
A New Design Framework for Heterogeneous
Uncoded Storage Elastic Computing

Mingyue Ji1, Xiang Zhang1, and Kai Wan2
1University of Utah, 2Technische Universität Berlin

Email: {mingyue.ji@utah.edu, xiang.zhang@utah.edu, kai.wan@tu-berlin.de}

Abstract—Elasticity is one important feature in modern cloud
computing systems and can result in computation failure or
significantly increase computing time. Such elasticity means that
virtual machines over the cloud can be preempted under a short
notice (e.g., hours or minutes) if a high-priority job appears;
on the other hand, new virtual machines may become available
over time to compensate the computing resources. Coded Storage
Elastic Computing (CSEC) introduced by Yang et al. in 2018 is
an effective and efficient approach to overcome the elasticity and
it costs relatively less storage and computation load. However,
one of the limitations of the CSEC is that it may only be
applied to certain types of computations (e.g., linear) and may
be challenging to be applied to more involved computations
because the coded data storage and approximation are often
needed. Hence, it may be preferred to use uncoded storage by
directly copying data into the virtual machines. In addition,
based on our own measurement, virtual machines on Amazon
EC2 clusters often have heterogeneous computation speed even
if they have exactly the same configurations (e.g., CPU, RAM, I/O
cost). In this paper, we introduce a new optimization framework
on Uncoded Storage Elastic Computing (USEC) systems with
heterogeneous computing speed to minimize the overall computa-
tion time. Under this framework, we propose optimal solutions of
USEC systems with or without straggler tolerance using different
storage placements. Our proposed algorithms are evaluated using
power iteration applications on Amazon EC2.

I. INTRODUCTION

Coded Storage Elastic Computing (CSEC) system intro-
duced by Yang et al. in [1] is an effective approach to over-
come the elasticity of modern cloud computing system, where
elasticity means that Virtual Machines (VMs) on the cloud
systems, e.g., instances on Amazon EC2, can be preempted
under a short notice (e.g., hours or minutes) if a high-priority
job appears; on the other hand, new VMs may become avail-
able over time to compensate the computing resources. Such
elasticity can result in computation failure or significantly
increase computing time. In [1], using a Maximum Distance
Separable (MDS) coded storage placement, the authors pro-
posed a cyclic computation assignment scheme such that no
redundant computation is needed when the number of available
VMs Nt is between L and N where N is the maximum
number of VMs in the systems and L is the smallest number of
VMs in the system. In [2], the authors introduced a new metric,
called transition waste, which is defined as the difference
between the total number of changes and the number of
necessary changes of the computation assignment if some
VMs become preempted during one computation or time step.

This problem is combinatorial and is challenging to be solved
in general. The authors proposed new algorithms using shifted
cyclic task allocation to reduce the transition waste and showed
it is optimal under some parameter settings. In [3], the authors
proposed two hierarchical schemes that can further speed
up the USEC system by effectively allocating tasks among
available nodes while the encoding and decoding complexity
may be increased. Some important limitations of [1]–[3]
include the assumption that all available VMs have the same
computing speed or the proposed schemes do not consider the
heterogeneous computing speed among machines, and all VMs
have the homogeneous storage constraint. In practice, based on
our own measurement [4], the computing speed among VMs
can be significantly different even if they have exactly the
same configurations, e.g., same CUP, RAM and I/O cost. In
[5], the authors considered the elastic computing systems with
heterogeneous computing speed and homogeneous storage
constraint, and formulated a new CSEC framework, that is to
minimize the overall computation time, using a combinatorial
optimization approach. In addition, one exact optimal solution
is provided and can be achieved using the filling algorithm,
which is a low-complexity iterative algorithm that can com-
plete within Nt iterations, where Nt is the number of available
VMs at time step t. Later, in [6], the authors considered
the CSEC system with both heterogeneous computing speed
and heterogeneous storage constraint, and formulated a new
combinatorial optimization framework based on the result in
[5] and designed algorithms to achieve the optimal computa-
tion time. Under the assumption of heterogeneous computing
speed, in [4], the authors made preliminary attempts to study
the scenario where both elasticity and stragglers are present
and proposed new algorithms using the idea of the filling algo-
rithm.1 An achievable trade-off between computation time and
straggler tolerance was established. In addition, the authors in
[4] implemented the proposed algorithms for heterogeneous
CSEC systems using real applications on Amazon EC2 and
demonstrated that large gain in terms of the computation time
can be achieved by the proposed algorithms.

