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ABSTRACT
An occlusion-aware framework is proposed to robustly estimate the disparities of light field images. It is mainly

realized by leveraging multiple edge cues to occlusion detection and then integrate it with local costs into an

energy function. To check the performance, the quantitative and/or qualitative evaluations are performed on both

synthetic and natural light field datasets. It demonstrates that the proposed framework is robust to the density and

disparity range of the light field, advancing the state-of-the-art light field disparity estimation frameworks on aspect

of accuracies.

Keywords
Light Field, Disparity/Depth Estimation, Occlusion Detection, Global Optimization.

1 INTRODUCTION
Contrary to a traditional 2D image, the light field

records not only the radiance but also the direction

of a light ray. This richer information of the light

field motivates a large range of computer vision and

graphics applications, including disparity/depth estima-

tion [Wanner and Goldluecke, 2012, Kim et al., 2013,

Chen et al., 2014, Jeon et al., 2015, Wang et al., 2015,

Zhang et al., 2016, Zhu et al., 2017], digital re-

focusing [Ng et al., 2005] and super-resolution

[Wanner and Goldluecke, 2014], etc. In this work, our

focus is put on disparity/depth estimation, which is

employed as a module of view synthesis for virtual

reality (VR) [Huang et al., 2017, MPEG-I, 2017].

Disparity estimation, is a long-term challenging

issue in computer vision, which finds correspon-

dences from stereo image pairs. The well-generated

disparity maps from this task could bring bene-

fits to various applications, such as view synthesis

[Stankiewicz et al., 2013], superpixel segmenta-

tion [Stutz et al., 2018], semantic segmentation

[Zhang et al., 2010], etc. A common solution for

disparity estimation is to employ two views, namely

stereo matching [Scharstein and Szeliski, 2002]. Since

more viewpoints are available in the light field (Fig. 2),
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(a) Central view (b) Ground truth(c) Disparity map

(d) Central view (e) Depth map(f) Synthesized map

Figure 1: Disparity/Depth estimation results on light

field images. The top shows the proposed disparity map

of the central view in a dense light field; The bottom

shows the proposed depth map of the central view and

its corresponding synthesized/virtual map in a sparse

and large disparity range of the light field, in which the

synthesized map is obtained by view synthesis using

two neighboring views and their depth maps.

more accurate disparity estimations are possible than

in stereo matching.

Nowadays, the state-of-art light field disparity estima-

tion references achieve a significantly high accuracy

when the disparity range between sub-aperture images

is narrow and the light field is densely sampled.

However, we observe that the accuracy still remains an

issue when the disparity range between sub-aperture

images is larger and the light field is sparser. Moreover,

this is non-trivial in virtual view rendering of MPEG-I

activities [MPEG-I, 2017] in which a sparser and larger

disparity range of the light field is being used.

To cope with this issue, a scalable framework for light

field disparity estimation is proposed in the paper.

More specifically, the kernel density estimation and
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Figure 2: Light field images, also called sub-aperture

images, are captured from an equally spaced 2D camera

array.

size-adaptive window filter are introduced to locally

estimate disparities in which an adaptive size is consid-

ered not to be sensitive to the disparity range (Sec 3.2).

Since there are more ambiguities at occlusion areas, an

occlusion handling method, i.e., occlusion detection

and score-volume recomputation, are proposed (Sec

3.3), followed by using an occlusion-aware optimiza-

tion to improve disparity continuity and enforce global

consistency (Sec 3.4). The experimental results show

that the proposed framework produces a high accuracy

of disparity/depth maps in multiple densities and

disparity ranges of light fields, see Fig. 1.

The contributions of our work are summarized below:

1. The proposed framework significantly advances

state-of-the-art reference work on both synthetic and

natural light field datasets in disparity/depth accuracy.

2. The accuracy of disparity maps from the proposed

method is more robust to the density and disparity

range of the light field, achieving at least 14.9%,

19.6%, 29.3% Root Mean Square Error (RMSE) gains

on average in 9x9, 5x5 and 3x3 synthetic light fields

respectively when compared to the state-of-art works.

3. An occlusion handling technique using multiple

edge cues is put forward, which always benefits

disparity estimations at occlusion regions.

