) v+CH
v

for δ > ω.

Fig. 6: The blue nodes and edges illustrate a 20-node net-
work, and the red highlights indicate an example attack trace.

Fig. 7: The curves indicate the cumulative utility gains or
losses for five simulated attacks. The solid squares indicate
the optimal ejection time according to θ∗.

of information loss. Using this model, network designers
can vary parameters (e.g., the number of honeypots and the
rate at which they gather information) in order to maximize
the value function V. In particular, we have examined the
effect of the attacker move period T̄A using a Stackelberg
game in which A chooses the worst-case T̄A. Future work
can use signaling games to calculate attacker beliefs p and
1 − p based on defender strategies. Another direction, for
distributed sensor-actuator networks, is to quantify the risk
CN of system compromise using optimal control theory.

APPENDIX A
PROOF OF FINITE EXPECTED VALUE

The maximum value of Viθ(U i, Si) is achieved if A only
visits honeypots. In this case, Viθ(U i, Si) = (v +CH)U0/v,
so the expected utility is bounded from above. If D chooses
a poor policy (for example, θ(U i, Si) = T iA for all U i ∈
U and Si ∈ S), then Viθ(U i, Si) can be unbounded below.

On the other hand, D can always guarantee Viθ(U i, Si) = 0
(for example, by choosing θ(U i, Si) = 0 for all U i ∈ U
and Si ∈ S). Therefore, the value of the optimal policy is
bounded from below as well as from above.

APPENDIX B
DERIVATION OF VALUE FUNCTION AND OPTIMAL POLICY

For Si ∈ {H,N}, the value function V(U i, Si) is
piecewise-linear in U i. Let V(U i, Si)[a, b] denote V(U i, Si)
restricted to the domain U i ∈ [a, b] ⊂ R. First,
we find V(U i, N) in terms of V(U i, H). For any non-
negative integer k, one step of the Bellman equation gives
V(U i, N)[kδ, (k + 1) δ] ={

CN T̄A + pV
(
U i, N

)
[kδ, (k + 1) δ]

+ (1− p)V
(
U i, H

)
[kδ, (k + 1) δ]

]}
+
,

where {•}+ denotes max{•, 0}. D achieves this maxi-
mization by continuing the game if the expected value for
continuing is positive, and ejecting A if the expected value
is negative.

Rearranging terms and using Eq. (3-
4) gives V(U i, N) [kδ, (k + 1) δ] ={
V
(
U i, H

)
[kδ, (k + 1) δ]− λDN T̄A

}
+
. Now, we have

defined ω as U i ∈ R+ which makes the argument on the right
side equal to zero. This obtains V

(
U i, N

)
[kδ, (k + 1) δ] ={

0, if U i ≤ ω
V
(
U i, H

)
[kδ, (k + 1) δ]− λDN T̄A, if U i > ω.

Next, we find V(U i, H). First, consider V(U i, H)[0, δ]. D
keeps A in the honeypot until all residual utility is depleted,
and then ejects him. Thus V(U i, H)[0, δ] = U iχDH . Next,
for k ∈ 1, 2, . . . , consider V(U i, H)[kδ, (k + 1)δ]. We have
V
(
U i, H

)
[kδ, (k + 1) δ] =

(v + CH) T̄A + pV
(
U i − δ,N

)
[(k − 1) δ, kδ]

+ (1− p)V
(
U i − δ,H

)
[(k − 1) δ, kδ] .

A bit of algebra gives V(U i, H)[kδ, (k + 1) δ] =
δD1 + (1− p)V

(
U i − δ,H

)
[(k − 1) δ, kδ] , if

U i ≤ ω + δ, and V(U i, H)[kδ, (k + 1) δ] =
δD1 + V

(
U i − δ,H

)
[(k − 1) δ, kδ] − pλDN T̄A, otherwise.

