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ABSTRACT 
Ray tracing remains of interest to Computer Graphics community with its elegant framing of how light interacts 
with virtual 3D objects, being able to easily support multiple light sources during rendering and using sampling 
of estimates of intensity values at multiple surfaces in a recursive manner using light as ray. Ray tracing can also 
provide a simple framework of merging synthetic and real cameras. Recent trends to provide implementations at 
the chip-level means raytracing’s constant quest of realism would propel its usage in real-time applications. 
AR/VR, Animations, 3DGames Industry, 3D-large scale simulations, and future social computing platforms are 
just a few examples of possible major impact. Raytracing is also appealing to HCI community because 
raytracing extends well along the 3D-space and time, seamlessly blending both synthetic and real cameras at 
multiple scales to support storytelling. This presentation will include a few milestones from my work such as the 
Slicing Extent technique and Directed Safe Zones. Our recent applications of applying Scan&Track with 
machine learning techniques creating novel synthetic views, which could also provide a future doorway to 
handle dynamic scenes with more compute power as needed, will also be presented. It is once again renaissance 
for ray tracing which for last 50+ years has remained the most elegant technique for modeling light phenomena 
in virtual worlds at whatever scale compute power could support. 
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1. INTRODUCTION 
In Augmented Reality applications as the synthetic 
camera images are merged with the reality all around 
us, the merging is usually not smooth due to lighting 
conditions and mismatch of conditions as two 
disparate events are joined together with spatial 
mismatch. The main thinking of this paper is that 
raytracing with Active Space Index Method could 
propel a renaissance of using raytracing techniques 
towards an effective solution of merging of such 
disparate events by merging real and synthetic scenes 
into one physical space captured in front of a set of 
cameras. We call this 3D-space an active-space as it 
allows projection of a point onto a set of cameras to 
be seen. Also, an active-space indexing method is 
developed so that given the projection of the same 
3D point in active-space in the set of cameras can be 
used to estimate the 3D point’s coordinates. This 
paper presents basic ideas in this paper so that real 
and imaginary objects could be part of raytracing 

techniques.  Summary of our previous work [Dau90, 
Kva97, Sem92, Sem93, Sem98a, Sem98b, Sem01] is 
first presented. Using some of these ideas we make a 
case towards using raytracing as a unifying concept 
towards merging synthetically generated scenes with 
camera-based sequences in the hopes of creating a 
process towards resolving subtle light mismatch seen 
in recent work in AR applications [Li20, Har23] and 
movies where synthetic and natural objects are 
merges to create a rendered image. 

2. Spatial subdivision algorithms for 
Raytracing 
A ray starting at some point C and passing through a 
point on the image-plane (IP) intersects with object A 
and generates two new rays. R1 and T1. These two 
rays recursively traverse the scene. For example, ray 
R1 is shown to intersect with object B generating, in 
turn, R2 and T2.  Bot the intersection points on 
objects A and B are in line-of-sight of light source as 
shown in the Figure 1, which contributes light 
intensity as L1 and L2 at points A and B respectively. 
When the rays start from point C the process is called 
backward ray tracing as opposed to when the rays 
start at the light source and then are tracked in 
forward raytracing.  Since the idea is to generate the 
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scene for the image-plane, backward raytracing is 
considered much efficient as only those rays are 
tracked which originate from C and pass through 
every pixel on the image plane and are needed to 
create the scene-render.  For example, if we are 
generating a 60 by 40 image, there are 2400 initial 
rays which are tracked through the scene starting at 
point C through 2400 pixels on the image plane. The 
intensity of each such ray starting at point C and 
passing through some pixel-point IP is estimated 
using a tree which keeps track of the secondary rays 
as shown in Figure 2. 

 
Figure1: Basic ray tracing starting from C. 

