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ABSTRACT

Inpainting is the process of replacing areas in an image with a perceptually plausible substitution. A common

technique is to iteratively match and fill small patches at the edge of the target region making use of similar

patches from the same image. Nearly all inpainting algorithms based on this approach use a single patch size for

the entire image. Yet, it seems clear that differently sized structures within the same image – for example a leaf

versus a car tire – may require different patch sizes in order to achieve reasonable inpainting results. Likewise, a

fixed patch size will give different results for the same image when the image resolution is doubled. A reasonable

patch should therefore take into account the overall image size as well as the size and shape of the structures at the

patch location. The aim of our paper is to study the effect of adaptively altering size and shape of the patch. We

show that this technique leads to a better quality of the inpainting result compared to a fixed patch size.
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1 INTRODUCTION

The class of techniques designed to replace empty re-

gions in an image with perceptually plausible content

is called inpainting after Bertalmió et al. [Ber00a]. In-

painting can be used for many purposes in visual com-

puting, including, for example, denoising [Ad17a], im-

age compression [Mai09], or automatic repair of dam-

aged images [Cai17a]. There are many technical ap-

proaches to inpainting, cf. [Gui14a] for an overview.

These techniques include exploring information from

level lines [Mas98a], tackling the task as a texture syn-

thesis problem [Ef99a], or making use of partial dif-

ferential equations (PDEs) [Ber00a]. One may also

combine different techniques, usually with improved

results [Ber03a]. Given the wide variety of potential ap-

plications and approaches, it is of fundamental interest

to explore and understand the different building blocks

of the most promising inpainting methods.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

One of the most central works in image inpainting is

Criminisi et al. [Cri04a] whose algorithm has since

become the core of most exemplar-based approaches

(see, e.g., [Buy15a] for a broader discussion of the

approach). Exemplar-based approaches assume that

the best description of the information to be filled

in can be found somewhere else in the same image.

Exemplar-based inpainting methods follow a general

pipeline. First, the border of the empty or target region

is located. Second, a pixel on the border is selected

and a small patch is centered on the selected pixel.

Note that part of the patch will contain valid image

information and part will be in the target region. The

size of the patch is set manually, with the size usually

chosen to match the largest relevant feature in the

image. Traditionally, patch sizes of 5× 5, 7× 7, 9× 9

and sometimes 11 × 11 pixels are used [Lem13a].

The third step, filling-in, is subdivided into finding a

matching patch and copying the new patch into the

target patch. This process is iterated until all holes

have been filled. A number of newer algorithms have

altered individual building blocks in Criminisi et al.’s

[Cri04a] pipeline. Modifications encompass attempts

to produce better descriptions of the contents of a patch

(e.g., [Lem11a, Xu10a]), constructing a more efficient

matching process (e.g., [Xi13a, Ngu13a]) or proposing

more elaborate texture propagation/copy procedures

(e.g., [Kom07a, Lem13a]). Nearly all of the proposed
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Figure 1: In reading order: Original image to be restored, the result of our new variable patch shape

approach, and four results of an exemplar-based method – with two extreme (35×35 and 3×3) and two

commonly used (5×5 and 11×11) patch-sizes

improvements leave the underlying patch concept

unchanged, using a one-size-fits-all approach to patch

size. While one can set the patch size to match image

size or general trends in feature size, it appears evident

that no uniform patch size and shape can capture

the range of possible feature shapes. For example,

structures such as long, bold edges, may require large,

non-square patches. Structures that rapidly change

such as a raged edge would require a smaller patch (see

Figure 1).

The most similar work to the approach we will study is

the work of Wu and Ruan, who proposed that patch size

could be changed dynamically to match local texture

information [Wu09a]. As usual, they created a small

patch (4× 4) around each pixel at the edge of the tar-

get region. They then calculated the color variation in

each patch allowed to either grow (to 5× 5) or shrink

(to 3× 3) based on a user-defined threshold. They ar-

gued that a lot of color variation probably represents

a textured region and should therefore be assigned a

larger patch in hopes of capturing more of the texture.

A homogeneous region, on the other hand, will have no

color variation. They claimed that patches for homoge-

neous regions should be kept small to prevent acciden-

tally introducing structure. After filling-in, a divergence

constrained PDE is used to reduce differences between

neighboring patches.

