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Abstract 

From the perspective of complex network theory, complex systems can be characterized by the interaction of microscopic units through 
nonlinear effects, yielding macroscopic emergent behavior. In light of the powerful capability of deep learning in feature extraction and 
model fitting from large amount of datasets, we try to overview the benefits of combining the complex network analysis with deep learning 
techniques to investigate complex systems. We first explore the existence of complexity in complex systems. In what followed, we first 
give a brief description of complex network theory. Then, we present an overview of deep learning technology. Subsequently, we focus on 

the research advances and applications in the analysis of complex systems based on complex network theory and deep learning. The last 
section is further discussion and prospects for the combination of these two methods. In a nutshell, the development of deep learning 
combined with complex network theory allows for exploring the complexity in complex systems at a higher level. 
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1.  Introduction  

 

Complexity in complex systems has always been a problem that scientists are committed to pursuing and deeply exploring. 

Truthfully, its development has been entirely driven by research methods. For example, before the advent of computers, people 

mainly employ the method of reductionism to study complex systems which are questionable due to the discovery of nonlinear 

interactions [1]. In the 1990s, the research groups from Santa Fe Institute gradually formed, giving rise to the birth of network 
science which is capable of characterizing the complex systems in various fields [2]. In the course of research, graph theory 

provides a highly effective mathematical tool used to model complex systems as a network. Afterwards, network analysis 

based on small-world model, scale-free model and various kinds of network models permeated all corners of complexity 

research [3,4]. Since 2010, in light of the advent of big data and computational social science, complexity research has 

gradually stepped into a new stage of development with deep learning techniques involved. 

 

The complex network theory is mainly employed to characterize network structure and explore the function of complex 

systems. In the course of theory development, there have been a lot of fundamental quantities and relevant measurements 

developed [5]. However, it has been clearly noticed that with the rapid development of information technology, the increasing 

amounts of data are more readily available than before. Therefore, it is becoming increasingly imperative in complex network 

research to discover the desired nodes relationship from the vast amount of data, to find the patterns and “extra” features 

hidden in the data, and to use them rationally to build a close-to-reality network under study as the scale and type of data we 
are able to collect continues to grow [6]. To this end, the advances in machine learning (ML) techniques come into play. 

 

Machine learning refers to a large set of algorithms for data mining, which include logistic regression, decision trees, 

collaborative filtering, etc [7]. The development of machine learning is divided into two parts, Shallow Learning and Deep 

Learning. Shallow learning originated in the 1920s with the invention of the back-propagation algorithm for artificial neural 

networks, which led to the popularity of statistical-based machine learning algorithms. Afterwards, in 2006, Hinton proposed 

the Deep Neural Network algorithm, which greatly improved the capability of neural networks [8]. The advantages of deep 
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learning mainly lie in automatically extracting hidden features and pattern recognition in massive datasets. The first 

conjunction point between complex network theory and deep learning technology is that deep learning algorithms as an 

advanced and intelligent tool for data analysis can be used to exploit the hidden information behind network structure. The 

characteristic features of network structure (e.g. average degree, node centrality, degree distribution, average short path) can 

be applied as the input variables for training the DL algorithms to predict those properties. Another point where complex 

network theory and deep learning can be combined lies in that data can be represented by means of networks to capture the 

relations among data space, topology, and functions of systems. Accordingly, in this work, we focus on the benefits and 

necessities of combining complex network theory with deep learning techniques to study complex systems from above 

mentioned two points of combination.  
 

The contents of this work are organized as follows. In section 2, we review the complexity in the complex networks. 

Then, we present a brief introduction of complex network theory in section 3. Once a short overview of deep learning in 

section 4 is conducted, we place emphasis on the combination of complex network theory and deep learning in terms of their 

applications in section 5. Following that, we discuss the prospects for deployment of deep learning in complex systems 

concerning complex network theory in the last section. 

 

2. Complexity in Complex Networks 

 

The universe and everything in it can be regarded as Complex Systems composed of intricately connected segments. Since 

Newton established the three laws of mechanics, it is generally believed that as long as we can figure out the properties of the 
components of a system and their interactions between them, then the future behaviors of these systems can be accurately 

predicted, which makes the primary argument of early methodology Reductionism [1,9] for the analysis of the real-world 

systems. Thereafter, Laplace proposed the well-known Laplacian determinism. Accordant with the belief expressed in 

reductionism, the statement emphasizes that it is possible to give a precise prediction of future states at an arbitrary time 

according to the fundamental equations of the evolution of a system and the initial states [10]. 
 