To estimate the intensity at point IP on the image 
plane using the concept of recursive raytracing, we 
follow the path of the rays which are generated as 
reflective rays, R1 and R2, and transmitted rays, T1, 
and T2 (Figure 2) are followed generating their own 
intersection points with other objects in the scene in 
turn providing sample intensities which can then be 
combined as these intensities are summed upward 
through the tree from leave nodes. Effect of lights for 
intensity values being returned from all visible 
intersection points can also be added as shown in 
Figure 3. Ambient intensities approximate the 
intensity returned by a ray when a ray travels out of 
the scene.  Usually this happens when a ray travel 
outward away from all objects as it intersects the  
bounding box containing the scene [Woo90]. The 
direct line of sight from light sources to the 
intersection points means that the light source effects 
can also be incorporated into the intensities, as shown 
in Figure 3. Aggregate of all these effects can be 
summed incorporating the distance of light source, 
reflectivity and transmissivity of the objects 
mathematically. All these effects can be combine to 
return the estimated intensity for the pixel IP as 
shown in Figures 1 and 3. Subpixel samples can be 
incorporated when multiple stochastic rays generate 
effects based on bi-directional reflectance 
distribution function (BRDF) based on material 
properties of the objects in the scene. This leads to 
the idea of path tracing which have been used to 
create stunning realist images in many movies and 
animation sequences.  Path tracing has also been 

implemented in several industry leading special 
effects and movies recently as well. 

 
Figure 2: Estimating Intensity IP for a primary ray at 
point IP using secondary rays T1, R1, T2, R2 etc. 
Path tracing has become the industry standard 
creating photo-realistic images by judiciously 
spawning several rays stochastically and applying 
BRDF functions and its variations judiciously. Our 
methods and new directions proposed can also be 
extended to those industry leading implementations. 
This includes path tracing renderers in Maya 
[Geo18], Sony’s Arnold [Kul18], Weta’s Manuka 
[Fas18], Disney’s Hyperion [Bur18] and Pixar’s 
Ruderman [Chr18].  Cloud implementations of 
raytracing are also working towards a goal of real 
time ray tracing [Xie2021] with 8 frames per second 
being reported, and NVidea is reporting GPU 
enhanced ray tracers for some years now. In recent 
work [Har21], the graphics pipeline is improved as 
deep learning techniques generate frames in between 
two graphics pipeline rendered frames. If the scenes 
are not changing, then generated rendered frames can 
be used as examples of images based on camera 
angle when scene is invariant. In game playing, as 
large number of frames are rendered for invariant 
scenes and light sources, they can be used for 
training and synthetic frame rendering and can 
sometime be used to generate acceptable frames as 
explained in [Har21].  The trained network is used to 
create an in between to offload the rendering pipeline 
and works for the case reported in [Har21]. The idea 
is to offload graphics pipeline and use deep learning, 
and supposedly faster frames in-between the 
rendered frames [Har21]. Ofcourse, when the scene 
or light source change then offloading can be 
suspended in favor of graphics rendering again.  
When the scene stabilizes then we can revert back the 
load to using deep learning learned images.  As we 
will discuss later, most of the spatial data structures 
do not handle change in scenes due to explosions or  
when objects intersects the data structure updates are 
necessary (i.e. preprocessing) needs to occur adding 
delays in rendering.  Once idea which we propose 
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later in this paper is to let the user know that the 
scene is under construction, especially when 
massively multiplayer games interactions are so 
critical to happen in real-time. 
 

 
Figure 3: Merging of samples of intensities using a 
raytracing tree which us generated and thein 
intensities combined. 

 
Figure 4: Proximity Cloud (PC) vs Directed Safe 
Zones (DSZ). 

3. SET and DSZ ray tracing techniques. 
The Slicing Extent Technique (SET) [Sem87, 
Sem92] uses projection of the objects in the scene of 
2-D planes surrounding the object. In 1990, is was 
implemented using a 3D-grid interpretation, and was 
called the modified slicing extent technique (MSET) 
[Sem93].  The benefit was to allow the fast grid-
traversal to be incorporated while ray traverses 
through the scene mimicking the  SEADS 
implementation [Fuj86]. In addition, we also 
incorporated  an octree [Gla84] to isolated isolate 
dense and sparse area in the scene so that a finer grid 
could be used for dense areas, and sparse areas can 
be skipped quickly in comparison to octree [Gla84], 
thus allowing multiple hierarchies to be managed 
using MSET. Later, work on the proximity cloud 
[Coh94a, 94b] further improved the grid-
implementations for ray tracing. A method was 
developed during preprocessing so that a safe-
distance value (D) was determined for every grid-
voxel so that a ray passing through a voxel with 