Despite clear advantages of the CSEC systems such as
less storage overhead, it can only be applied to certain types
of computations (e.g., linear) and may be challenging to be

1Stragglers are often referred to as the machines with abnormally slower
speed.

ar
X

iv
:2

10
7.

09
65

7v
2

 [
cs

.D
C

]
 2

3
Ju

l 2
02

1

applied to more involved computations (e.g., deep learning)
due to the coded data storage. In this case, approximation
is often needed. Hence, it may be preferred to use uncoded
storage by just copying the data into the virtual machines since
computations can be operated directly over the original data in
this case. We refer to such systems as Uncoded Storage Elastic
Computing (USEC) systems. In this paper, we introduce a
new optimization framework on USEC with heterogeneous
computing speed to minimize the overall computation time.
We propose solutions to USEC systems with or without
straggler tolerance using different storage placements.

Our contributions are summarized as follows:

1) When there is no straggler tolerance requirement, given
the storage placement and the heterogeneous computing
speed of VMs, we formulate a new USEC framework
as a convex optimization problem which can be solved
using typical convex optimization solvers. Further, we
investigate the performance in terms of computation time
using different uncoded storage placements.

2) We incorporate straggler tolerance into the above prob-
lem formulation and formulate it as a combinatorial
optimization problem. In addition, we design a low-
complexity algorithm to achieve the optimal solution of
the proposed optimization problem given the uncoded
storage placement.

3) We perform experiments using the proposed USEC
framework with heterogeneous computing speed, and
using the power iteration application under a simple
setup. We demonstrate that about 20% gain in terms of
computation time can be achieved using the proposed
algorithms by taking the advantage of heterogeneous
computing speed.

Notation Convention: We use | · | to represent the cardi-
nality of a set or the length of a vector and [n]

∆
= {1, 2, . . . , n}.

A bold symbol such as a indicates a vector and a[i] denotes
the i-th element of a. Calligraphic symbols such as A presents
a set with numbers as its elements. Bold calligraphic symbols
such as A represents a set whose elements are sets (e.g., A).

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a set of N VMs jointly store an uncoded data
matrix X with dimension q×r, which is row-wise partitioned
in X = [X1;X2; · · · ;XG]. With a slight abuse of notation,
Xg, g ∈ [G] denotes both the row sets and sub-matrices of
X. In particular, the number of rows in each Xg, g ∈ [G] is
q/G and we index them as [q/G]. Each Xg is placed into
J machines. Let Ng = {n : Xg ∈ Zn} denote the set of
VMs that stores Xg and Zn be the storage placement for
machine n. The set of the storage placements for all VMs is
denoted by Z = {Zn, n ∈ [N]}. Similar to [1], the machines
collectively perform matrix-vector computations over multiple
computation steps. In a given time step only a subset of the N
machines are available to perform matrix computations. More
specifically, in computation step t, a set of available machines

Nt ⊆ [N] with |Nt| = Nt aims to compute

yt =Xwt, (1)

where wt is some vector of length r. The machines of [N]\Nt
are preempted.

The VMs in Nt do not compute yt directly. Instead, each
machine n ∈ Nt computes XSnwt, where Sn ⊂ Xg,Xg ∈
Zn denotes a row set in the sub-matrix Xg ∈ Zn. Then the
results from VMs will be sent to the master machine to obtain
yt. Let Tg,n denote the row set of sub-matrix Xg computed
at machine n ∈ Nt.

