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Figure 1: A partial room reconstruction using InfiniTAMv3. Left: result without applying a warping function.
Right: result using our warping method.

ABSTRACT
Indoor reconstruction using depth camera algorithms (e.g., InfiniTAMv3) is becoming increasingly popular. Sim-
ple reconstruction methods solely use the frames of the depth camera, leaving any imagery from the adjunct
RGB camera untouched. Recent approaches also incorporate color camera information to improve consistency.
However, the results heavily depend on the accuracy of the rig calibration, which can strongly vary in quality.
Unfortunately, any errors in the rig calibration result in apparent visual discrepancies when it comes to colorization
of the 3D reconstruction. We propose an easy approach to fix this issue for the purpose of image-based rendering.
We show that a relatively simple warping function can be calculated from a 3D checkerboard pattern for a rig
with poor calibration between cameras. The warping is applied to the RGB images online during reconstruction,
leading to a significantly improved visual result.
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1 INTRODUCTION
Indoor reconstruction algorithms for depth cameras,
like InfiniTAMv3, are becoming increasingly popular.
Such an algorithm performs camera pose estimation
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based on the depth maps and feature extraction from
the color images to build 3D models from image ob-
servations. In order to provide textured or colored 3D
reconstructions, a large amount of approaches were de-
veloped adopting RGB-D cameras as input devices.

One of the practical issues encountered in using such
approaches is the need for accurate calibration of the
camera rig. The pose information from the color cam-
era and the depth camera have to be correct in or-
der to enable proper color and texture projection onto
the 3D point cloud or mesh. RGB-D devices are of-
ten calibrated in the factory. The calibration parame-
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ters are stored inside a nonvolatile memory [BMP18].
The depth-to-color registration process uses the intrin-
sic and extrinsic parameters stored in the nonvolatile
memory, but the parameters themselves are inaccessi-
ble due to the closed nature of the sensor design.

Only a fraction of the large variety of depth camera
types is shipped with an accurate internal calibration
(e.g., Microsoft Kinect v2). Some products provide in-
accurate calibrations; custom rigs always require man-
ual calibration. In any case, a noticeable misalignment
between the depth maps and the color images makes
a full calibration of the RGB-D sensor necessary. A
survey of calibration literature suggests that creating a
proper calibration for RGB-D rigs is surprisingly diffi-
cult because of the heterogeneous nature of the involves
cameras1.

Projection-based depth cameras use a projector casting
infrared (IR) patterns observed by an IR cameras (or at
least a camera fitted with IR filters). The depth maps
accessible through the device driver or middleware like
OpenNI2 are generated using closed algorithms, which
use a nonlinear, depth-dependent mapping that cannot
be explained with a rigid transformation between the
two sensors. One could compare the raw IR image de-
livered by the depth camera to the RGB image [BF15].
However, this assumes that the IR image and the depth
image use the same projection, which is not the case
for the sensors we have examined. Indeed, there are
pairwise nonlinear mappings between color image, IR
image and depth image.

This work was motivated by a problem encountered
during the scanning of real environments for a Virtual
Reality application. When reconstructing model geom-
etry with InfiniTAMv3 [KPR+15] for an image-based
rendering (IBR) system [EHH+19], we noted a signifi-
cant misalignment between depth and color information
(Figure 1, left).

Diving deeper into this issue (see Figure 2) makes the
discrepancies more apparent. The color-depth offset is
non-linearly decreasing with the distance from the cam-
era center and increasing with distance from the opti-
cal axis of the sensor (see Figure 3). Attempts to cali-
brate the RGB-D sensor with standard camera calibra-
tion technique using a checkerboard pattern failed to
produce usable results. We also tested the depth-sensor
calibration algorithm by Ferstl et al. [FRR+15], but nei-
ther of those calibration methods led to a reduction of
the depth-color offset.