distance D can skip distance D without missing an 
intersection as during pre-processing it was 
determined that there we no objects withing a D 
distance from this voxel, hence the name safe-
distance. This D distance allowed isolated areas to be 
bypassed in much more efficient way in cormarison 
to distance D=1 which will mimic the grid traversal 
itself. It is much faster to skip areas of the scene with 
no objects in it. During preprocessing, the value of D 
was determined using transformation [Bor86] to 
isolate areas of no-object efficiently by using a 3 by 3 
by 3 filter on 3D-grid voxels.  This is illustrated in 
Figure 4 where a 2D-grid voxel, or cell, is shown and 
nearest object for any ray through the edge of the 2D-
voxel (cell) are D1, D2, D3, and D4 away.  So 
minimum radius is D4 which is the safe distance a 
ray could travel in any direction from this 2D-cell 
without finding an object to intersect. Every cell thus 
could have its own 2D-circle, or extending this idea 
to 3D, its own 3D-sphere.  Each voxel of the 3D-grid 
could have such sphere. One can now imagine every 
voxel to have different (yet close) values creating 
many spheres with no objects in them.  One could 
imagine spheres of different radii, hence the term, 
proximity clouds (PC) used in [Coh94b] to describe a 
Proximity Cloud. Proximity Cloud was a major 
improvement very as it was more efficient way 
where ray tracing image generation times were 
shown to improve over the previously known grid 
implementations. Normal grid-traversal, moving 
from one voxel to next voxel could be suspended in 
favor of jumping D distance away without missing 
any intersections. Figure 4 shows this concept in 2D 
with four safe values in four directions.  In PC, we 
choose the minimum of these 4 values, and conclude 
the safe distance of D4 for that voxel. 
Usually city-block distance transformations are used 
to implement Proximity Clouds so instead of radius 
we could imagine city-block distances [Coh94b].  
This faster method was further improved by a 
variation of the slicing extent technique called 
Directed Safe Zones (DSZ) in [Kva97] where the six 
safe-distances in six direction are calculated as the 
ray emerges out of a voxel through one of the six-
faces of a 3D-voxel (grid-cell). All such distances are 
calculated during preprocessing by modifying PC’s 
distance transformations filter to suit the DSZ 
implementation [Kva97]. After preprocessing in DSZ 
method each of the six faces of 3D-voxel of would 
have a distance associated with it moving outward 
from the cell towards left, right, bottom, top, up and 
down directions. In 2D, this is shown as D1, D2, D3, 
D4 values in Figure 4. In DSZ, the ray has the 
capacity to skip six different distances based on its 
direction of traversal as the ray passes through any of 
these six faces. This meant that Directed Safe Zones, 
which extends the Slicing Extent techniques, is more 
efficient. As shown in Figure 4, DZS has the 
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flexibility to choose either of  D1, D2, D3 or D4 as 
safe-distances guaranteeing that image generation 
time will always be better or same in DSZ in 
comparison to PC implementations. DSZ uses larger 
distance based on the traversal direction of the ray 
showing in theory and is an improvement over PC. 
Using scenes from [Hai98] called random, lanes, 
snowflake, and cars, a comparative analysis in 
[Kva97] showed that DSZ outperformed the 
SEADS/grid and PC implementations for all four 
scenes. As expected, because of the potential of more 
empty areas in random and snowflakes scenes major 
improvements in rendering times were obtained for 
random and snowflake scenes using DSZ in 
comparison to Proximity Clouds and SEADS/Grid 
implementations. Typical performance speedup of 2 
for DSZ were seen when compared with grid 
implementation. For the PC, speedup was 1.5 with 
respect to grid implementation. In all cases, as 
expected, DSZ outperformed the PC method and grid 
(SEADS) [Fuj86] method.  
Additional benefits of DSZ method is that, in 
addition to the outgoing rays emanating from a voxel, 
DSZ method can treat incoming rays because each 
face of the voxel can maintain two distances, as was 
also explained in [Sem87,Sem93].  A ray passing 
through the left face of a 3D-voxel to the right, or 
from right to left, upwards-to-downwards or 
downwards-to-upwards, and front-to-back and back-
to-front can be recognized, allowing two directions 
per face so that 12 different classifications instead of 
six are possible as a ray passed through a face of a 
voxel. This is a useful benefit allowing us to manage 
3D scenes better, as we plan to embed synthetic 
scenes in active spaces as explained in next sections.   