Definition 1: (Computation load) Let the computation load
matrix be M and each entry of M , [M]g,n = µ[g, n], is the
computation load of sub-matrix Xg at machine n defined as

µ[g, n]
∆
=
|Tg,n|
q/G

. (2)

If Xg /∈ Zn, µ[g, n] = 0. The computation load vector for N
machines, µ = [µ[1], · · · , µ[n]], is defined as

µ[n] =
∑
g∈[G]

µ[g, n], ∀n ∈ Nt, (3)

which is the sum of the fractions of rows of the corresponding
stored sub-matrices computed by machine n at time step t. ♦
Note that Tg,n, M and µ may change with each time step,
but reference to t is omitted for ease of disposition. Moreover,
the machines have varying computation speed defined by the
strictly positive vector, s, which is known for each time step
and defined as follows.

Definition 2: (Computation Speed) The computation speed
vector s is a length-N vector with elements s[n], n ∈ [N],
where s[n] is the speed of machine n measured as the inverse
of the time it takes machine n to compute all rows of one of
its assigned sub-matrix. ♦

The computation time is dictated by the VM that takes the
most time to perform its assigned computations, and defined
as follows.

Definition 3: (Computation Time) The computation time
in a particular time step is defined as

c(M) = c(µ)
∆
= max
n∈Nt

µ[n]

s[n]
= max
n∈Nt

∑
g∈[G] µ[g, n]

s[n]
. (4)

♦

A. USEC without straggler tolerance

We first formulate the optimization framework for the
USEC systems without straggler tolerance. For a fixed storage
placement Z , we can formulate the following optimization
problem.

minimize
Tg,n

c (M) (5a)

subject to:
⋃

n∈Nt:Xg∈Zn

Tg,n =
[q
G

]
,∀g ∈ [G]. (5b)

It can be shown that the optimization problem (5) is equivalent
to the following convex optimization problem.

minimize
M

c (M) = max
n∈Nt

∑
g∈[G] µ[g, n]

s[n]
(6a)

subject to:
∑

n∈Nt:Xg∈Zn

µ[g, n] = 1,∀g ∈ [G], (6b)

µ[g, n] = 0,∀Xg /∈ Zn, n ∈ Nt, (6c)
0 ≤ µ[g, n] ≤ 1,∀n ∈ Nt. (6d)

It can be seen that by solving (6), we can obtain the optimal
computation assignment M?, which can be used to find the
corresponding Tg,n straightforwardly since each row in Xg is
computed only once (see Section III for examples).

B. USEC with straggler tolerance

When straggler tolerance is incorporated into the USEC
framework, we use the redundant task assignment approach,
meaning that each row in X can be computed 1+S times in or-
der to tolerate at most S stragglers. This implies that the com-
putation can be recovered when any S machines, denoted by
S, of the available machinesNt become stragglers and S is not
known a priori. Hence, this problem becomes a combinatorial
optimization problem. In particular, a computation assignment
within Xg is defined by Fg disjoint sets of rows in Xg , i.e.,
Mg = {Mg,1, . . . ,Mg,Fg} such that

⋃
f∈[Fg]Mg,f =

[
q
G

]
.

Then, Fg sets of machines, Pg = {Pg,1, . . . ,Pg,Fg
}, which

store and perform computation over Xg , are defined such that
Pg,f ⊆ {n ∈ Nt : Xg ∈ Zn}, |Pg,f | = 1 + S, ∀f ∈ [Fg] and
machines in Pg,f computes the row set Mg,f in Xg . Note
that Tg,n =

⋃
f∈[Fg]:n∈Pg,f

Mg,f . The sets Mg , Pg and Fg
may vary with each time step based on machines’ availability.

In a given time step t, our goal is to design the task
assignments, Mg,Pg, g ∈ [G], such that the computation
yt = Xwt can be recovered when some VMs are stragglers
that do not provide their assigned computations to the master
machine.