However, there exists a plethora of systems that are not suited to be discussed with the reductive method. In addition, 

the great success of reductionism in physics does not mean that it can achieve the same success in different disciplinary fields, 

such as in social sciences, biological sciences, and so on [11]. In 1972, the famous paper ``More is Different'' written by 

Anderson criticized the argument of reductionism, pointing out that the fundamental laws obtained by reducing systems into 

the basic structural units do not imply that systems can be reconstructed [12].  
 

Admittedly, the interaction of basic elements involves an immense amount of complicated factors which are intricately 

interlinked. Therefore, not only is it impossible to carry out an analytical discussion of dynamics, but it is also impossible to 

calculate from scratch with “ideal precise” values without considering approximations. Moreover, as the “organization” of 

the elementary units of such a system will present many emergent properties that will not be exhibited by a considerable 

number of discrete individuals, it is impossible to make predictions about the rich behavior of the entire system solely based 

on the characteristics of an independent unit, such as the typical adaptive systems. Broadly speaking, the above-mentioned 

circumstances have contributed to the complexity of complex systems simultaneously.   
 

3. Introduction of Complex Network Theory 
 

From the previous statements, it can be concluded that complex systems must be explored from a holistic perspective, taking 

into account the mechanisms of individual behaviors and their interactions. There is no denying that complex network theory 

has certainly become the most ubiquitous and powerful tool to characterize the complexity in complex systems. Broadly 

speaking, a large number of complex systems can be modeled as complex networks composed of a group of components and 

connections [5,13,14,15]. In this sense, exploring the relationship between network structure and function is closely related 

to understanding the nature of complex systems. In a special issue on complex systems published in Science [16], there is an 

enlightening quote from Barabási who pointed out that since the underlying structure has a crucial effect on the behavior of 

the system, there is no way to understand complex systems without exploring the network structure, which also promotes the 

use of complex network theory to study complex systems. 
 

To conduct complex network research, the knowledge from different fields, such as statistical physics, game theory, 

probability and mathematical statistics is required. Among them, graph theory is recognized as the mathematical basis of 

complex network research. Currently, it is widely accepted that the first theorem in graph theory is specifically originated 
from the solution of the Königsberg bridge problem solved by great Swiss mathematician Leonhard Euler 

[17,18]\cite{Euler1741,Biggs1986}. As shown in Fig.1, Euler proposed that the bridge crossing problem can be abstractly 

reduced to the combination of points and lines on the plane, i.e., interpreting it to be a graph by considering the land portions 

as four points (vertex) and the seven bridges as connections (edge) between them.  
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From 1736 to 1950s, the field of graph theory was substantially expanded, but it was limited by the lack of tools for 

large-scale computation. With the invention of modern computers, the matrix description of graphs attracted a lot of attention. 

Afterwards, massive problems sprung up about using graph to describe the large real networks, e.g. power grids, traffic 

networks, communication networks and so on. In the decades that followed, a remarkable collection of scientists introduced 

ideas, methods, and analysis tools of statistical physics into graph theory, giving birth to network science [19,20].  

 

 
Figure 1. Illustration of the problem of the Seven Bridges of Königsberg. 

 

According to the complex network theory, a system can be reduced to an abstract structure, only capturing the basic 

patterns of interactions which are crucial to comprehend the behavior of complex systems. Put in the simple terms, a network 

is a collection of discrete objects joined together, usually described as nodes connected by links in the jargon of the field [21]. 

When looking at a network, the research task of interest usually can be phrased in terms of its topological properties reflected 
by its unique connection patterns. Hence, the statistical summaries of network structure can support us in comprehending their 

topology and, consequently, understanding the mechanisms behind their dynamical processes. There are many fundamental 

quantities and corresponding measures developed to characterize networks, such as, degree, clustering, path and so on 

[5,22,23]. The commonly used statistical metrics in complex networks mainly include three categories as shown in Table 1:  

 
Table 1. Summary of statistical descriptions of complex networks 

Classification Metrics 

local information  Node degree 

Global information Network diameter, Average degree, Clustering coefficient, Modularity, Network Radius, etc. 

Mixed local and global information Betweenness centrality, degree centrality, Eigenvector centrality, PageRsnk algorithm, etc.  