2 RELATED WORK
Since the light field has the redundant information,

some works formulate the problem of disparity esti-

mation as the slope calculation of the Epipolar Plane

Image (EPI) without explicit occlusion detection.

[Wanner and Goldluecke, 2012] introduce a structure

tensor technique to light field disparity estimation,

and use it to compute the slope of EPI, followed

by the integration into a variational-based energy

function. However, its accuracy is confined to a narrow

disparity range. [Kim et al., 2013] put forward another

EPI-based framework using a fine-to-coarse strategy.

Since it relies on a pixel to match the corresponding

EPI-pixel, it seems robust at occlusion regions but

the light field has to be guaranteed densely sampled.

[Zhang et al., 2016] propose a spinning parallelogram

operator onto both horizontal and vertical EPI-lines,

preserving sharp disparity edges. [Jeon et al., 2015]

present a disparity estimation framework in sub-pixel

accuracy. However, both methods are subject to

insufficient disparity quality at textureless regions,

though they are not much influenced by the density and

disparity range of light field.

Some other works turn to the Surface Camera (SCam)-

based strategy to perform disparity estimation with

explicit occlusion detection. In fact, the occlu-

sion is a tough issue in matching correspondences.

Multi-view stereo matching makes an early effort to

this occlusion issue. [Kolmogorov and Zabih, 2002]

describe a graph cut framework in which the vis-

ibility term is formulated into an energy function.

[Wei and Quan, 2005] propose an asymmetric model

to overcome occlusions in an efficient way. However,

the heavy occlusion still remains an issue, even with a

large number of views. To handle (heavy) occlusions,

some recent light field-based methods are proposed

[Chen et al., 2014, Wang et al., 2015, Zhu et al., 2017].

[Chen et al., 2014] introduce a bilateral consistency

metric to predict the occlusion at SCam reliably.

[Wang et al., 2015] describe an angular patch occlusion

model, i.e., a single-occluder model, in which edge

detection is required to obtain the occlusion boundary.

When a multiple-occluder appears, it cannot work

well because the single-occluder assumption does not

hold. To overcome this drawback, [Zhu et al., 2017]

describe a multiple-occluder modeling and then adopt

an un-occluded view selection and re-selection scheme.

Since its accuracy relies on the occlusion boundary,

a disparity edge map is combined with an edge map

to improve occlusion boundary detections. However,

these works are somewhat restricted to dense light

fields.

In contrast, the proposed framework, which is modeled

by filter-based kernel density estimations with a sep-

arate occlusion-aware optimization technique, is not

limited to the dense or narrow disparity range of the

light field. The experimental results demonstrate that

our method achieves a significantly high accuracy in

multiple densities and disparity ranges of light fields,

advancing the state-of-the-art performance.

3 APPROACH
Fig. 3 shows an overview of our approach. Taking a

central view of light fields (Sec 3.1) for instance, the

local disparity map (LDM) is initially produced from

a winner-take-all strategy onto score-volume compu-

tations (Sec 3.2). Then a disparity edge map (DEM),

canny edge map (CEM), superpixel edge map (SEM),

occluded pixels map (OPM) are put into the occlusion

handling site to extract an occlusion boundary map

(OBM) and tweak the score of occluded pixels (Sec

3.3). With the aid of these occlusion detection results,
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Figure 3: The proposed framework.

the final disparity map (FDM) is better generated under

optimizations when compared with the LDM (Sec 3.4).

3.1 Light Fields
The light field, in the paper, is represented by two-

plane parametrization (2PP) in which a camera plane

is parametrized by the coordinate system (s, t) and the

image plane (u,v). Then it could be simply seen as a

collection of a plane of views with radiance values r in

the RGB color space, described as r = L(s, t,u,v), in

which (s, t) represents a camera coordinate and (u,v)
indicates a coordinate of a pixel on the image plane.

The light field view, which is being estimated, is de-

noted by Rs∗,t∗ . Then, according to this view, a radiance

set Rs,t,u,v(d) is easily built by assigning a hypothetical

disparity d to light rays or pixels, as given in Eq. 1:

Rs,t,u,v(d) = {L(s, t,u+d ∗ (s∗ − s),v+d ∗ (t∗ − t))

|s = 1,2, ...,M; t = 1,2, ...,N}
(1)

where (M, N) denotes the angular resolution of the light

field. The subscript (u,v) that corresponds to the pixel

or light ray in a view is replaced with p in the following

texts for simplicity.