Then, we aim to design the computation assignment that
minimizes the computation time of (4) resulting from the
computation load matrix defined in (2). In time step t, given Z ,
Nt and s, the optimal computation time, c?, is the minimum
of computation times defined by all possible task assignments,
such that S stragglers can be tolerated and the computation
can be recovered. In particular c? is the optimal value of the
following combinatorial optimization problem.

minimize
Mg,Pg

c (M) (7a)

s.t.
⋃

f∈[Fg]

Mg,f =
[q
G

]
,∀g ∈ [G], (7b)

|Pg,f \ S| ≥ 1,∀g ∈ [G],Pg,f ∈ Pg,∀S ⊂ Nt, |S| = S.
(7c)

The optimization problem (7) is combinatorial and the optimal
solution is challenging. In the following, we will propose
a novel low-complexity algorithm to achieve the optimal

don’t
access

don’t
access

don’t
access

don’t
access

don’t
access

don’t
access

s = [1,2,4,8,6,32],

0.1429

0.3132

0.2857 0.5714

0.3374

0.3494

μ = [0.4286,0.8571,1.7143,
c(μ) = 0.4286

0.1429

0.1429

0.2857

0.2857

0.5714

0.5714

0.3132

0.3132

0.3374

0.3374

0.3494

0.3494

X1 X3
X5X4 X6

X2
VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

0.9396,1.0122,1.0482]
(a) Repetition placement.

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

don’t
access

don’t
access don’t

access don’t
access

don’t
access

don’t
access

X1 X3
X5X4 X6

X2 s = [1,2,4,8,6,32],

0.1429

0

0

0

0

0.2857

0

0.5714

0

0.0489

1

0.0424

0.3924

0.9576

0.3648

0.6076

1

0.5863

μ = [0.1429,0.2857,0.5714,
c(μ) = 0.1429

1.0912,1.7149,2.1939]

don’t
access don’t

access

(b) Cyclic placement.

Fig. 1: Illustration of the proposed USEC framework.

0 0.2 0.4 0.6 0.8

Computation Time

0

100

200

300

400

500
Repetition

Cyclic

MAN

Fig. 2: Comparison of histograms of C(M) for repetition,
cyclic and MAN storage placements over 5000 realizations of
the computing speed vector.

solution for this combinatorial optimization problem. Interest-
ingly, the filling algorithm introduced in the CSEC framework
with heterogeneous computing speed [6] or the heterogeneous
storage-constrained private information retrieval problem [7]
can be applied here to obtain the proposed optimal solution
for (7).

III. EXAMPLES

In this section, we will illustrate two examples of the pro-
posed USEC framework with and without straggler tolerance,
respectively, under the homogeneous storage constraint. We
consider two commonly used uncoded storage schemes, which

TABLE I: Comparison between MAN, cyclic and repetition
placements.

computation time cyclic repetition MAN
mean 0.1492 0.2296 0.1442

variance 0.0033 0.0114 0.0032

are fractional repetition placement (referred to as repetition
placement hereafter) and cyclic placement, which are widely
used in the distributed storage and gradient coding literatures
[8]–[10]. In particular, we consider a USEC system with
N = 6 VMs and the speed vector is s = [1, 2, 4, 8, 16, 32].
The data matrix X is partitioned into G = 6 sub-matrices, each
placed into J = 3 machines. Fig. 1 shows this system with rep-
etition placement (Fig.1a) and with cyclic placement (Fig. 1b),
respectively. Let N = Nt, all µ[g, n], g ∈ [6], n ∈ [N] are
computed by solving the convex optimization problem (6). In
Fig. 1, the colors represent the storage placement of each sub-
matrix and the numbers inside represent the corresponding
µ[g, n] for sub-matrix g and machine n. The computation
time for the cyclic placement is c(µ) = 0.1429, which
is significantly better than that of the repetition placement
c(µ) = 0.4286. However, interestingly, the cyclic placement
is not necessarily better than the repetition placement for any
speed vector. For example, if machines 3 and 4 are much faster
than other VMs, then the repetition placement can be better
than the cyclic placement since machines 3 and 4 stores the
entire data matrix under the repetition placement. In order to
have a better understanding of this phenomenon, we ran an
experiment by randomly generating s based on an exponential
distribution. By solving the minimum computation time for
each s using (5), we obtain the distribution of the computation
time for these two storage placements shown in Fig. 2, where
the cyclic placement (red) is much better than the repetition
placement (yellow) in most realizations. In particular, there are
only 68 cyclic placement realizations out of 5000 worse than
repetition placement realizations. Although these results show
the promising performance of the cyclic storage placement, it
is not optimal in general. For example, using the Maddah-Ali
Niesen coded caching (MAN) storage placement scheme [11]
to repeat the same experiment, we can obtain slightly better
results as shown in Fig. 2 (blue). In particular, out of 5000
realizations, there are only 9 MAN storage realizations worse
than repetition placement realizations and 1621 MAN place-
ment realizations worse than cyclic placement realizations.
Moreover, the MAN placement indeed achieves the minimum
computing time in terms of both mean and variance compared
to cyclic and repetition placements (see Table I).