In this paper, we propose that patch size should be

based on the size and shape of local structures. Large

structures should get large patches, small structures

should get small patches. Likewise, non-square struc-

tures should get non-square patches. Since all previous

work on exemplar-based inpainting exclusively used

square patches, they generally either copied undesired

structure (introducing artifacts) or copied partial struc-

tures (creating salient discontinuities). These intrusion

artifacts can be seen in the fixed-patch size examples in

Figure 1.

In our contribution we argue that, to completely cap-

ture the local structure at the boundary of the target re-

gion, the patch size should be iteratively altered until

the local structure is fully enclosed. This would re-

quire that the method determines when the local struc-

ture is fully enclosed. Color variation as considered in

[Wu09a] appears not to be able to capture the local im-

age information, as the same variation in a patch’s color

may arise from a long edge or from a scattered texture.

Thus, some form of feature extraction is needed. We

follow the image segmentation ideas from [Ler07a] to

create – at the source area – flexible, dynamic patches

of arbitrary size and shape that capture and therefore

copy only relevant structure. This focus on segmenting

and copying the relevant structures helps to avoid intru-

sion artifacts and leads to visually pleasant results (see

Figure 1).

2 ALGORITHM

Just like most exemplar-based inpainting techniques,

ours is based on Criminisi et al.’s [Cri04a] algorithm,

which showed that the order in which the target regions

gets filled-in is important. Prioritizing patches in which

structural elements are pointing inwards into the target

area produces considerably better completions. Crim-

inisi et al.’s algorithm is illustrated in Figure 2 and is
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discussed in more detail in the remainder of this sec-

tion.

In a pre-processing step, the image is converted into

CIE L*a*b color space and all operations are performed

on the three color channels simultaneously. In the first

step, a target pixel located along the border of the tar-

get region ∂Ω is chosen based on the priority values.

Then, a target patch Ψ p̂ (represented in Figure 2b by

the dashed square at the border of the target region ∂Ω)

is created surrounding the target pixel (represented by

a large black dot in Figure 2b). From all the possible

source patches within the search space q ∈ Φ, the best

match Ψq̂ is determined (see Figure 2c). Next, as shown

in Figure 2d, the pixels in the target area portion of the

target patch Ψ p̂ ∩Ω are filled with the corresponding

pixels from the source patch Ψq̂. The border of the tar-

get region ∂Ω is then updated and the confidence values

of the newly copied pixels are set. These steps are re-

peated until the target area Ω is filled.

Here, to more clearly study the effect of focusing on

image features rather than image regions, we have cho-

sen to stick as closely as possible to Criminisi et al.’s

algorithm in all stages with the sole exception of the

size and shape of the source patch Ψq̂. Of course, as

mentioned before, the modular nature of this pipeline

means that our proposed change can be combined with

any of the other modifications. Thus, we start with a

fixed-size square patch surrounding the target pixel. Af-

ter using this target patch to find the correct match, the

center of the source patch is used as a seed for a region-

growing segmentation technique called a morphologi-

cal amoeba, which captures the structure at the source

region (see Section 2.3). We then copy only the pix-

els within the newly-grown source amoeba to the corre-

sponding locations in the target area Ω. In the next few

subsections, we provide more detail about the individ-

ual steps of the full algorithm.

2.1 Target Patch Selection

Following Criminisi et al. [Cri04a], the first step in ev-

ery iteration is the selection of the next target patch Ψp̂

centering on the pixel with highest priority p̂ at the con-

tour ∂Ω. All points p ∈ ∂Ω are sorted by a priority

value P(p), which takes into account two different fac-

tors, a data term and a confidence term:

P(p) = ς (p) · γ (p) (1)

The confidence term γ (p) is a measure of the reliability

of the known image data around point p. It is the sum of

the confidence value C (i) of all the pixels i in the target

patch divided by the number of pixels in the patch:

γ (p) =
∑i∈Ψp

C (i)∥∥Ψp

∥∥ (2)

Ω

Φ

(a) Initial state

Ω

p̂

Φ

Ψp̂

∂Ω

(b)Selection of target patch Ψp̂

Ω

p̂

Φ

Ψp̂

∂Ω

q̂
Ψq̂

(c) Matching source patch Ψq̂

Ω

Φ
∂Ω

q̂
Ψq̂

(d) Filling data in Ω

Figure 2: Different steps of Criminisi’s inpainting

algorithm

Since all unknown pixels (the ones in the target area Ω)

start with a confidence of 0 and all known pixels (the

ones in the source area Φ) start with a confidence of

1, the more known pixels a patch has, the higher that

patch’s confidence value will be. After filling in, the

newly filled-in pixels will receive a confidence less than

1 (see below for more details). As a result, patches close

to the initial target-region border will have a higher con-

fidence value than patches inside the (original) target

area.