 

Along with richer available data in recent decades, the scientific interest has shifted from the application of concepts 

developed based on graph theory to the investigation of the dynamical evolution of network topology, structural representation, 

pattern recognition, etc. [13]. It is thus clear that the most primitive driving force behind the development of complex networks 

is the acquisition and exploitation of the new data as Barabási's view [24] states: 
 

“Fuelled by cheap sensors and high-throughput technologies, the data explosion that we witness today, from 

social media to cell biology, is offering unparalleled opportunities to document the inner workings of many 

complex systems.” 

--- Albert-László Barabási 
 

Thanks to advances in high technology, it has become effortless and inexpensive to collect massive amounts of multi-

relational data [6]. Nevertheless, for many complex systems, it has not been possible to obtain a complete data of network 

structure [13, 25]. The challenges posed by the era of big data leads to the realization that deeper exploration of big data has 

far surpassed the ability of manual analysis. Moreover, despite the powerful calculation capability of computers, the 

algorithmic problems pertaining to complex network analysis, such as community structure mining and link prediction in 

giant social networks [26,27], need to be addressed in depth. Faced with huge amounts of data, to end the era when researchers 
dedicated to the study of complexity in complex systems by manually inventing characteristic metrics, we have to draw on 

the techniques of machine learning, especially deep learning technology.  
 

4. Overview of Deep Learning  
 

Recently, more and more researchers pay attention to the crossover study of complex systems by complex network theory and 

deep learning technology. Before introducing deep learning, we should first introduce Artificial Intelligence (AI) and Machine 

Learning (ML) in order to clarify the relationship between AI, Machine Learning, and Deep Learning. In 1956, the concept 

of "artificial intelligence" is formally introduced by several scientists at a conference in USA. Literally, the term of Artificial 

Intelligence can be simplified as "a man-made thinking capability"," including learning, reasoning, and self-correction.  
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Machine learning is both a core technology to implement artificial intelligence and a discipline used to study how to 

achieve a technology that allows machines to solve complicated problems like a human [28]. In simple terms, machine 

learning can be explained to learn patterns from historical data and apply them into future predictions to improve certain 

performance measurements. The learning paradigms are mainly divided into three ways, i.e., unsupervised learning, semi-

supervised learning, and supervised learning [29,30]. Unsupervised learning mainly learns and discovers the internal 

connections among to explore the overall structure by taking advantage of samples similarity or topologies. In this process, 

the training samples exclusively use unlabeled data without the guidance of output variables and feedback functions. However, 

supervised learning uses a group of labeled samples to achieve the required performance. Semi-supervised training methods 

lies between the above two learning paradigms and primarily considers how to use a small number of labeled samples and a 
large number of unlabeled samples to conduct training and classification problems [31].  

 

Deep learning is a sub-field of machine learning which uses more than three layers of neural networks, also known as 

deep neural networks [8]. It uses multi-level nonlinear information processing and abstraction for feature learning, 

representation, classification, regression, and pattern recognition in a way of supervised learning, unsupervised learning, and 

semi-supervised learning [32]. Each module in Deep learning transforms the low-layer representation into the high-layer one, 

composing enough transformations layer by layer to learn very complex functions. Currently according to different structures, 

commonly accepted models of DL are Deep belief network (DBN) based on Restricted Boltzmann machine (RBM) [8], Deep 

neural network (DNN), Stacked Autoencoder (SAE) based on Autoencoder (AE) [33], Deep Boltzmann machine (DBM) [34], 

Convolutional neural networks (CNN) [35] and Recurrent neural networks (RNN) [36]. Deep learning technology conducts 

data processing by combining brain-like cognitive mechanisms, breaking the bottleneck of traditional neural network in 
practical applications, especially in image recognition, semantic understanding and speech recognition [37,38,39,40,41,42]. 

 

5. Combination of Complex Network Theory and Deep learning 

 

To explore the complexity in complex systems, combining complex network theory and deep learning techniques is becoming 

an effective and powerful strategy, attracting extensive attention. The combination of two cross-disciplines are twofold. On 

the one hand, the network scale goes increasingly large due to the dramatic growth in the data volume, leading to the need for 

rapid information mining that cannot be achieved solely through complex network analysis. With the rapid development of 

artificial intelligence, it is possible to mine the information in complex networks, such as topological structure, the statistical 

characteristics of our concern (e.g., key nodes, degree distribution, path) by means of machine learning algorithms, especially 

deep learning techniques. 
 