4. Active Space Indexing Method Review 
Setup and Data Capture 
Active-Space Indexing Method [Sem01] uses ideas 
of triangulation, including closest distance between 
two rays to find 3 D (x,y,z) position of a point P. 
Given image-imprint Im1, Im2, and Im3 on the 
camera-images for a point P, Active Space Indexing 
method preprocesses projections of several 3D grid 
points on each camera images to determine the 2D-
indices for each camera images.  If we assume that 
2D grid points can be indexed between 1 to n and 1 
to m then Im1, Im2, and Im3 must fall on some index 
(x,y) using the projections of grid-patterns in p such 
planes. When three such indices on for each Im1, 
Im2 and Im3 points identified in all three camera 
images as corresponding to the point P, then these 
indices define an area, and that area will decrease 
first and then increase as we process p of these plane 
from front to back.  This allows us to find a voxel 
which contains point P. Active-space indexing 
method connects the projection-space to the real 3D 

space. More details of how Im1, Im2, Im3, called 
imprint-set can be used to determine position P is 
further explained in [Sem01] in more detail. 
In summary, Active Space Indexing Method is a 
study of 2D-projections of a set of 3D-points as seen 
by three cameras.  These set of 3D-points are 
arranged in real 3D-grid in physical space in front of 
the three cameras. This space in front of the camera 
is called an active space [Sem98].  The active space 
indexing method is created by projecting set of n by 
m planer points inside a rectangle R which contains n 
by m in an equal distance grid pattern. We used a 
whiteboard for this purpose. The points on the 
whiteboard can be shifted some distance away from 
the previous placement of the whiteboard. In this 
war, the whiteboard it has an effect of moving same 
points inside the rectangle R will also move parallel 
to previous plane positions. We repeat this process 
several times to obtain images for a set of p 
whiteboard positions. As the whiteboard moves, it 
has an effect that 3D grid points inside the active 
space are projected and preprocesses during 
preprocessing to create an active space indexing 
method. During preprocess, the exact pixel locations 
of all grid points for all p whiteboard positions are 
determined and stored during preprocessing.  This 
information is sufficient to estimate point P’s x,y,z 
location in n by m by p space using point P’s imprint-
set as explained in [Sem01]. Assuming the process 
repeats p times, using same distance. This will have 
an effect of creating a set of 3D-grid points in the real 
physical space which we call active-space. For 
example, n=m=4 and p=8 in Figure 5 so that a 4 by 4 
by 8 grid of points are in the active space.  Each time 
image-plane moves we record the projections of set 
of 4 by 4 image-plane points on 3 cameras which are 
called Left (L), Center (C) and Right (R) points as 
shown in Figure 5 and then the as shown in Figure 6.  
The three cameras are related in a way that all p 
planes are visible from all the three camera and their 
projections are therefore highly correlated. We also 
have shown the projected shape of the rectangles in 
Figure 5. As explained earlier, rectangle R was 
created on a whiteboard which was available in the 
lab [Sem98], and already had a 2D-grid-pattern and 
the intersection of this points were highlighted with a 
blue/black pen which were then easily picked up 
during pre-processing. In this way, we were able to 
correlated n by m by p points in active space to their 
projections by preprocessing p of these projections 
for every camera. All of these points were clearly 
visible in the three cameras because we had planned 
the arrangement.  Figure 6 shows approximately the 
front-plane, marked F, and back-plane, marked B, 
and corresponding projections of rectangular B and F 
planes and their projected shapes in all three cameras. 
As the white-board moves from Back to Front p 
planes create p projections of the grid-pattern on the 
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on three cameras. Sets of these projections are 
created and processed during preprocessing and are 
the basis of active space indexing method. Vertical 
and horizontal lines and their projected lines on 
image planes are used to first find the index in 2D 
planes in all three cameras, as explained earlier, and a 
triangulation algorithm is used to find the voxel 
which contained the given 3D-point P using the 
image print (Im1, Im2, and Im3) of the point P.  The 
image-print, i.e. Im1, Im2, Im3, is identified 
manually in our implementation.  Image-imrpint 
could be detected automatically as well.  Finding 
image prints is called correspondence problem and 
there are a variety of techniques including finding 
significant points first and then correlating these 
points as image prints using the projections of these 
points on three cameras.  We used significant points 
extraction and correlation of these points as 
mentioned in [Sem98a, Sem98b, Sem01]. 