In this work, we devise a method to calibrate RGB-
D sensors using a polynomial warping function. The
warping function registers the RGB images to the depth

1 For the rest of the discussion, we focus on projector-based
depth cameras only.

2 OpenNI Github Repository

Figure 2: Visualizing depth discontinuities for Orbbec
Astra Pro sensor. First row: Left, example of expected
result. Right, the actual result. Second row: a corre-
sponding pair of color image and depth map.

Figure 3: Non-linear offset between depth maps and
color images, varying over the distance from the optical
axis. These offsets were obtained by moving a known
object in a static scene and measuring the depth to color
offset. We moved it along the horizontal (left plot) and
vertical (right plot) axis of the image plane.

maps, which produces a 1:1 correspondence between
pixels in the depth map and the color image. We use
a 3D equivalent of a conventional checkerboard cali-
bration pattern, which has its white squares raised and
turned into small cubes. The resulting 3D target can be
reliably detected with a depth sensor. After computing
the translational offset between corresponding corners
in the RGB and depth images, we fit an nth degree poly-
nomial to the resulting differences and use it to com-
pute the warped image RGB′(x,y) = RGB(xw,yw), with
(x,y) being pixel coordinates and (xw,yw) denoting the
coordinates retrieved from the warping function. Thus,
the primary contributions of this paper can be summa-
rized as:

1. The implementation of a calibration algorithm to re-
trieve translational offsets

2. An image warping registration algorithm which
achieves 1:1 correspondence of color to depth

3. The demonstration of the plausibility of the calibra-
tion approach on the popular Orbbec sensors
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We apply the proposed algorithm to an IBR algorithm
[EHH+19] and provide some experimental results (see
e.g., right of Figure 1).

2 RELATED WORK
The problem of proper calibration of RGB-D cam-
eras has been mentioned multiple times in the liter-
ature. The factory calibration of commercial RGB-
D sensors, such as Kinect and Structure Sensors, is
not suitable for applications requiring high quality 3D
data, i.e., 3D building models of centimeter-level accu-
racy [DTLC17]. Thus, several studies have extensively
analyzed the sources of errors of such sensors [GVS18,
SPB04, KBR14, HHEM16].

Simultaneous localization and mapping (SLAM) using
depth sensors has become immensely popular after the
publication of the KinectFusion [NIH+11] algorithm.
Later work improved or extended the original capabili-
ties [KPR+15, WSF18]. However, these methods gen-
erally assume a properly calibrated RGB-D rig.

Other work uses IBR to create high-quality results de-
spite poor alignment of color images, essentially cor-
recting the problem after acquisition is completed. This
usually involves generating new views from recorded
video frames [HRDB16, DH18, EHH+19]. The rig cal-
ibration problem was encountered in these works, but,
again, no direct solutions were proposed. For the rest
of the discussion, we thereby focus on the calibration
problem itself.

2.1 RGB to IR camera calibration
Basic camera calibration is usually done through well-
known algorithms, such as Heikkila and Silven’s cal-
ibration method [HS97], Zhang’s algorithm [Zha00],
Bouguet’s Matlab camera calibration toolbox [Bou01],
or more recent work, such as Rojtberg and Kuijper’s
method [RK17].

Chen et al. [CYS+18] and Darwish et al. [DLT+19] cal-
ibrate RGB-D sensors with a flat checkerboard pattern
via images from the RGB and IR cameras. The former
calibrates multiple RGB-D sensors into a single coor-
dinate system, while the latter improves the depth mea-
surement accuracy.

Geiger et al. [GMCS12] developed a method for fully
automatic camera-to-camera calibration that uses im-
ages of planar checkerboard patterns as calibration tar-
gets. They detect checkerboard corners in an image by
computing a corner likelihood at each pixel in the im-
age using corner prototypes. To produce a list of corner
candidates, they apply non-maxima suppression, fol-
lowed by a scoring based on gradient statistics that they
threshold to obtain a final list of corners.