Solving this recursive equation for the case of U i ≤ ω + δ
gives V(U i, H)[kδ, (k + 1) δ] =

δD1 + δD1 (1− p) + . . .+ δD1 (1− p)k−1

+ (1− p)k V
(
U i − δk,H

)
[0, δ] . (9)

Using initial condition V(U,H)[0, δ] = UχDH produces
fD(U i) for U i ≤ ω. For U i > ω + δ, consider the integer
k1 such that (k − k1 − 1)δ ≤ ω < (k − k1)δ. Then

V(U i, H)[kδ, (k + 1) δ] = k1

(
δD1 − pλDN T̄A

)
+ V

(
U i − k1δ,H

)
[(k − k1 − 1)δ, (k − k1)δ] .

But the last term is simply fD
(
U i − k1δ

)
, and k1 =

k
[
U i − ω

]
defined in Eq. (5). Substituting from Eq. (9) gives

the entire function fD(U i), U i ∈ U.

APPENDIX C
DERIVATION OF k[ω] AND ω

We solve first for k[ω] and then for ω. Because of the floor
function in k[ω], we have that ω ∈ [k [ω] δ, (k [ω] + 1) δ) .
Then for some ε ∈ [0, 1), ω = (k [ω] + ε) δ.

Note that fD(ω) = T̄Aλ
D
N , i.e., the expected gain of

surveillance is equal to the security risk at U i = ω. Therefore,
we have T̄AλDN =

χDH (ω − δk[ω]) (1− p)k[ω]
+
δD1
p

(
1− (1− p)k[ω]

)
. (10)

Substituting for ω,

T̄Aλ
D
N −

δD1
p

= (k [ω] + ε) δχDH (1− p)k[ω]

− δk[ω]χDH (1− p)k[ω] − (1− p)k[ω].

This reduces to

T̄Aλ
D
N −

δD1
p

= εδχDH (1− p)k[ω] − (1− p)k[ω],

which is uniquely solved by the k[ω] in Theorem 1. Now
solving Eq. (10) for ω obtains the result in Lemma 1.

APPENDIX D
DERIVATION OF V̄θ∗(T̄A)

We solve the value function in two cases.

A. Limit as T̄A → 0

As T̄A → 0, ω and δ decrease, so U0 > ω + δ, and the
value functions follow fD2 . Therefore, we find the limit of
fD2 as T̄A → 0. As T̄A → 0, k[U0]− k1[U0] remains finite,
but δD1 → 0, and δk[U0] approaches U0. Therefore, the first
two terms of fD2 approach zero. The last term expands to

T̄A

⌊
U0 − ω
vT̄A

⌋(
v + CH + CN

p

1− p

)
.

As T̄A → 0, this approaches

U0

(
1 +

1

v

(
CH + CN

p

1− p

))
. (11)

Now, manipulation of Eq. (6) yields

Vθ†
(
T̄A
)

= fD2
(
U0
)

+ T̄ACN
p

1− p .

But as T̄A → 0, the second term approaches zero. Thus
Vθ†(T̄A) approaches Eq. (11). We have proved Eq. (7).

B. Large T̄A
There are several cases. First, consider δ < ω and

T̄A ≥ U0/v. The second condition implies that D keeps A
in the first honeypot that he enters until all residual utility is
exhausted, which produces utility (v + CH)U0/v. The first
condition implies that U0/v > T̄ω, so T̄A > T̄ω, which
means that D ejects A from the first normal system that he
enters, which produces 0 utility. The weighted sum of these
utilities gives Eq. (8).

Next, consider δ > ω and T̄A ≥ U0/ω. The first condition
implies that U0/v < T̄ω, so it not guaranteed that T̄A ≥ T̄ω.
But if T̄A ≥ T̄ω, D ejects A from the first normal system
that he enters, and we have Eq. (8).

REFERENCES

[1] Massimiliano Albanese, Ermanno Battista, and Sushil Jajodia. Deceiv-
ing attackers by creating a virtual attack surface. In Cyber Deception,
pages 169–201. Springer, 2016.