The data term ς (p) is a measure of the intensity of any

linear structures pointing directly into the target area.

A strong edge disappearing directly into the target area

should be processed with higher priority than either a

weak edge disappearing directly into the target area or

a strong edge that is tangent to the target area. This will

help to maintain the continuity of structural elements.

The data term is defined as the normalized product of

the dominant isophote ∇I⊥ in the target patch around a

given point p and the normal vector �np of the contour

at that point:

ς (p) = (�np ·∇I⊥p )/δ (3)

with δ being a normalizing constant based on the pos-

sible pixel values and the isophote ∇I⊥ being defined

as perpendicular to the intensity gradient. Thus, the di-

rection of the isophote ∇I⊥ describes the orientation of

the prevalent linear structure in the target area. To cal-

culate the data term, we need to determine the domi-

nant isophote in the target patch. To do this, we first

calculate the isophotes for all pixels in the known por-

tion of the target patch. Note that an isophote pointing

directly upwards represents the same linear structure as
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one pointing directly downwards, and as such we flip all

isophotes with angles greater than 180 degrees so that

they point in the opposite direction. We then examine

the isophote histogram separately for each of the three

color channels (with the angles now ranging between 0

and 179) and find the bin with the maximum summed

gradient magnitude. These are the dominant isophotes

of the patch, one for each color channel. The maxi-

mum of these three isophotes is chosen as the dominant

isophote of the patch.

The pixel p ∈ ∂Ω with the highest priority value P(p)
is chosen as the center of the next target patch.

2.2 Source Patch Matching

To find the best match, we calculate the Euclidean color

distance between each pixel in the known portion of the

target patch Ψp̂ and the corresponding pixels in all pos-

sible source patches. The source patch with the smallest

summed color distance is chosen.

2.3 Amoeba

For this stage, which is novel to our algorithm, we start

with the observation that copying a rectangular shaped

region from the source area will have a non-zero prob-

ability of copying undesired structures (i.e, structures

that are not the same as the one to which the target

pixel belongs). Furthermore, once even a single pixel

of an artifact has been copied to the target region, fu-

ture in-painting iterations will consider the artifact to

be a valid structure and will tend to complete the ar-

tifact. To avoid this, we propose that only the pixels

in the source area that most closely resemble the target

pixel itself (and thus are most likely to be on the same

surface; see [Gi79a]) should be copied. We have chosen

the morphological amoeba introduced in [Ler07a] to do

this, as it utilizes both the physical distance between

two pixels as well as the color distance. The amoeba de-

termines which pixels belong to the patch by calculat-

ing the summed color distances and physical distances

between pixels along a path. All pixels which can be

connected to the target pixel by a path whose summed

(color and spatial) distance is less than a given thresh-

old are included in the patch. Conceptually, the amoeba

starts by calculating the Euclidean color distance be-

tween all neighboring pixels p and q: distpixel(p,q). It

then calculates the summed color and physical distance

L(σ) between two pixels x and y along a given path σ :

L(σ) =
n−1

∑
i=0

(PD+λ ·distpixel(xi,xi+1)) (4)

where n is the number of pixels along the path and

λ ≥ 0 is a weighting factor which allows one to con-

trol the relative influence of the color distance over the

physical distance. Note that the saliency of the physi-

cal distance between neighboring pixels in a Cartesian

coordinate system is dependent on the viewing distance

and the monitor resolution. Thus, the physical distance

is the variable PD. Given the most common viewing

distances and monitor sizes, the physical distance will

typically be between 0.6 and 2. Typically, λ is set to 1,

with the aim of ensuring that the physical distance and

the color distance have equal saliency and equal impor-

tance. The final distance dλ (x,y) for two specific pixels

is the path with the lowest L(σ). Finally, all pixels y

whose distance dλ (x,y) to the seed pixel x is below a

user set threshold T H, belong to the amoeba.