On the other hand, the key issue is how the complex network theory can be applied to tackle the problems of supervised 

and unsupervised learning in deep learning. It is well known that data is regarded as the “fuel” of machine learning. The 

operation of various models in machine learning strongly relies on datasets that is a collection of many samples. In the 

algorithms of machine learning, we usually use vectors to store information about a sample of data. Therefore, the response 

to the key issue is to convert the commonly used vector-based data to the network-based data. In this way, a variety of models 

in complex networks can be used in machine learning. As a consequence, the data represented in the form of networks 

effectively captures the relationships between spatial structure, topology, and function of datasets. In this work, we will focus 

on the research advances and applications regarding deep learning based on complex network theory.  

 

In recent decades, there have been many achievements in studying the complex systems through the combination of 

complex network theory and deep learning technology. In the following sections, we will address the research process in 
terms of above two aspects.  
 

5.1. Applications of Deep Learning in Complex Networks 
 

In the area of many large-scale complex systems, such as social systems, biological systems, etc., the features and topology 

are becoming difficult to be described and captured only through complex network theory. In this case, the advances of 

machine learning, especially deep learning techniques, provides ideas for mining the network information. There have been 

many achievements for deep learning algorithms applied in complex networks, including structural metrics or other network 

information extraction. One popular aspect of application is to identify the key nodes and key links. In this area, machine 
learning has achieved notable success. For instance, Pereda et al. developed a new way to identify clusters in networks which 

is applied through a Euclidean hyper-dimensional representation of relational data, belonging to a geometric unsupervised 

learning paradigm [43]. Adam et al. proposed the ARACNE algorithm to detect the non-directly connected links and delete 

them which is helpful to obtain the simple correlated subgraphs. The core of this algorithm is to analyze the links between 

three nodes in each group and iteratively delete the links that are below the given threshold of mutual information [44]. Of 

course, the more superior technology, i.e., deep learning performs well in this respect. In Ref. [45], authors proposed a 
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framework FINDER with reinforce learning and deep neural networks to find an optimal set of nodes. The framework could 

automatically optimize the goal relying on the small synthetic graphs which are constructed by toy models. Surprisingly, it 

can be generalized in a wide variety of real-world systems, improving their robustness and resilience.  

 
Table 2. Summary of applications of deep learning in complex networks 

Application Area Reference 

Key nodes identification Many real-world systems Fan et al. [45] 

Statistical features extraction Brain networks, Social networks Gao et al. [46] 

Ha et al. [47] 

Security issues Cellular networks Hussain et al. [48 

Lv et al. [49]] 

Community detection Social networks Dhilber et al. [50], Cao et al. [51], Li et al. [52], Zhang et al. [53] 

Link prediction Social dynamic networks Chen et al. [54], Wang et al. [55], Chiu et al. [56] 

 

Another wide application for deep learning techniques in complex networks is to extract the statistical characteristics. 

For example, the time series recorded by Electroencephalogram (EEG) signals obtained from complex brain systems can 

detect the synchronization characteristics between neurons in the brain. The intricate connections between structure and 

function of brain systems reveal that brain networks are considerably complicated so that the feature extraction and complex 

classification problems need deep learning approach to provide solutions. Gao et al. proposed a framework to recognize the 

fatigue driving. The convolutional neural networks are helpful to conduct the analysis of EEG signals to realize a better feature 

extraction [46]. The authors proposed a generalized framework with deep learning methods (i.e., graph attention networks), 

called AgentNet, used to model the hidden interactions between agents in complex networks [47]. 

 

In addition, deep learning methods show the preeminence in exploring the popular generation of cellular systems (5G) 
which are considered as cellular signaling networks. Hussain et al. leveraged the deep neural network to detect the anomalies 

and conduct mobile edge computing (MEC) paradigm. The framework utilizes real call detail record data to achieve a very 

high accuracy up to 98.8% [48]. In Ref. [49], authors considered deep learning technology to deal with security problems in 

5G cellular networks and greatly reduce the calculation complexity. The superiority of the unsupervised deep learning 

algorithm can contribute to meeting security needs in 5G heterogeneous networks.  

 

There are two other areas where deep learning plays an important role on complex networks, especially in social 

networks, namely community detection and link prediction. In the case of community detection, Dhilber et al. developed a 

deep learning framework with multiple autoencoders stacked. They also applied parameter sharing to detect community and 

obtained successful results [50]. The authors devised an approach by applying autoencoder into community detection after 

the discovery the similarity between autoencoders and spectral clustering [51]. In Ref. [52], they proposed an algorithm for 
community detection based on the sparse autoencoder which operates in an unsupervised deep learning way. The authors get 

the similarity matrix by combining weighted adjacent paths of node and the path weight matrix, improving detection accuracy. 