3.2 Score-Volume Computation
Our score-volume computation is composed of two

steps: 1) initially computing the score volume, 2)

filtering the score volume. The (filtered) score vol-

ume indicates a 3D array (u,v,d) that stores the

scores/probabilities of candidate disparities d for a

pixel p in a light field view.

A kernel density function is employed to the initial

score volume calculations, which is formulated as

follows:

Sp(d) =
1

|Ω| ∑
s,t∈Ω

Kh (Rs∗,t∗,p−Rs,t,p(d)) (2)

where Sp(d) is the score of the pixel p of the being es-

timated view Rs∗,t∗ at the candidate disparity d where

the maximum value corresponds to the true disparity in

volume, and Ω represents a number of valid views for

score computations. Kh(·) corresponds to the Epanech-

nikov kernel that is given in Eq. 3 and h is its bandwidth

parameter (= 0.02), which controls the accuracy of the

density estimation. Actually, a higher value of h in-

creases the accuracy and robustness to noise. However,

it will lose fine details.

Kh(x) =
{

1−∥∥ x
h

∥∥2 ∥∥ x
h

∥∥≤ 1

0 otherwise
(3)

Rather than the increase of h, a window-based filter,

i.e., an edge-aware preserving filter [He et al., 2010], is

introduced to filter out some noises, which is computed

as follows:

S̃p(d) = ∑
q

WpqSq(d) (4)

where S̃p(d) is the filtered score of Sp(d) and Sq(d) is

the score of the neighboring pixel q in a window. Since

the filtering adopts an integral image based technique,

it has a low complexity burden O(N). The weight of this

filter is computed as below,

Wpq =
1

|ω|2 ∑
k:(p,q)∈ωk

{
1+

(Ip−μk)(Iq−μk)

σk
2 + ε

}
(5)

where Wp,q gives a higher weight to the pixel on the

same side of the edge and a lower weight to the pixel on

opposite sides of the edge in a window ωk centered at

the pixel k. The side length of this window ωk is adap-

tive to the spatial resolution (w,h) of the light field, i.e.,

max(
⌊
max(w,h)2/(256∗min(w,h))

⌋
,3). I is a guided

image, namely the light field view Rs∗,t∗ that is being

estimated; μk and σk are the mean and variance of the

window ωk in I respectively; ε is set to 0.01; |ω| is the

number of the pixels in ωk. The more effectiveness of

this technique than the only increase of the h is shown

in Fig. 4, clearly reducing the speckle noise.

3.3 Occlusion Handling
Assuming that the scene in light fields is lambertian, the

scene point that is seen from different viewpoints shares
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RMSE 0.4183 RMSE 0.2891 RMSE 0.1139

Figure 4: Compared with the increase of h, the edge-

preserving filter demonstrates its higher ability (a lower

RMSE) to remove the noises without losing fine details.

the same color, exhibiting the photo-consistency. How-

ever, this is not true for the point that is occluded. Some

pixels from such a point in the score-volume computa-

tion step might be correctly estimated due to the edge-

aware score volume computation. Nevertheless, the

disparities of pixels at heavy occlusion regions still re-

main difficult to be well-estimated due to ambiguities.

As a result, a pixel with a wrong disparity may be as-

signed a highest score. To address this issue, the oc-

cluded pixel detection (OPD), occlusion boundary de-

tection (OBD) and score-volume recomputation (SVR)

are proposed.

3.3.1 Occluded Pixel Detection
Some pixels disappear in parts of the views due to oc-

clusions, breaking off the photo-consistency. Assuming

that the scene is lambertian, a simple thresholding tech-

nique could be applied to detect these occluded pixels

and obtain the occluded pixel map OPM, as given be-

low,

Cp(d) =
1

|Ω|∑Ω
(1− exp(−|Rs∗,t∗,p−Rs,t,p(d)|)) (6)

where Cp(d) indicates the occlusion confidence of the

pixel p of the view Rs∗,t∗ at the estimated disparity d.