2.2 RGB to depth map calibration
Like most approaches, Zhang and Zhang [ZZ11] use
a checkerboard pattern, but they do not calibrate the
depth camera through the detection of checkerboard
points in the images from the IR camera. They pro-
pose a maximum-likelihood method based on the fact
that points on the checkerboard in the depth map shall
be co-planar, and the plane is known from color camera
calibration. They use point correspondences between
the depth and color images that may be manually spec-
ified or automatically established.

Herrera C. et al. [HKH12] present an algorithm that si-
multaneously calibrates the intrinsics and extrinsics of
two color cameras and a depth camera. They use a pla-
nar checkerboard pattern for calibration. In the color
images, the checkerboard corners are extracted, and, in
the depth maps, the four corners of the checkerboard
plane are located. For the depth camera calibration, the
user selects the corners of the calibration plane in the
depth maps.

Jin et al. [JLG14] proposed an intrinsic calibration of
depth sensors in which they use a set of cuboids with
known sizes. Their approach consists of an iterative
plane fitting and non-linear optimization that takes
around five minutes to accomplish the calibration. The
objective function for calibration is based on the length,
width, and height of cuboids and its angle between the
neighboring surfaces.

Staranowicz et al. [SBMM15] developed an RGB-D
camera calibration algorithm for the estimation of in-
trinsic and extrinsic parameters. They use a recorded
sequence of a moving sphere to calibrate the sensor. El-
lipse and sphere-fitting algorithms are used to detect the
sphere in the RGB images, and the center of the fitted
sphere is reprojected onto the depth map. A great ad-
vantage is that no a-priori knowledge of the sphere’s
size is required.

Basso et al. [BMP18] developed a method to calibrate
RGB-D sensors by estimating the rigid body trans-
formation that relates the two sensors, while inferring
the depth error correction function. Their method re-
quires the depth sensor to be coupled with a calibrated
RGB camera that frames approximately the same scene.
First, they use the pre-calibrated RGB camera to detect
a checkerboard on a wall. Then, they infer the loca-
tion of the latter based on the pose of the checkerboard
in the RGB images, and finally they estimate the rigid
body transformation that relates the two sensors.

2.3 Learning-based approaches
Ferstl et al. [FRR+15] use a random regression forest
to optimize the manufacturer supplied depth measure-
ments. They detect feature points in both the RGB and
the depth maps using a planar target with known dimen-
sions.
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Figure 4: Sample images. RGB images IC (top). Depth maps ID (middle). Binary images IT (bottom).

Teichman et al. [TMT13] propose an unsupervised in-
trinsic calibration approach built on top of a robust
SLAM system. The RGB-D sensors they used to test
their system gave them correct extrinsic parameters,
i.e., a correct depth-to-color registration. The main ad-
vantage is that no specialized hardware, calibration tar-
get, or hand measurement is required. However, their
optimization approach takes several hours to converge.

2.4 Discussion
Calculating a correct differential pose of the depth map
and the RGB camera is not possible directly. At least,
a calculated geometric pose correction only works for
a dedicated physical distance examined, but does not
hold throughout the entire range of distances observed
in a practical scenario.

Our approach aims at creating suitable imagery for IBR.
We do not aim for improving the reconstruction directly
through the use of image observations. However, while
our algorithm has similarities to existing approaches, it
is much more straight-forward to apply, only requires
a small amount of images and works exclusively in the
image domain.

3 CALIBRATION ALGORITHM
In order to describe our calibration algorithm, we first
introduce some basic notation here. An RGB camera
provides an RGB image denoted by IC; a depth sen-
sor provides a depth image denoted by ID. From an
RGB image of a scene that contains a checkerboard, it is
possible to extract the checkerboard corners IC B, where
the superscript IC denotes the fact that the corners are
expressed in two-dimensional pixel coordinates, i.e.,
IC B = (x,y)1, ...,(x,y)n.