Zhang et al. developed a framework involving a generative adversarial network in a semi-supervised way for community 

detection. The training data is composed of several communities in a network [53]. On the other hand, deep learning 

technology has appeared superior in terms of link prediction in complex networks. Chen et al. proposed a deep learning 

architecture, called E-LSTM-D, to solve long-term link prediction problems in dynamic networks [54]. In Ref. [55], they 

devised a relational deep learning framework following Bayesian method. They also used the product of Gaussians (PoG) 

structure in the RDL model to predict links. Chiu et al. applied weak estimators used in deep learning algorithm to generate 

an efficient feature vector for link prediction in dynamic networks [56].  

 

5.2. Applications of Complex Network Theory in Deep Learning 

 
In the research direction of deep learning technology based on complex network theory, the key lies in how to represent the 

commonly used vector-based data with network-based data. The vector-based data are one by one points, while network-

based data are composed of nodes and links. The local relevance between two data sample points and the global structure 

derived from the local information can be represented in a way of networks. Then, the problem is transferred to how to 

generate the relations between pairs of points. Therefore, we consider network construction techniques to convert the input 

sample set into a network, mainly including three ways: (1) leveraging the information of a small portion of nodes information, 

that is the local geometric information of data [57,58], (2) utilizing not only the local one, but also the long distance 

information, such as a shortest path trajectory [59,60], (3) considering the aggregate information from all data [61]. 

 
The major breakthroughs in deep learning technology are mainly in the field of natural language, (e.g., speech, audio) 

processing, and image recognition in the way of unsupervised learning, semi-supervised learning, and supervised learning as 

well. [35,37,62,63,64,65,66]. The fruitful performance in the field of image and language reveals that the biggest advantage 
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of deep learning is to automatically mine the “structure” of systems at a higher level. Then, the direction of utilizing deep 

learning technology to automatically extract hidden features from large-scale network data lies in how to interpret the language 

and image into the representative networks. 

 

 
Figure 3. Framework of Graph Convolutional neural network (GCN). (a) A social networks that consists of 35 countries where 22 soccer teams had 

contacts, extracted from Pajek datasets (http://vlado.fmf.uni-lj.si/pub/networks/data/sport/football.htm). (b) A sentence is a sequence, which can be 

considered as a tree graph or a line graph. (c) An image that can be regarded as grid graphs with size fixed. 

 

In terms of complex network theory, the characteristic of a node or link is naturally determined by its network. As long 

as each node is assigned to an N-dimensional vector, we can get a cloud of nodes in N-dimensional space to represent the 
entire network. Therefore, in the case of language, the words that appear in the same sentence can be linked to each other to 

form a co-occurrence network in which each word is indicated by each node and a link represents the simultaneous occurrence. 

In 2013, Miklov pioneered a vector representation of English words, called Word2Vec that can quickly construct a point in 

N-dimensional space for each word [67].  
 

The image belongs to a static two-dimensional array with very standard data structure, while a network is an irregular 

data type between a two-dimensional array and a one-dimensional sequence. Consequently, we cannot consider a network as 

an image since the nodes of the network do not have the same regular adjacent relationship between pixels of an image. 

Meanwhile, we also cannot regard a network as a one-dimensional sequence of nodes and links (see comparisons between 

them in the above panel of Fig. 3). The reason is that the network keeps unchanged when we arbitrarily reverse the order 

between nodes. Nevertheless, deep learning can be deployed in the complex network related tasks due to its outstanding 

performance in image identification. For example, the Graph classification problem related to identify or classify what kind 

of network the system belongs to can be addressed by the Graph Convolutional neural network (GCN) which is an extension 

of Convolutional neural network (CNN) [68]. The GCN is of course one of deep neural networks while the input is graph-

based data as shown in Fig. 3 where the input data can be a text or an image. It can leverage the structure of networks and 

aggregate node information from adjacent nodes in a convolutional way by defining the graph convolutions from a spectral 

and spatial perspective [69,70].  
 