If the confidence of a pixel is larger than a specified

threshold τ (= 0.05), it is masked as an occluded pixel

(OP = 1); otherwise it is unoccluded (OP = 0).

3.3.2 Occlusion Boundary Detection
Occlusion boundary detection is a significant step

for the occlusion handling as its accuracy makes

differences for the following disparity re-estimation

and occlusion-aware optimization. To guarantee its

precision, multiple edge cues are proposed to precisely

detect occlusion boundaries.

Firstly, a fact to be known is that there always ex-

ist edges between an occluder and an occluded region,

which is ascribed to lighting changes in-between. Thus

the following lemma is given.

Lemma I. An occlusion boundary set OBs is a proper

subset of an edge set EGs.

The edge set is approximately constructed in our work

for efficiency, i.e., a union of edge points and edge lines,

EGs � EGpoint ∪EGregion (7)

where EGpoint denotes the edge points that are acquired

by an edge detector, and EGregion indicates the edges

from a region/superpixel detector [Stutz et al., 2018].

Note that the region size is set to a smaller value so as

to be not much larger than the objects in the scene. Ad-

ditionally, a small region used in a superpixel detector

could boost the edge accuracy.

The occlusion boundaries that belong to the occlusion

boundary set OBs are taken from the approximated

edge set. Firstly, for the view Rs∗,t∗ , a disparity edge

map DEM is computed from a relatively reliable

local disparity map LDM using a canny edge detector

[Canny, 1986], and an edge map EM is intersected by

the canny edge map CEM and the superpixel edge map

SEM. Then we calculate an intersection of DEM and

EM to get an initial occlusion boundary map OBMi.

Furthermore, the disparity variance in a 10x10 window

and the difference operator are computed as masks to

update the difference between OBMi and themselves in

order to remove edge point outliers,

EMu = Mdisp ∗ (EM−OBMi)

DEMu = M∇ ∗ (DEM−OBMi)
(8)

where Mdisp and M∇ denote the disparity mask and the

difference mask respectively. If the pixel has a dispar-

ity variance beyond a threshold ϕ that is adaptive to the

disparity range, Mdisp is assigned 1, otherwise 0. Sim-

ilarly, if the pixel has a difference beyond a specified

threshold ∇(= 0.05), M∇ is assigned as 1, otherwise 0.

Finally, a union of multiple maps are used to produce

the occlusion boundary map OBM = OBMi∪DEMu∪
EMu with a high precision.

3.3.3 Score-Volume Recomputation
The score volume recomputation consists of two steps:

1) computing the disparity bound, 2) score-volume

computation, targeting the improvement of the oc-

cluded pixel disparity estimation.

Disparity Bound The new upper bound ub and the

lower bound lb in disparity are determined by the

disparities of pixels in their neighborhood beforehand.

The upper and lower bound are assigned to the max-

imum and minimum disparity of neighboring pixels

respectively.

Score-Volume Computation The procedure in the

previous score-volume computation is reused here,

but there exist two differences. The first difference

is that a disparity bound, i.e, a half-closed interval

[lb,ub), is utilized for computing the occluded pixel

score OccSp(d) for the pixel p of the view Rs∗,t∗ at a

candidate disparity d. The second difference is that the

visible views Ωvis for photo-consistency are selected.

More specifically, the relative location of the occluded

pixel to the occlusion boundary from OBM (with rare

negative occlusion boundaries) is used to simply select
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w/o occ with occ Ground truth

Figure 5: Comparisons between without (w/o) and with

occlusion detection results (occ) in the energy function.

It demonstrates that the proposed occlusion-aware en-

ergy function contributes to a higher accuracy (a lower

RMSE 0.099) without over-smoothing the sharp edges.

the visible views.

At the end of the occlusion handling flow, the occlusion

boundary map with a high accuracy can be extracted

and the score of the occluded pixel will be improved,

which are beneficial to the following optimization step.

3.4 Optimization
Our disparity estimation is optimized by minimizing a

Markov Random Field-based energy function, as given

in Eq. 9.

E = λ ∗∑
p

Edata(p,d(p))+ ∑
q∈Np

Esmooth(p,q,d(p))

(9)

where Np is a 4-neighborhood of the pixel p of the view

Rs∗,t∗ , q represents one of the neighboring pixels and

d(p) denotes a disparity that is mapping to an integer.