 
Figure 5: Scan&Track data collection – 4 by 4 planer 
grid moves 8 times perpendicularly to create a 4 buy 
4 by 8 active space, 128 grid points in 3D active-
space. A set of voxels in 3D-real space is created. 

Image imprint and corresponding 3D 
points in practice 
Basic idea of Scan&Track [Sem98] system was 
implemented project by a 10 by 10 by 10  set of 3D 
grid points onto three highly corelated cameras 
[Sem98a,, Sem98b, Sem01]. Highly corelated camera 
would mostly maintain the geometric relationship 
between any two grid points in the same plane. Data 
collection step uses a planer whiteboard with, say 
fixed 10 by 10 points clearly marked and visible from 
each of the camera.  Next whiteboard is moved by 
fixed distance perpendicular to the present location of 
the whiteboard 10 times to capture projection of 100 
points spaced as 10 by 10 by 10 grid of 1000 points 
all visible in the three cameras. Here the idea was to 
create active space, a10 by 10 by 10 grid in physical 
area) with over constrained systems of 1000 points in 
3D space. For example, a 3D point P and their 
associated projections image-imprint (Im1, Im2, and 
Im3) are known by processing each of the 
projections. Image imprint Im1, Im2, and Im3 are the 
pixel locations in the images.  Now if the person is 

inside the active-space and we identify same point, 
e.g. the tip of the nose in all three camera images as 
Im1, Im2, and Im3, then active space can be used to 
find P the location of the tip of the nose of the 
participant.  Scan&Track system can now be used to 
identify set of image imprints. As explained, Active-
space indexing method uses a triangulation process to 
find the 3D point given I1, I2, and I3 pixel location. 

 
Figure 6: Scan and Track projections on left, center 
and right. Distortions of the planes are exaggerated to 
show the effect of projections of front and back 
planes of active space. 

Generating Image imprints using Deep 
Learning  
One of the tasks in the Scan&Track implementation 
was to generate image imprints (Im1, Im2, Im3). 
Identification of the imprint was done by a simple 
filter in our [Sem01] implementation. Today we can 
use deep learning algorithms to find distinct image 
imprints specifically for the human participant.  The 
end points for hands and feet could be identified 
across the three cameras, creating image imprints I1, 
I2, I3 for hands and feet. This will identify 3D 
positions in the active-spaces for hands and feet and 
many such points, as explained in [Sem98b]. 

5. Future Proposed Work 

Active-Spaces for both real and virtual 
worlds  
Both Scan&Track and DSZ methods are based on 3D 
grid data structures.  In DSZ, a voxel’s six faces 
helped us define 12 different directional distance 
measures which we can safely skip along the 
direction of the ray.  In the Scan&Track system 
active spaces are the 3D-grids in real-space which we 
can effectively use to embed both real and 
synthetically generate worlds.  
Our main idea is that virtual worlds consisting of C, 
IP, A, B and L which can be used to generate 
intensity values at point IP. Real world consisting of 
human participant seen by three cameras. Active-
space allows us to place A, B, and L relative to 
human participant while also isolating human 
participants in the real-work inside an active space. 
Now virtual objects (such as A, B, and L) can be 
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placed in the active space in front of the human 
participant by using active-space Indexing method to 
find the approximate location of the human 
participant and then placing A, B and L relative to H. 
Environment E could also be wrapped around all of 
these, as shown in Figure 7. E could be another 
projected image of some other active space, or 
another active space could be defined in that place 
behind the human participant as E. The idea is that 
world of many active spaces can be populated by 
synthetic scenes and synthetic objects as active 
spaces provides us one way to define virtual and 
realobject in the same 3D space. Once these objects 
are placed, raytracing can be used to combined 
overall scene.  In Figure 7, we have tried to show the 
mixed-reality scene in active-space merging both 
synthetic and real objects together so that idea of 
raytracing can be applied to render images with real 
participant enclosed inside their active space, and E, 
represented by active-space of its own in turn. 
Extending the idea of multiple active spaces we can 
now expand the 3D space to larger areas as well as 
define the 3D-space recursively, e.g. one active space 
can contain several other active spaces. The faces of 
active space containing human participant H could be 
samples by multiple cameras in outside-in manner so 
that approximate intensities on the surface on the 
active-space can be used during ray tracing as was 
done in ASET [Dau90]. 