2.4 Filling-in and Updating the Contour

In the next step, the data from the source patch is copied

to the unknown portions of the target patch Ψp̂ ∩Ω.

Then, the confidence of the newly copied pixels is set

to the average of all the pixels that are in an amoeba-

shaped region centered on the target pixel. Finally, the

target area Ω and the contour ∂Ω are updated and the

priority values for all affected contour points are re-

calculated.

3 RESULTS

There are scenarios where image restoration methods

will work best, such as images where the content to be

generated lies in smooth or irregularly-textured areas,

commonly present in natural images, or in areas that

are not so likely to attract human attention. To gain

more insight into effect of the new patch algorithm,

we decided to use as a benchmark a set of consider-

ably more challenging images. Specifically, we used

part (see Figure 3) of the benchmark proposed by Ru-

binstein et al. [Rub10a]. This benchmark is known for

containing images with attributes that represent a chal-

lenge for the objectives of preserving content and struc-

ture and preventing artifacts. Furthermore, we created

the to-be-filled (target) areas in these images by select-

ing places that are most likely to be very challenging

(e.g., that break local structures) and that are in areas

most likely to attract human attention [Cas11a].

We submitted the 16 images to the original Criminisi

et al. algorithm as well as to our modified version. We

tested the effect of changing the size of the square tar-

get patch, using 20 different patch sizes. The twenty

possible patch radii were in the range r ∈ [1,20]. Since

a patch always included the target pixel and the num-

ber of pixels equal to the radius in each direction, this

resulted in a range of patch sizes from 3×3 to 41×41

pixels. It is important to note that nearly all other tests

of exemplar-based approaches use three patch sizes:

5×5, 7×7, 9×9 corresponding to the radii 2, 3 and 4.

More rarely, 11×11 patches (radius of 5) are also used.

We tested a considerably larger range of patches in or-

der to more fully explore the range of image features

that can be captured.
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Figure 3: The 16 images used in our tests. The magenta-filled areas show the parts to be inpainted

For our algorithm, the maximum amoeba distance T H

was set to 20 and the physical distance PD was set to 1.

The average run time of the amoeba-based algorithm is

similar to the average run time of the unmodified orig-

inal. It is important to note that the amoeba-based al-

gorithm only needs to be run once to find a good patch

size, whereas the Criminisi algorithm needs to be run

once for each desired patch size.

4 VALIDATION

Ideally, in order to assess the quality of the results of

both algorithms, a perceptual experiment with human

participants should be conducted. Unfortunately, due to

the large number of results to compared (with 20 patch

sizes, 2 algorithms, and 16 images there are 640 result-

ing images), the duration of a perceptual experiment

becomes untenable (e.g., a 2AFC preference task com-

paring each reconstruction for a given image to all the

other reconstructions for the same image would require

12,480 trials per participant). Thus, we will use com-

putational metrics to evaluate the image quality. Even if

the metrics cannot replace the subjective evaluation of

a human, they can be complementary and give us some

insights for pre-filtering the results.

4.1 Metrics

The choice of metric is not a trivial issue. We can not

use any metric which performs a pixel by pixel compar-

ison since inpainting does not try to generate any spe-

cific texture, but instead focuses on perceptually plau-

sible results. This means that a metric is needed that

taps into the highly subjective issue of which image

looks more plausible or natural. The choice of metric

is further constrained by the central issue of patch size,

as many existing image quality metrics break an image

down into smaller patches and then analyze the image

on a patch by patch basis. Unfortunately, these metrics

all use a single, fixed patch size for any given image. It

does not seem appropriate to use a fixed patch size to

evaluate the effect of adaptive patch sizes. While it is

appears interesting to construct a metric using adaptive

patches, that is beyond the scope of this article.

Following [Rub10a, Cas11a], we selected two metrics

that assess low-level differences between two images to

give us an idea about the coherence of the image as a

whole and how consistent the results are in compari-

son with the intact parts of the damaged image. These

two metrics are Color Layout (CL) [Kat01a] and Edge

Histogram (EH)[Man01a] (see below for more details).
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We performed pairwise comparisons of the original im-

age (without holes) and each of the inpainting results.