Herein λ (= 10) is introduced to balance the ratio of the

data term and the smoothness term.

The data term in the energy function is built by weight-

ing the score S̃ and the occlusion score OccS,

Edata(p,d(p)) = κ−α ∗ S̃p(d)− (1−α)∗OccSp(d)
(10)

where Edata measures the photo-consistency for the

pixel p, α is a weighting coefficient (= 0.6) and κ is

a large constant (= 10).
The smoothness term is computed by a weighted neigh-

boring function,

Esmooth(p,q,d(p)) = wp,q ∗min(|d(p)−d(q)|,Γ)
(11)

wp,q = exp(−||Rs∗,t∗,p−Rs∗,t∗,q||2
ψ2

− |OBp−OBq|
φ 2

− |OPp−OPq|
φ 2

)

(12)

where Γ represents a truncated threshold that is set to

10; ψ and φ is set to 1/9 and 1 respectively; OB is

an occlusion boundary mask from the occlusion bound-

ary map OBM and OP is an occluded pixel mask from

the occluded pixel map OPM that are enforced as con-

straints. If an occlusion boundary exists in-between

two pixels or one of two neighbouring pixels is an oc-

cluded pixel, the strength of smoothness will be re-

duced. Besides, the color in the view Rs∗,t∗ , is encoded

as a constraint in which two pixels with different col-

ors will decrease smoothness. To solve the proposed

occlusion-aware energy function, the graph cut algo-

rithm [Kolmogorov and Zabih, 2002] is used. As a con-

sequence, the proposed occlusion metrics in the energy

function especially help a lot to avoid over-smoothing,

hence preserving sharp edges, see Fig. 5.

4 EXPERIMENTAL RESULTS
We present the results of the proposed approach

that are evaluated on light field datasets, which are

composed of synthetic datasets and natural datasets.

In order to validate the accuracy and scalability, the

experimental results are compared with several state-

of-the-art references, PSD [Jeon et al., 2015], OADE

[Wang et al., 2015], SPO [Zhang et al., 2016], and

an Enhanced Depth Estimation Reference Software

eDERS [Senoh et al., 2018]. Note that the results

from the state-of-the-art references are generated

by utilizing their public code under default settings,

except for the number of labels and the disparity range.

For validations onto both datasets, two metrics are

adopted: a direct metric RMSE for synthetic datasets

with available ground truth, and an indirect metric

for natural datasets without ground truth (i.e, view

synthesis quality using the estimated depth maps).

4.1 Synthetic Dataset
A popular synthetic dataset HCI [Wanner et al., 2013]

with ground truth is used for qualitative and quantitative

comparisons. Note that the number of labels and the

disparity range used into the state-of-the-art works are

set to the same values with the proposed method for the

sake of better comparisons. The HCI dataset includes

9x9 densely-sampled light field views with a low reso-

lution and has quite a low disparity range, i.e., less than

8 pixels. To well estimate the disparities, 101 disparity

labels (a label is less than 8/100 pixel) are employed in

all four approaches. Table 1 illustrates that we achieve

the highest accuracy of disparity maps on this dataset

when compared with PSD, SPO and OADE. Herein,

the RMSE for the central view of light fields is calcu-

lated as done in [Chen et al., 2014, Wang et al., 2015,

Zhu et al., 2017] thanks to the given ground truth. Fig.

6 shows our visual comparisons against the ground truth

and the three references. From this comparison, we

clearly observe that our framework produces the closest

disparity maps to the ground truth with good disparity

discontinuity preservations.
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Dataset Buddha Buddha2 Horses Medieval MonasRoom Papillon StillLife Average

PSD 0.109 0.071 0.151 0.125 0.084 0.248 0.294 0.154

OADE 0.098 0.109 0.146 0.115 0.088 0.108 0.199 0.123

SPO 0.076 0.101 0.113 0.094 0.075 0.081 0.119 0.094

Proposed 0.057 0.071 0.072 0.099 0.072 0.088 0.103 0.080
Table 1: The Root Mean Squared Error (RMSE), the lowest value in bold black means the highest accuracy.