 
Figure 7: Mixed Reality Setup.  Light source L has 
been placed in front of human participant H.  Ray 
tracing camera is shown with C and IP (See also 
Figures 1 and 2). A and B are synthetic objects.  Note 
E is environment which could be another Active 
space Index Mixed Reality Setup or can be 
green/blue screeded real camera-captured natural 
scene. 

Proposal to merge moving Active-Spaces 
and multiple scales of grids 
Both Scan&Track and DSZ methods are based on 3D 
grid data structures. In DSZ, a voxel’s six faces 
helped us define 12 different directional distance 

measures which we can safely skip along the 
direction of the ray. In the Scan&Track system active 
spaces are the 3D-grids or real world where we can 
embed other active-spaces or even synthetically 
generate virtual world objects. As the objects move 
the grid-spaces can be managed such that light-
effects can be collected in the voxels as an 
approximation method as we have explored this idea 
in [Dau90] where primary rays, rays starting from 
point C in Figure 1 and secondary rays at first level 
called T1 and R1 or even second level T2 and R2 are 
checked for intersection with real objects to create a 
some level or correctness.  However, at some level, 
say level 3 onwards, secondary rays may start to 
consider that the object occupies the whole voxel 
which it passes through, thus discarding any 
intersection checks for level 3 or more secondary 
rays. Our motivation in [Dau90] was to avoid the 
actual intersection where such approximation could 
suffice. Here we are proposing that external facing 
active spaces faces can be approximated by camera 
images which capture the human participants actions, 
and the image’s r,g,b values can suffice as intensity 
value to combine with other effects during ray 
tracing process.  This needs to be further 
investigation in future. 

Scene changes and updates 
One of the challenges for ray tracing has been that 
any movement of objects or light source, even if 
minor, can severely impact the final image.  Spatial 
data structures need to be completely updated if such 
events occur.  Also, any changes in the shape or the 
objects such as explosions can severely affect the 
whole data structure during ray tracing forcing us ton 
first manage those updates to objects before 
rendering can occur. We think that such updates in 
the grid method can be managed by hierarchical 
embedding of one active-space in another or 
extending the active-spaces of multiple voxel size. 
As the objects move, some voxels may be vacated by 
the object and other will be occupied based on the 
movement of the object itself. By mapping both 
synthetic object and real-objects in active-spaces and 
their grids allows us one way to manage as both the 
real and imaginary worlds can be combines using 
number of active-spaces. Active spaces with high 
activity, handling major explosions, can be isolated 
and can be label as “under construction” where the 
walls of that active space would be considered 
“approximate” while under construction thus giving 
time to synchronize itself to “available again” while 
that active space completes whatever it was “under 
construction” for.  

6. Summary 
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Main idea here is that both virtual worlds and real 
worlds are in appropriate scale merged using a 
variety of active-space grids holding both synthetic 
and real object at an appropriate scale. 
Labelling a particular active space under construction 
is similar to real-life, for example when we see 
“under construction” sign—we know that experience 
will usually improve in future.  More processor 
resources could be allocated to fix the restructuring 
of the active space to manage fragments of data in 
case of explosion, or movement due to scaling. 
translation and rotation which object may go through.  
Rendered frames which are labeled “under-
construction” may also appear to notify the user that 
their experience will improve later. 

7. CONCLUSION AND FUTURE 
RESEARCH 
Using distance transformation, we developed a faster 
method for ray tracing called the directed safe zones 
(DSZ) where the direction of incoming and outgoing 
ray from a 3D voxel can be classified based on which 
face of the voxel the ray emerges out of or goes into. 
We also used rays to develop a triangulation method 
to first find the voxel which contains a 3D point P 
when point P’s image imprint (Im1, Im2, Im3) is 
known. This led to calculating the location of point P. 
In this paper, we proposed that active spaces could be 
distributed in real-world of human participants and 
these worlds can be places with synthetic objects by 
adding them to the active spaces so that synthetic 
objects and active-spaces can raytraced, hopefully 
avoiding the mismatch of scale when synthetic and 
real-worlds are combined in Mixed Reality 3D 
applications.  In our case, we are proposing that such 
scenes can be raytraced. 
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