We do not use images from the IR sensor to calibrate
the RGB-D camera for the reasons explained earlier. In-
stead, we directly go for a method to relate RGB images
and the corresponding depth maps. For our algorithm,
we require a 3D checkerboard target, which can be de-
tected in both the RGB image and the depth map. Bamji
et al. [BOE+15] reported a depth resolution of 5cm at
7.5m and a precision of 2.7cm over a range of 0.2−6m

for commercial RGB-D sensors. Thus, we chose a min-
imum cube size of 125cm3 as features to detect in the
depth image.

We record color and depth images of the 3D checker-
board in different positions (see Figure 4). We need
to automatically detect as many points as possible to
obtain dense 3D-to-3D correspondences. This require-
ment deviates from the method of Zhang and Zhang
[ZZ11], who only need a few points because they es-
timate a rigid transformation with only six degrees of
freedom. In contrast, we estimate a warping function to
achieve a 1:1 correspondence of color and depth.

From the imagery, we extract the checkerboard points
in all the k color-depth image pairs, with k = 1,2, ...,K.
Once we have the coordinates of the checkerboard
points IC B and IDB in both color and depth images, we
calculate the offsets (in pixels). Two warping functions
Sx and Sy are estimated from these measurements,
which warp the image in x and y, respectively.

3.1 Corner detection
We use the algorithm of Geiger et al. [GMCS12] to de-
tect the checkerboard corner points in both color and
depth. Corner detection in RGB images is straight-
forward, but depth frames need pre-processing before
checkerboard detection works.

First, we estimate surface normals from the raw depth
image using the surface normal determination algo-
rithm of Ückermann et al. [UEHR12]. This proce-
dure results in edges becoming more distinct. The
method uses the 2D image coordinates and depth value
to yield valid three-dimensional vectors for every im-
age point. The surface normals are calculated from the
plane spanned by three image points in a vicinity of
5×5 pixels. Using the cross product

~n = (~b−~a)× (~c−~a) (1)

and the normal to the image plane ~nxy, we obtain the
angle ∠(~ni,~nxy) which gives us the degree of deviation
of the~ni normals from the optical center of the RGB-D
sensor. We heuristically determined a threshold value
of θmax = 1◦ to remove the edge pixels in the raw depth
map.
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Figure 5: Left: 3D checkerboard target blob. Right:
Binary image IT .

We use the output of the edge detection step to detect
sets of connected components. As with most checker-
board detection algorithms, we require to board to be
non-square, i.e., one board dimension should be even,
the other, odd. Consequently, blobs should be nearly
rectangular in screen space, and we can reject outliers
based on their aspect ratio.

From this rejection test, we obtain a bounding box E
that delimits the blob containing the 3D checkerboard
target. We use its boundary to remove all the pixels in
the depth map that lie outside of E and get an image
that only contains the 3D target (see left of Figure 5).

We threshold the depth map containing only the bound-
ing box E (see left of Figure 5) to obtain the binary
images IT (see right of Figure 5 and bottom of Fig-
ure 4). To do so, we determine a plane P(x,y) with
three non-colinear points (see Figure 6) which allows us
to remove the board’s background (checkerboard black
squares).

The 3D checkerboard position cannot be parallel to
the image plane because, when it is moved too far
away from the optical axis, the side faces of the cubes
interfere with the checkerboard detection algorithm
[GMCS12]. Thus, the board has to be slightly rotated
when moving away from the center. Hence, we cannot
use a mask which is parallel to the image plane.

Given the center EC (red point in Figure 6) of the
bounding box E, the plane points are determined as

P1 =
(
Ex

C−d, Ey
C−d, Gmin

1
)

(2)

P2 =
(
Ex

C, Ey
C +d, Gmin

2
)

P3 =
(
Ex

C +d, Ey
C, Gmin

3
)

d = EH/5, e = EH/5
Gmin

i = min{D j > 0}+θT ,

with EH being the height of the bounding box E, and
D j, all the depth values inside the green square Gi
in Figure 6. The threshold θT lets us decide the depth
values the plane P(x,y) masks out. We experimentally
determined a threshold θT = 4cm, since we know that
the height of the cube is 5cm (given a cube size of
125cm3).

d

d

e

Figure 6: Points (blue) defined around the bounding
box center (red) to determine the plane used as a filter
to remove the board’s background (checkerboard black
squares).
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Figure 7: Sorted lists of points ∆
x,y
s (non-linear offset

between IC B and IDB checkerboard corner points) ob-
tained from the sample data set of Figure 4.