The smaller the difference between the two images, the

more closely the inpainting result matches the original.

These two metrics rely on statistical values that, even

if they are good for measuring the amount of artifacts

introduced, do not consider if these artifacts will be

obvious to a human observer. Therefore, we also

considered another metric, proposed by Ardis and

colleagues [Ard10a] that relates the visual saliency

map of an image with its perceived quality, the Average

Squared Visual Salience (ASVS). For computing

the metric’s results we considered the bottom-up

visual saliency model, Graph-Based Visual Saliency

(GBVS) [Har06a].

Color Layout [CL]: The CL metric examines the dif-

ferences in the distribution of color in YUV space be-

tween the images to compare:

CL =
√

∑
i∈Y

αi(Yi−Y ′i )
2 +

√
∑
i∈U

βi(Ui−U ′
i )

2

+
√

∑
i∈V

γi(Vi−V ′i )
2 (5)

where the ith coefficient of each channel is denoted by

Yi , Ui , Vi. The weights represented by α , β and γ are

inversely proportional to the coefficient scan order.

Edge Histogram [EH]: The EH descriptor is capable

of capturing the spatial distribution of edges in an im-

age via a combination of 5-bin normalized histograms.

To generate each histogram, the image is segmented

in 4x4 pixel patches and the intensity component Y in

the YUV color space is used to extract and classify the

edges putting them into the 5-bins (vertical, horizontal,

both diagonals and non-directional):

EH(IO, IR) = ‖EH(IO)−EH(IR)‖1 (6)

Average Squared Visual Salience [ASV S]: ASVS is

a non-reference metric that focuses on the impact that

introduction of artifacts in the inpainted area causes in

the viewer attention:

ASV S(I) =
1

|Ω|∑
Ω

(S′IR(p))2 (7)

where S′IR(p) is the saliency corresponding to a pixel in

the target area of the inpainted result.

4.2 Results of the Metrics

The values given by the three image quality metrics for

the two different algorithms, averaged over the 16 im-

ages and all patch sizes, can be seen in Table 1. Since all

metrics give either a value for dissimilarity between two

images or a value for impact of artifacts, a higher value

represent worse results. As can be seen in the table, two

of the three metrics agree that introducing the amoeba

improved the image quality. Moreover, the two metrics

that indicate better performance for the Amoeba algo-

rithm are the metrics that more directly relate to our aim

of removing visually disruptive intrusion artifacts in the

inpainted results.

Criminisi Amoeba

ASVS 0.278 0.260

CL 22.431 23.448

EH 36.103 30.776

Table 1: Results for the Criminisi and Amoeba

algorithms averaged over the 16 images and all

radii. The metrics’ results indicate that the Amoeba

improves the quality of the results in several

complementary aspects

The results are a bit more nuanced when one looks at

the individual images and patch sizes (see Table 2).

Here, we will examine the results for the Criminisi al-

gorithm first, then the amoeba, and finally we will com-

pare the two.

The Criminisi Algorithm Results: The first interest-

ing result, as can be seen in the table, relates to the Cri-

minisi algorithm. The radius that yielded the best result

is rarely one the "standard" radii (2, 3, 4 or 5). Specifi-

cally, ASVS, EH, and CL metrics found the typical radii

to be best just for 2, 3, and 4 of the 16 images, respec-

tively. In other words, in 81% of the analyses, the best

size was not in the typical range. Furthermore, for no

image do all three metrics agree that the best radii is in

the typical range and for only 1 image do two metrics

agree the typical range is best. In short, the best ra-

dius for the Criminisi algorithm would never have been

tested in previous work! Note that this explicitly means

that the quality of the Criminisi reconstructions found

in this paper will be of better quality than is typically

expected from this algorithm.

The second interesting finding for the Criminisi algo-

rithm is that there is no clear way of predicting which

patch size is best. Changing the patch radius even by

one often produces radically different image qualities.

Likewise, patches with very different radii often have

nearly identical scores. Critically, images with similar

dimensions (like tiger and twobirds) show totally differ-

ent trends for the optimal patch size, suggesting that dif-

ferent features are selected and the decision is not solely

dependent on the image size. All these observations in-

dicate that the only way of finding the best fixed patch

size for the Criminisi algorithm is brute force, with the

consequent exponential increase of computational time.