(a) Central View (b) Ground truth (c) PSD (d) OADE (e) SPO (f) Proposed

Figure 6: Disparity estimation results on the HCI dataset. From the top to the bottom, it corresponds to the scene

’Buddha’, ’MonasRoom’, ’Papillon’, ’StillLife’ respectively. Our disparity maps seem less noisy than SPO and

less over-smoothed than PSD and OADE at occlusion boundary regions, see close-ups of ’StillLife’, ’Buddha’,

etc.

4.2 Density and Disparity Range
When the light field is sparsely-sampled with a large

disparity range, it might pose a challenge for the state-

of-the-art methods. Hence, we explore the performance

of the proposed method on such light fields, which are

obtained by skipping a multiple of 2 views from the 9x9

views in both angular directions (i.e., the 5x5 and 3x3

light fields in the paper). Similar to Sec 4.1, the RMSE

is calculated for the 5x5 and 3x3 light fields. The

computed RMSE is firstly made comparisons with that

in Sec 4.1. We can see from Fig. 7 (a) that the errors

seem almost unchanged except in the scene ’Horses’.

Furthermore, we compare the proposed results with the

state-of-the-art references, which is shown in Fig. 7 (b)

and (c). It demonstrates that the proposed method, in

contrast, mostly achieves the lowest errors and exhibits

the robustness to the density and disparity range of the

light field. Our method, meanwhile, get at least 14.9%,

19.6%, 29.3% RMSE gains on average in the 9x9, 5x5

and 3x3 light fields respectively. Fig. 8, Fig. 9 and

Fig. 10 illustrate the visual comparision results on the

’Medieval’, ’Papillon’ and ’StillLife’ scene respec-

tively. We observe that the quality of the disparity map

from OADE [Wang et al., 2015] degrades gradually

with a smaller number of light field views, whereas the

PSD [Jeon et al., 2015] and SPO [Zhang et al., 2016]

decrease a bit but more than that of the proposed

method. Moreover, the proposed method does not

behave more smoothed as PSD [Jeon et al., 2015] or

more noised as SPO [Zhang et al., 2016]. Therefore
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(a) Proposed (b) 5x5 (c) 3x3

Figure 7: The RMSE of the proposed framework in the 9x9, 5x5 and 3x3 light fields is shown in (a). (b) and (c)

show the RMSE comparisons between the proposed and the state-of-the-art references in the 5x5 and 3x3 light

fields respectively. The lowest value means the highest accuracy.

5x5

(a) Central view and Ground truth

3x3

(b) PSD (c) OADE (d) SPO (e) Proposed

Figure 8: Disparity estimation results on ’Medieval’. Our disparity map is robust around the edges of the wall

and/or the box.

5x5

(a) Central view and Ground truth

3x3

(b) PSD (c) OADE (d) SPO (e) Proposed

Figure 9: Disparity estimation results on ’Papillon’. Our disparity map is achieved with a preciser disparity

discontinuity and without noise, see the edges of the leaves.

our method is scalable to the density and disparity

range of the light field.

4.3 Occlusion Boundary
Since the accurate occlusion detections were integrated

into our global optimization, the occlusion boundary

map OBM extracted from the final disparity map FDM

has a significantly high precision. Table 2 gives our

performance against the-state-of-the-art methods on the

HCI dataset (9x9 light fields) using the common metric

Precison-Recall [Sundberg et al., 2011]. An edge de-

tector is used for extracting the proposed and the ground

truth occlusion boundary. From the quantitative value,

we learn that the precisest occlusion boundaries on av-
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5x5

(a) Central view and Ground truth

3x3

(b) PSD (c) OADE (d) SPO (e) Proposed

Figure 10: Disparity estimation results on ’StillLife’. Our disparity map is robust around the surface of the ball.

Dataset Buddha Buddha2 Horses Medieval MonasRoom Papillon StillLife Average

OADE 0.6632 0.7515 0.7617 0.6043 0.7469 0.7965 0.6181 0.7086

PSD 0.5536 0.7355 0.7354 0.5719 0.6831 0.6089 0.5145 0.6290

SPO 0.6927 0.8330 0.7642 0.6894 0.7449 0.8352 0.7115 0.7530

Proposed 0.7719 0.8480 0.8409 0.6240 0.7786 0.7818 0.6950 0.7629
Table 2: The Precision-measure of occlusion boundaries, the highest value means the highest accuracy.