[2] Devlin Barrett, Danny Yadron, and Damian Paletta. U.S. suspects
hackers in China breached about 4 million people’s records, of-
ficials say. The Wall Street Journal, 2015. [Online] Available:
https://www.wsj.com/.

[3] Richard Bellman. On the theory of dynamic programming. Proc. Natl.
Academy of Sciences, 38(8):716–719, 1952.

[4] Thomas E Carroll and Daniel Grosu. A game theoretic investigation of
deception in network security. Security and Communication Networks,
4(10):1162–1172, 2011.

[5] Karel Durkota, Viliam Lisỳ, Branislav Bosanskỳ, and Christopher
Kiekintveld. Optimal network security hardening using attack graph
games. In Intl. Joint Conf. on Artificial Intelligence, pages 526–532,
2015.

[6] MATLAB. R2017b. The MathWorks Inc., Natick, Massachusetts,
2017.

[7] Keith W Miller, Jeffrey Voas, and George F Hurlburt. Byod: Security
and privacy considerations. IT Professional, 14(5):53–55, 2012.

[8] Mohammad A Noureddine, Ahmed Fawaz, William H Sanders, and
Tamer Başar. A game-theoretic approach to respond to attacker lateral
movement. In Decision and Game Theory for Security, pages 294–313.
Springer, 2016.

[9] United States Department of Defense. Department of Defense Strategy
for Operating in Cyberspace. DIANE Publishing, 2012.

[10] Jeffrey Pawlick, Sadegh Farhang, and Quanyan Zhu. Flip the cloud:
Cyber-physical signaling games in the presence of advanced persistent
threats. In Decision and Game Theory for Security, pages 289–308.
Springer, 2015.

[11] Jeffrey Pawlick and Quanyan Zhu. Deception by design: Evidence-
based signaling games for network defense. In Workshop on the
Economics of Inform. Security and Privacy, Delft, The Netherlands,
2015.

[12] Jeffrey Pawlick and Quanyan Zhu. Strategic trust in cloud-enabled
cyber-physical systems with an application to glucose control. IEEE
Trans. Inform. Forensics and Security, 12(1), 2017.

[13] Frank J. Stech, Kristin E. Heckman, and Blake E. Strom. Integrating
cyber-D&D into adversary modeling for active cyber defense. In Cyber
Deception, pages 169–201. Springer, 2016.

[14] Chris Stokel-Walker. Hunting the DNC hackers: how Crowdstrike
found proof Russia hacked the Democrats. WIRED, 2017. [Online]
Available: http://www.wired.co.uk/.

[15] M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest. Flipit: The game
of “stealthy takeover”. J Cryptology, 26(4):655–713, 2013.

[16] Heinrich Von Stackelberg. Marktform und gleichgewicht. J. Springer,
1934.

[17] J. Zhuang, V. M. Bier, and O. Alagoz. Modeling secrecy and deception
in a multiple-period attacker–defender signaling game. European J
Operational Res., 203(2):409–418, 2010.

	I Introduction
	I-A Active Cyber Defense and Honeynets
	I-B Timing in Attacker Engagement
	I-C Contributions
	I-D Related Work

	II Problem Formulation
	II-A State Space X
	II-B One-Stage Actions A
	II-C Reward Function
	II-D Transition Kernel q
	II-E Infinite-Horizon, Undiscounted Reward

	III Analysis and Results
	III-A Reduced Action Spaces
	III-B Value Function Structure
	III-C Value Function Threshold
	III-D Optimal Policy Function

	IV Robustness Evaluation
	IV-A Equilibrium Concept
	IV-B Equilibrium Analysis

	V Simulation
	VI Discussion of Results
	Appendix A: Proof of Finite Expected Value
	Appendix B: Derivation of Value Function and Optimal Policy
	Appendix C: Derivation of k[] and
	Appendix D: Derivation of *(A)
	D-A Limit as A0
	D-B Large A

	References