It is also interesting to note that, for Criminisi, the three

metrics never agreed on what the best radius was. In

fact, on only 5 of the 16 images did two metrics agreed.

Clearly the metrics were focusing on different features.
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Size Best radii for Criminisi Best radii for Amoeba

W H ASVS CL EH ASVS CL EH

bicycle 460 300 10 (0.296) 3 (15.71) 9 (18.71) 5 (0.285) 4 (17.164) 11 (14.623)

bungee 206 308 4 (0.301) 8 (29.72) 5 (38.41) 19 (0.256) 20 (29.605) 19 (35.064)

butterfly 1024 700 20 (0.186) 1 (17.63) 20 (21.75) 16 (0.172) 16 (19.176) 18 (16.654)

butterfly2 615 422 1 (0.369) 1 (11.66) 20 (6.33) 5 (0.439) 7 (15.536) 19 (7.271)

car 500 375 17 (0.190) 3 (8.06) 3 (8.34) 8 (0.191) 2 (8.057) 3 (10.439)

cat 1024 683 18 (0.163) 9 (36.24) 15 (42.74) 3 (0.191) 1 (36.478) 14 (35.484)

colosseum 512 340 20 (0.027) 2 (16.82) 9 (34.37) 14 (0.027) 19 (16.662) 19 (30.317)

eagle 600 402 20 (0.142) 2 (20.25) 17 (27.26) 7 (0.132) 1 (22.165) 20 (19.914)

glasses 500 395 9 (0.233) 6 (28.48) 17 (80.02) 2 (0.274) 4 (35.712) 3 (57.846)

mochizuki 574 346 18 (0.270) 1 (17.78) 19 (19.89) 9 (0.263) 1 (19.714) 17 (16.706)

mountains 512 683 9 (0.440) 17 (14.99) 15 (8.32) 17 (0.416) 15 (14.489) 4 (10.428)

penguins 615 461 13 (0.217) 15 (13.24) 19 (18.96) 19 (0.232) 8 (18.316) 11 (18.801)

pigeons 800 600 7 (0.223) 19 (11.07) 5 (15.61) 3 (0.218) 12 (10.840) 2 (18.696)

soccer 500 356 13 (0.116) 19 (32.96) 7 (56.33) 16 (0.085) 4 (35.495) 6 (49.288)

tiger 600 437 12 (0.091) 20 (13.70) 20 (19.75) 20 (0.099) 5 (15.951) 14 (19.743)

twobirds 600 450 5 (0.434) 1 (31.68) 16 (39.77) 12 (0.303) 1 (36.107) 12 (27.267)

Table 2: Best values according to the metrics. The bold numbers indicate the radii that produced the best

results for the Criminisi and Amoeba algorithms. Numbers in parenthesis reflect the metrics’ scores. As

discussed in the text, it seems that our approach provides similar or better image quality in terms of edges

and perceptual saliency

A closer examination of the different preferences pro-

vides some useful insights. The CL metric prefers small

patches (for 8 of the 16 images, the best size was a ra-

dius of 3 or smaller). For 5 images, CL preferred a large

patch (15 or higher). A closer examination of the im-

ages suggests that this difference is being driven by the

image features. The large patch size is preferred when

the target region is inside a mostly homogeneous region

(such as for tiger or mountains) and small when the tar-

get region has lots of texture or edges (such as eagle or

colosseum). The EH metric, on the other hand, strongly

prefers large patches (for 10 images the best radius was

15 or higher), and only once prefers small patches. This

sole case where EH preferred a small patch was for an

image (car) that had target regions with a few dominant

edges at different spatial scales. The ASVS, which fo-

cused on visual saliency, preferred medium (9 images)

or large (6 images) patches, and only once preferred

small images.

The Amoeba Algorithm Results: As with Criminisi,

the standard sized patches were not chosen very often:

in 73% of the analyses, the best size was not in the typ-

ical range! Likewise, the three metrics never agreed on

what the best patch size was. For only four of the im-

ages did two of the three metrics agree on the best patch

size.

The preferences of the individual metrics was also sim-

ilar to that of the Criminisi Algorithm. Specifically,

the CL metric seems to prefer small patch sizes (for

5 of images the patch size was 3 or smaller, and for

8 o the images it was 4 or smaller). The EH metric

seems to prefer large patches (for 6 images the best ra-

dius was 15 or higher; for 8 images it was 14 or higher).