Figure 11: The precisions of the proposed occlusion

boundary results onto the 9x9, 5x5 and 3x3 light fields

respectively.

erage are obtained by the proposed work. In addition,

the precison values for 5x5 and 3x3 views are also cal-

culated. Note that the 5x5 and 3x3 light fields are also

obtained by skipping a multiply of 2 views in both an-

gular directions, similar to Sec 4.2. In Fig. 11, when the

number of light field views is reduced, the precision of

the occlusion boundary decreases by a very small value,

illustrating that the proposed method is also scalable to

occlusions in multiple densities and disparity ranges of

light fields.

4.4 Natural dataset
In addition to synthetic datasets, the challenging nat-

ural datasets ULB Unicorn [Bonatto et al., 2017] and

Technicolor Painter [Sabater et al., 2017], which have

a larger baseline (35 and 70 mm resp.) for objects at

a distance of 0.5 to 4m and a fewer number of views

(5x5 and 4x4 views resp.), are evaluated. Moreover, in

these datasets, there exists a larger disparity range, i.e.,

[16-76] and [30, 90] in pixels respectively. Since these

two datasets lack ground truth disparities, the view syn-

thesis results generated from view synthesis reference

software [Stankiewicz et al., 2013] are used for evalu-

ations, apart from visual comparisons on depth maps

that are simply converted from disparity maps. For the

view synthesis, two depth maps from two views are re-

quired. As the OADE, PSD and SPO are used to pre-

dict the disparities for the central view of light fields,

we compare our technique with another state-of-the-art

technique eDERS [Senoh et al., 2018] (using the same

number of disparity labels 241). The experimental re-

sults show that the better synthesized/virtual maps are

produced from our technique, especially at occlusion

regions. Fig. 12 shows that the synthesized map using

the proposed depth maps looks much cleaner, see the

close-ups in (e) and (f). In Fig. 13, (b) and (c) clearly

show that our method correctly estimates the wooden

stand and the chair disparities whereas this fails in eD-

ERS. Furthermore, the synthesized map gets more ben-

efits from the proposed depth maps than from the eD-

ERS depth maps, see the close-ups in (e) and (f).

5 CONCLUSIONS
An occlusion-aware framework via multiple edge cues

and score updates is proposed for disparity estimation

in light fields. Through a variety of evaluations, the pro-

posed method achieves a higher accuracy of disparity

estimation on both synthetic and natural datasets when

compared with the state-of-the-art approaches. More-

over, the fidelity of the disparity map is still kept even

in a sparse light field with a large disparity range.
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(a) Left and right views (b) eDERS depth maps (c) Proposed depth maps

(d) Reference/Central view (e) eDERS synthesized map (f) Proposed synthesized map

Figure 12: Depth map and view synthesis result comparisons on the ULB Unicorn dataset. From the top to bottom

in (a-c), they correspond to the left and right camera view respectively.

(a) Left and right views (b) eDERS depth maps (c) Proposed depth maps

(d) Reference/Central view (e) eDERS synthesized map (f) Proposed synthesized map

Figure 13: Depth map and view synthesis result comparisons on the Technicolor Painter dataset. From the top to

bottom in (a-c), they correspond to the left and right camera view respectively.

6 ACKNOWLEDGMENTS
This work is supported by the China Scholarship Coun-

cil (CSC) and by Innoviris, the Brussels Institute for

Research and Innovation Belgium, under contract num-

ber 2015-DS-39a, 3DLicorneA.

7 REFERENCES
[Bonatto et al., 2017] Bonatto, D., Schenkel, A.,

Lenertz, T., Li, Y., and Lafruit, G. (2017). ULB

High Density 2D/3D Camera Array data set, ver-

sion 2.

[Canny, 1986] Canny, J. (1986). A computational ap-

proach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence,

(6):679–698.

[Chen et al., 2014] Chen, C., Lin, H., Yu, Z., Kang,

S. B., and Yu, J. (2014). Light field stereo

matching using bilateral statistics of surface cam-

eras. In Computer Vision and Pattern Recognition

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu/ Vol.26, 2018, No.2

74