Table 3. Summary of applications of complex network theory in deep learning 

Area Applications Reference 

Natural language processing  Documents classification in two ways Leverage node classification [71,72] 

Model text as a network (graph) [73,74] 

Computer vision Image and video classification  Garcia et al. [78], Zhang et al. [79], Marino et al. [80] 

Science (chemistry, biology, physics) Chemical reaction prediction, 

Protein interface prediction,  

Physics prediction  

Li et al. [81] 

Fout et al. [82] 

Mrowca et al. [83] 
Kipf et al. [84] 

 

 

http://vlado.fmf.uni-lj.si/pub/networks/data/sport/football.htm
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The GCN models have achieved a great success in many related areas. In the field of natural language processing, there 

are two ways for documents classification, i.e., leveraging node classification to classify texts into different categories [71,72] 

and classifying the documents through graph classification once texts are modelled as a network (graph) [73,74]. The GCN 

models are used for event detection and extraction in sentences in which the CNN is based on a kind of graph, called 

dependency trees [75,76]. Yao et al. applied the GCN into the task of text classification by constructing the document 

relational network [77].  

 

In the domain of images and videos classification, authors in Ref. [78] defined a graph neural network framework where 

nodes represent images and links are the similarity between input images to study the few-shot learning problems. The GCN 
models are used to encode nodes, taking advantage of the association structure information between images. In addition, 

Zhang et al. developed a framework to extend the few-shot learning with GCN models which perform superior in audio 

classification [79]. Marino et al. employ the GCN models in the task of image classification by using prior knowledge from 

knowledge graphs to gain improvements on the multi-label classification task of the dataset [80]. 

 

The graph convolutional network models are not only used in natural language processing and image recognition, but 

also in the domain of science, such as chemistry, biology, and physics. For instance, the authors in Ref. [81] proposed a 

attention-based GCN architecture used to predict the chemical stability in drug discovery. Fout et al. applied GCN in the 

prediction of Protein interface where protein is represented as node [82]. The GCN models are also used in physics prediction 

for classifying IceCube signal [83]. Kipf et al. proposed an unsupervised model, namely neural relational inference (NRI) to 

learn relational structure inference and learn dynamics simultaneously for the prediction in interacting systems [84].  
 

6. Discussion and Conclusion 

 

To gain a deep insight into the complexity of real-world complex systems, we proceed this work from a complex network 

perspective combined with deep learning technology. In modern research, complex network has become a standard universal 

language to describe complex systems. It allows us to interpret systems as the essential abstraction of their interaction 

structures. In other words, complex networks can be regarded as the skeleton of complex systems. Although there have been 

abundant descriptors and feature metrics in networks developed, artificial intelligence performs better in the face of huge 

amounts of data. More specifically, the large number of achievements in deep learning in the field of image recognition show 

that once machines can learn to extract features automatically, we can make predictions and recognition with a high level of 

accuracy that is unimaginable to humans, such as its excellent application in face recognition.  
 

Meanwhile, deep learning can be combined with traditional techniques, including multi-subject simulation and system 

dynamics, increasing the possibility to achieve automatic modeling of complex systems. In addition, the study about 

complexity can also help us better understand deep learning models. For example, a group of physicists has recently been 

trying to understand deep neural networks by using Variational renormalization group, where neuron nodes in each layer is 

performed a higher level of coarse granulation based on the original problem [85]. 

 

In conclusion, there is an inevitable trend to integrate complex network theory and deep learning into the study of 

complex systems. However, there is still a lot of work that deserves further exploration, such as the development of new 

models for feature extraction and effective learning paradigms in deep learning. Moreover, the large amount of data in 

networks (graph), such as social networks, cannot be easily represented by vectors because its size and structure are 

changeable. In real-world systems, the networks tend to show dynamic properties, including those that have nodes and edges 
that constantly change over time. Therefore, developing a deep learning framework that can model network dynamics is an 

important research direction. In addition, researchers design deep learning technology only for one property in complex 

networks, such as characteristics of links, nodes, clustering, etc. The problem of developing a generalized deep learning model 

to express many complexity properties of networks is worthy of deep investigation in the future. 
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19. A.-L. Barab ási, “Network science,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 

Sciences, vol. 371, no. 1987, p. 20120375, 2013. 
20. F. Menczer, S. Fortunato, and C. A. Davis, A First Course in Network Science. Cambridge University Press, jan 2020. 
21. M. Newman, Networks. Oxford university press, 2018. 
22. M. E. Newman, “The structure and function of complex networks,” SIAM review, vol. 45, no. 2, pp. 167–256, 2003. 
23. M. Newman, Networks: An Introduction. Oxford University Press, mar 2010. 14 
24. A.-L. Barab ́asi, “The network takeover,” Nature Physics, vol. 8, pp. 14–16, dec 2011. 

25. Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabasi, “Observability of complex systems,” Proceedings of the National Academy of 
Sciences, vol. 110, pp. 2460–2465, jan 2013. 
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