Smaller patches did, however, performed better than in

the Criminisi algorithm. The ASVS preferred middle

and large patches (6 at 15 or more; and only 3 with a

radius of 3 or less).

Comparing Algorithms: Despite the same general

trends for the preferences of the three metrics, the spe-

cific patch size that was seen as best in the two algo-

rithm was very different. Only in three of the 48 anal-

yses (16 images for 3 metrics) did a metric favor the

same patch size for the same image in both algorithms.

It is clear that the amoeba drastically altered the image

reconstruction. As would be expected from the above

discussion, there are few cases where either algorithm

is a clear winner in terms of the computational metrics,

as documented in Table 2. For 9 of the 16 images the

ASVS felt that the amoeba outperformed the Criminisi

algorithm and in 2 occasions the scores were tied. The

EH metric felt that the amoeba outperformed the Crim-

inisi algorithm in 12 of the 16 images. The CL metric,

on the other hand, felt that the amoeba outperformed

the Criminisi algorithm on a mere 5 images.

4.3 Face Validity

Given that the metrics rarely agree with each other, it

is clear that we cannot rely on them too much without

additional information about their relationship to per-

ception. The relationship between the metrics and per-

ception can be seen a bit more clearly in Figure 4 which

shows the best image for both algorithms for each algo-

rithm. For the image tiger, for example, two of the met-

rics rated Criminisi as better. A closer look at the im-

ages, however, shows that for each metric, our version

had fewer intrusion artifacts and abrupt discontinuities.

The image chosen by EH for our algorithm is clearly the

most natural reconstruction. For the image soccer, only
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Figure 4: The best reconstruction according to the three metrics for the two algorithms. Each metric’s

preferred algorithm is highlighted with a red frame. As seen in the images the Amoeba algorithm results

have visually fewer intrusions. For reference, the first row shows the original images without holes
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Figure 5: Subjectively selected best reconstructions for the two algorithms

CL preferred Criminisi. Yet clearly all of the chosen

images for our algorithm contain fewer intrusion arti-

facts, and the results are definitely more perceptually

plausible. It seems that the EH and to some degree the

ASVS metrics are better at predicting the level of visual

salience of disruptive intrusion artifacts. Finally, the

image penguins two metrics preferred the results from

Criminisi algorithm. Here again, we would argue that a

closer look at the image reveals disconcerting artifacts

in our reconstructions.

Since clearly the metrics are not very good at predicting

human performance, with the possible exception of EH,

it is possible that the best images chosen by the metrics,

as seen in Figure 4, might not the best set of image to

compare the two pipelines. Therefore, we examined the

entire set of results (all 640 image) and presented them

to several observers to choose the subjectively best im-

age. A representative sample of the perceptually best

image can be seen in Figure 5. Although clearly both

algorithms can at times produce good reconstructions, it

seems clear that the amoeba version has fewer intrusion

artifacts and fewer disruptive or abrupt completions.

5 CONCLUSIONS

We extended the method and analysis of Criminisi et

al. [Cri04a] in two ways. First, we showed that the

best sized rectangular patches for the original, unmodi-

fied Criminisi algorithm are almost always well outside

the range usually tested. Second, we demonstrated that

growing a non-rectangular patch in the source area al-

lows the algorithm to copy only pixels that most closely

resemble the structure near the target pixel greatly re-

duces the chance of inserting artifacts into the target

area and consequently improves image quality. This

can be seen clearly in the figures and was confirmed

by the image quality statistics. The amoeba we pro-

posed has considerably reduced the occurrence of dis-

embodied, partially completed, oddly placed structures.

Given that this modification alters the size and shape of

the patch itself, its effects are orthogonal to nearly all

the other modifications to the method of Criminisi et al.

made by other researchers and as such can be combined

with them. Of course, matching and copying techniques

that explicitly require a square patch will require mod-

ification to work with the new amoeba patches. Fu-

ture work could focus on which of the many modules

for each of the different stages in Criminisi’s pipeline

works optimally. Future work could also examine us-

ing the amoeba for the target patch as well. Finally, it

is likely that amoebae can conceivably be used in any

technique that employs patches to process, synthesize,

or analyze images.
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