When the straggler tolerance is considered, we need to
solve the optimization problem (7) to obtain the optimal
M? and then find a feasible computation assignment that
meets M?. Consider an example of a USEC system with
homogeneous computing speed. Here, we let N = Nt = 6,
J = 3, S = 1, and the repetition placement is used. The
optimal µ?[g, n], g ∈ [6], n ∈ [6] are shown in Fig. 3 and the
optimal µ? = [2, 2, 2, 3, 3]. The optimal computation time is

s = [1,1,1,1,1,1],
μ = [2,2,2,3,3]

c(μ) = 3X1 X3
X5X4 X6

X2
VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

don’t
access

don’t
access

don’t
access

don’t
access

don’t
access

0

0

0

1

1

1 1

1

1

1/3
0

1/3
1/3
1/3
0

0
1/3
1/3

1/3
0

1/3
1/3
1/3
0

0
1/3
1/3

1/3
0

1/3
1/3
1/3
0

0
1/3
1/3

Fig. 3: Illustration of uncoded USEC with straggler tolerance
for S = 1 using redundant task assignment.

c?(µ) = 3.

IV. PROPOSED USEC DESIGN

The proposed USEC design with straggler tolerance is
given by Algorithm 1, which is obtained by solving the
combinatorial optimization (7) in a similar fashion as in [5]
(line 6 in Algorithm 1). The proposed design is adaptive by
measuring (line 14 in Algorithm 1) and updating (line 4 in
Algorithm 1) the speed vector at time step. Interestingly, this
algorithm adapts the previous CSEC (not USEC) computation
assignment [5] to assign computations to 1 + S machines.

Next we will explain the proposed design. Since the pro-
posed design without straggler tolerance is a special case of the
general design with straggler tolerance for the combinatorial
optimization problem (7), then we will focus on designing
algorithms to solve (7).

Similar to [5], we will solve the combinatorial optimization
problem (7) exactly in two steps. In the first step, we solve the
following relaxed convex optimization problem to obtain the
optimal M? without considering whether such a computation
assignment exists or not.

minimize
M

c (M) = max
n∈Nt

∑
g∈[G] µ[g, n]

s[n]
(8a)

subject to:
∑

n∈Nt:Xg∈Zn

µ[g, n] = 1 + S, ∀g ∈ [G], (8b)

µ[g, n] = 0,∀Xg /∈ Zn, n ∈ Nt, (8c)
0 ≤ µ[g, n] ≤ 1,∀n ∈ Nt. (8d)

The difference between (8) and (6) is to change
(6b) from

∑
n∈Nt:Xg∈Zn

µ[g, n] = 1,∀g ∈ [G] to∑
n∈Nt:Xg∈Zn

µ[g, n] = 1 + S,∀g ∈ [G] as in (8b).
After obtaining the optimal M?, we will apply the filling
algorithm developed in [5] to assign computations for each
Xg ∈ Zn, n ∈ Nt. Now we will describe the filling algorithm
for USEC with homogeneous and heterogeneous computing
speed, respectively.

Proposed USEC with homogeneous computation assign-
ment: Consider Ng = {n : Xg ∈ Zn} with |Ng| = Ng . Then

we define a computation assignment with Fg = Ng row sets of
Xg . There are Ng disjoint equally-sized row sets that collec-
tively span all rows:Mg,f = {1+(f−1) q

NgG
, . . . , f q

NgG
} for

f ∈ [Ng]. Then, define a cyclic assignment such that machine
set Pg,f = {f%Ng, . . . , (f+S)%Ng} for f ∈ [Ng], where we
define a%Ng , a−

⌊
a−1
Ng

⌋
Ng to facilitate the cyclic design.