We analyze the depth value of all the pixels inside the
bounding box E and binarize them to obtain IT . Pixels
with a depth value greater than P(x,y) are discarded.

IT (x,y) =

{
0 if E(x,y)≥ P(x,y)
1 if E(x,y)< P(x,y)

(3)

After this, we obtain binary images containing only
the checkerboard (see right of Figure 5 and bottom
of Figure 4) that we use as input for the detection al-
gorithm [GMCS12].

3.2 Color-to-depth offset
From a board with M×N corner points, we obtain a set
of p points, with p = 1,2, ...,M ·N. Once we have the
coordinates of the checkerboard points IC B and IDB in
both color and depth images, we calculate the offset (in
pixels) between each corner point IC Bp in the ICk image
and IDBp in the IDk image.

∆
x
p = IDBx

p − IC Bx
p with x = 1,2, ...,n (4)

∆
y
p = IDBy

p − IC By
p with y = 1,2, ...,m (5)

We sort the points ∆
x,y
p according to the coordinates of

its associated point IDBp (see Figure 7).

3.3 Image warping
From the sorted lists of points ∆

x,y
s , we estimate the

warping functions W x and W y. We fit cubic polyno-
mials to ∆x

s and ∆
y
s to obtain the warping functions W x
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(a) (b) (c) (d)
Figure 8: Warping functions W x and W y for different distances for the Orbbec Astra Pro sensor. (a): 80cm
calibration distance. (b): 100cm calibration distance. (c): 120cm calibration distance. (d): Interpolated warping
functions Sx (top) and Sy (bottom).

and W y, respectively (after the investigation of multi-
ple sensors and setups, a cubic polynomial turned out
to be sufficient). We solve the polynomial regression
problem using the least squares method

ATAc = ATb, (6)

For W x, the vector b = ∆x
s and the matrix

A =


1 IDBx

1
1

. . . IDBx
1

n

1 IDBx
2

1
. . . IDBx

2
n

...
. . .

...
1 IDBx

s
1

. . . IDBx
s

n

 (7)

The functions W x and W y can only be correctly approx-
imated, when the 3D target in all the IC and ID images
is at the same distance d from the image plane of the
RGB-D sensor. Hence, it is required to estimate warp-
ing functions W x

d and W y
d for multiple distances d, re-

spectively.
We interpolate all the available warping functions W x

d
and W y

d to model the warping of x and y as a function
of (x,D) and (y,D), respectively. We use cubic spline
interpolation to obtain the functions Sx and Sy which
warp all (x,y) pixels over all the depth distances D.
The function Sx,y is used to compute the warped image
I′C(x,y) = IC(xw,yw), such that

xw = x+Sx(x,D) (8)
yw = y+Sy(y,D) (9)

where D is the depth distance value at the pixel (x,y) of
the ID associated to IC.

4 EXPERIMENTS
We conducted a set of experiments with different RGB-
D cameras (Orbbec Astra Pro, Orbbec Astra Embedded

Figure 9: Offset error between depth and color images.
Blue points represent the offset error, for 12 different
points along the horizontal and vertical axes, before the
calibration. Red points represent the error for the same
12 points after the calibration.

S, etc.). An exhaustive overview about individual prod-
ucts is beyond the scope of this paper. However, in the
following we discuss our findings with respect to the
Orbbec Astra Pro sensor. Applying the algorithm to
others led to results showing the same trends, however.