Proposed USEC with heterogeneous computation assign-
ment: Given the computation load matrix M?, we can ob-
tain the computation assignment by applying the assignment
algorithm in [5] to assign computations to 1 + S VMs for
each Xg (line 6 in Algorithm 1). The computation assignment
algorithm for Xg is given by Algorithm 2.

Remark 1: For both designs, we observe that the computa-
tion time c(M) increases with the straggler tolerance, S. This
demonstrates a trade-off between the computation time and
straggler tolerance of the system.

Algorithm 1 Adaptive Straggler Tolerant Uncoded Storage
Elastic Computing

Input: ŝ, γ, S, T , w1

1: ν ← ŝ: same for all worker VMs
2: for t ∈ [T] do
3: At Master Machine:
4: ŝ ← γν + (1 − γ)ŝ (update estimate of speed

vector).
5: Nt ← list of available machines
6: {Fg,Mg,Pg : ∀g ∈ [G]} ← Results of computa-

tion assignment algorithm for Xg with straggler tolerance
of S for available machines Nt with speeds of ŝ

7: Send wt and {Fg,Mg,Pg : ∀g ∈ [G]} to worker
VMs

8: At Worker VMs:
9: n← index of worker VM

10: µ[n]← total computation load of worker VM n
11: τ1 ← current time
12: Perform assigned computations based on
{Fg,Mg,Pg : ∀g ∈ [G]}

13: τ2 ← current time
14: ν[n] ← µ[n]/(τ2 − τ1) (calculate speed based on

current time step)
15: Send computations and ν[n] to Master Machine
16: At Master Machine: after receiving results from at

most Nt − S workers.
17: wt+1 ← Combine worker results
18: end for
Output: wT

V. EVALUATIONS ON AMAZON EC2

We evaluate the proposed algorithm using power iteration
applications on Amazon EC2 instances. The goal is to compare
the performance difference in terms of computation time be-
tween the homogeneous and heterogeneous task assignments.

5` is an N ′-length vector and 0 < m[`[1]] ≤ m[`[2]] ≤ · · · ≤ m[`[N ′]].
6This is the condition obtained by using Lemma 1 in [6].

Algorithm 2 Computation Assignment for Xg for Heteroge-
neous Computing Speed

Input: µ?g , q, Z and Ng = {1, · · · , Ng}.
1: m← µ?g
2: f ← 0
3: while m contains a non-zero element do
4: f ← f + 1
5: L′ ←

∑Ng

i=1m[i]
6: N ′ ← number of non-zero elements in m
7: `← indices that sort the non-zero elements of m from

smallest to largest5

8: Pg,f ← {`[1], `[N ′ − L+ 2], . . . , `[N ′]}
9: if N ′ ≥ L+ 1 then

10: αg,f ← min
(
L′

L −m[`[N ′ − L+ 1]],m[`[1]]
)

6

11: else
12: αg,f ← m[`[1]]
13: end if
14: for n ∈ Pg,f do
15: m[n]← m[n]− αg,f
16: end for
17: end while
18: F ← f
19: Partition rows [qG] of Xg into F disjoint row sets
Mg,1, . . . ,Mg,F of size α1q

G , . . . , αF q
G rows, respectively

Output: F , {Mg,1, . . . ,Mg,F } and {Pg,1, . . . ,Pg,F }

0 10 20 30 40 50
Computation Time (s)

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

M
ea

n
Sq

ua
re

 E
rro

r Heterogeneous USEC
Homogeneous USEC

Fig. 4: Power Iteration: Results using USEC designs on
Amazon EC2 without stragglers (top) and with 2 stragglers
each iteration (bottom). The y-axis represents the normalized
mean square error between the true dominant eigenvector and
the estimated eigenvector.

Power Iteration: The power iteration algorithm computes
the largest eigenvalue and the corresponding eigenvector of
a large matrix X. In particular, it starts with a vector b0,
which may be an approximation to the dominant eigenvector
or a random vector. The method is described by the recursive
relation, bk+1 = Xbk

‖Xbk‖ . The sequence bk converges to an
eigenvector associated with the dominant eigenvalue. It can be
seen that at each iteration, we can directly apply the proposed
Algorithm 1. In particular, a dense 6, 000-by-6, 000 symmetric
matrix is row-wise split into G = 6 sub-matrices which will
be stored at each machine. We apply the repetition placement.

A vector of length 6, 000 is updated by performing a matrix-
vector multiplication in a distributed manner on the available
worker VMs. The master machine combines the results and
normalizes the vector. This process is repeated such that the
vector converges to the eigenvector associated with the largest
eigenvalue.

The network has one t2.x2large master machine with
8 vCPUs and 32 GiB of memory. The worker VMs consist
of 3 t2.large instances, each with 2 vCPUs and 8 GiB of
memory, and 3 t2.xlarge instances, each with 4 vCPUs
and 16 GiB of memory. Similar to [4], we observed that all
VMs have very different computing speed. For simplicity, we
let N = Nt and S = 0 in order to show the advantage of
the heterogeneous task assignment over the homogeneous task
assignment. The result is shown in Fig. 4, where the gain of
Algorithm 1 is about 20% in terms of the computation time.

VI. CONCLUSIONS

In this paper, we introduce a new optimization framework
on USEC with heterogeneous computing speed to minimize
the overall computation time. In particular, we consider the
USEC systems under different uncoded storage placements
and with or without straggler tolerance. For both scenarios,
we propose optimal algorithms given the storage placements.
These algorithms are evaluated using real applications on
Amazon EC2 to demonstrate their gains in terms of compu-
tation time compared to the designs using the homogeneous
computing speed assumption.

REFERENCES

[1] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded elastic computing,” in 2019 IEEE International Symposium on
Information Theory (ISIT), July 2019, pp. 2654–2658.

[2] H. Dau, R. Gabrys, Y.C. Huang, C. Feng, Q.H. Luu, E. Alzahrani, and
Z. Tari, “Optimizing the transition waste in coded elastic computing,”
in 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2020, pp. 174–178.

[3] Shahrzad Kiani, Tharindu Adikari, and Stark C. Draper, “Hierarchical
coded elastic computing,” in ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021,
pp. 4045–4049.

[4] N. Woolsey, J. Kliewer, R.-R. Chen, and M. Ji, “A practical algorithm
design and evaluation for heterogeneous elastic computing with strag-
glers,” arXiv preprint arXiv:, 2021.

[5] N. Woolsey, R.-R. Chen, and M. Ji, “Heterogeneous computation
assignments in coded elastic computing,” in 2020 IEEE International
Symposium on Information Theory (ISIT), 2020, pp. 168–173.

[6] N. Woolsey, R.-R. Chen, and M. Ji, “Coded elastic computing on
machines with heterogeneous storage and computation speed,” IEEE
Transactions on Communications, vol. 69, no. 5, pp. 2894–2908, 2021.

[7] N. Woolsey, R.-R. Chen, and M. Ji, “Uncoded placement with linear
sub-messages for private information retrieval from storage constrained
databases,” IEEE Transactions on Communications, vol. 68, no. 10, pp.
6039–6053, 2020.

[8] R. Tandon, Qi Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, 2017, pp. 3368–3376.

[9] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” arXiv:1802.03475, 2018.

[10] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic mds codes and expander graphs,” IEEE Transactions on
Information Theory, vol. 66, no. 12, pp. 7475–7489, 2020.

[11] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
Information Theory, IEEE Transactions on, vol. 60, no. 5, pp. 2856–
2867, 2014.

	I Introduction
	II Network Model and Problem Formulation
	II-A USEC without straggler tolerance
	II-B USEC with straggler tolerance

	III Examples
	IV Proposed USEC Design
	V Evaluations on Amazon EC2
	VI Conclusions
	References