4.1 Calibration results
In Figure 8, the calculated warping functions for dif-
ferent target distances, 80cm, 100cm and 120cm, are
depicted. With increasing distance from the sensor,
the warping is observed to become slightly more linear.
In Figure 9, the offset between IC B and IDB before the
calibration (blue), and the offset after using the warping
function on the RGB images (red). The error is signifi-
cantly reduced in both the x and y dimension.

At the top of Figure 10, the offset for a test data set of 12
images is depicted. We took twelve images in different
positions. The red circles are the IC B board corners in
RGB. The blue stars are the IDB board corners in depth.
The figure at the top shows the offset before applying
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Figure 10: Scatter plot of the depth-to-color checker-
board corners offset for two data sets of 12 images. Red
circles represent the IC B corners, and blue stars, the IDB
ones. Top: offset before calibration. Bottom: offset
after calibration.

the Sx and Sy functions. Similarly, for a second testset,
the result is shown at the bottom of Figure 10.

4.2 Colored point clouds
The warping can be done online or offline. The Sx,y

functions are used to create a lookup table that can
be consulted at runtime in order to apply the correc-
tion. We added this functionality to InfiniTAMv3 with-
out any noticeable performance drop. We compute
I′C(x,y) = IC(xw,yw) for every input frame IC. An ex-
ample of a colorized point cloud is showed in Figure 1,
without and leveraging our warping method. Another
example is shown in the top row of Figure 2, denoting
the result after (expected) and before (original) warp-
ing.

Another example is shown in Figure 11. The borders
of the tables in the scene prominently stick out, as well
as the partial erroneous texturing of parts of the mo-
bile computer, the mouse next to it, and the break of
the lamp in the back. Using the warping method, the
overall visual quality is significantly improved.

4.3 Image-based rendering
Erat et al. proposed an algorithm for generating an
unstructured lumigraph in real-time from an image
stream. Despite calculating the texture beforehand,
the texture mapping onto a 3D model is performed
online based on the actual view point onto the scene.
For a more explicit description of the approach, the
interested reader is referred to [EHH+19].

The overall quality of the approach is heavily depen-
dent on the accuracy of the RGB poses given to the
algorithm. Passing the original RGB images from the
sensor to the system results in clear visual artefacts and
inaccuracies, as depicted on the left of Figure 12, while
the results of our warping-based approach for the same
scenes are depicted on the right.

For the scene depicted in Figure 12, the most obvious
improvements can be observed at the 3D checkerboard
pattern itself. Another visible inaccuracy is present at
the left boundary of the monitor, which is completely
cropped in the original approach, but nicely preserved
in our new method.

5 CONCLUSION
In this paper, we presented a method to calibrate RGB-
D sensors using a polynomial warping function. The
warping function registers the color images to the depth
maps producing a 1:1 correspondence between pixels
in the former and the latter. This method is particu-
larly useful when the camera extrinsics determination,
through both color and depth intrinsics, does not give a
satisfactory result.

We presented a set of experiments using the popular
Orbbec Astra Pro RGB-D sensor along reconstruction
and IBR systems, showing the quality improvement ob-
tained after performing the warping.

The main drawback of our approach is the need to take
multiple images of the same 3D target, at different dis-
tances from the sensor, to obtain a dense enough 3D
warping function. The more 2D warping functions it
contains the better the results the warping produces,
though, a substantial improvement is noticeable with
only a few warping entries.

The main advantage of the proposed method is that
a depth-to-color correspondence between unrelated (or
factory attached) RGB cameras and depth sensors could
be achieved. For example, it could be used to build
a camera rig made up of multiple depth sensors and a
high definition color camera. This is subject to further
research and development in the future.
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Figure 11: Results from a reconstruction recorded with InfiniTAMv3. Left: original results. Right: results gener-
ated with the proper warping functions.

Figure 12: Results from the IBR pipeline of [EHH+19]. Left: original results. Right: results generated with the
proper warping functions.
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