
Raytracing Renaissance: An elegant framework for
modeling light at Multiple Scale

 Sudhanshu Kumar Semwal
Department of Computer Science

University of Colorado
Colorado Springs, CO

USA 80906
ssemwal@uccs.edu

ABSTRACT
Ray tracing remains of interest to Computer Graphics community with its elegant framing of how light interacts
with virtual 3D objects, being able to easily support multiple light sources during rendering and using sampling
of estimates of intensity values at multiple surfaces in a recursive manner using light as ray. Ray tracing can also
provide a simple framework of merging synthetic and real cameras. Recent trends to provide implementations at
the chip-level means raytracing’s constant quest of realism would propel its usage in real-time applications.
AR/VR, Animations, 3DGames Industry, 3D-large scale simulations, and future social computing platforms are
just a few examples of possible major impact. Raytracing is also appealing to HCI community because
raytracing extends well along the 3D-space and time, seamlessly blending both synthetic and real cameras at
multiple scales to support storytelling. This presentation will include a few milestones from my work such as the
Slicing Extent technique and Directed Safe Zones. Our recent applications of applying Scan&Track with
machine learning techniques creating novel synthetic views, which could also provide a future doorway to
handle dynamic scenes with more compute power as needed, will also be presented. It is once again renaissance
for ray tracing which for last 50+ years has remained the most elegant technique for modeling light phenomena
in virtual worlds at whatever scale compute power could support.

Keywords
Ray tracing, Slicing Extent Technique, Directed Safe Zones, Active Space Indexing Method, AR.

1. INTRODUCTION
In Augmented Reality applications as the synthetic
camera images are merged with the reality all around
us, the merging is usually not smooth due to lighting
conditions and mismatch of conditions as two
disparate events are joined together with spatial
mismatch. The main thinking of this paper is that
raytracing with Active Space Index Method could
propel a renaissance of using raytracing techniques
towards an effective solution of merging of such
disparate events by merging real and synthetic scenes
into one physical space captured in front of a set of
cameras. We call this 3D-space an active-space as it
allows projection of a point onto a set of cameras to
be seen. Also, an active-space indexing method is
developed so that given the projection of the same
3D point in active-space in the set of cameras can be
used to estimate the 3D point’s coordinates. This
paper presents basic ideas in this paper so that real
and imaginary objects could be part of raytracing

techniques. Summary of our previous work [Dau90,
Kva97, Sem92, Sem93, Sem98a, Sem98b, Sem01] is
first presented. Using some of these ideas we make a
case towards using raytracing as a unifying concept
towards merging synthetically generated scenes with
camera-based sequences in the hopes of creating a
process towards resolving subtle light mismatch seen
in recent work in AR applications [Li20, Har23] and
movies where synthetic and natural objects are
merges to create a rendered image.

2. Spatial subdivision algorithms for
Raytracing
A ray starting at some point C and passing through a
point on the image-plane (IP) intersects with object A
and generates two new rays. R1 and T1. These two
rays recursively traverse the scene. For example, ray
R1 is shown to intersect with object B generating, in
turn, R2 and T2. Bot the intersection points on
objects A and B are in line-of-sight of light source as
shown in the Figure 1, which contributes light
intensity as L1 and L2 at points A and B respectively.
When the rays start from point C the process is called
backward ray tracing as opposed to when the rays
start at the light source and then are tracked in
forward raytracing. Since the idea is to generate the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu

WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.2 3

scene for the image-plane, backward raytracing is
considered much efficient as only those rays are
tracked which originate from C and pass through
every pixel on the image plane and are needed to
create the scene-render. For example, if we are
generating a 60 by 40 image, there are 2400 initial
rays which are tracked through the scene starting at
point C through 2400 pixels on the image plane. The
intensity of each such ray starting at point C and
passing through some pixel-point IP is estimated
using a tree which keeps track of the secondary rays
as shown in Figure 2.

Figure1: Basic ray tracing starting from C.

To estimate the intensity at point IP on the image
plane using the concept of recursive raytracing, we
follow the path of the rays which are generated as
reflective rays, R1 and R2, and transmitted rays, T1,
and T2 (Figure 2) are followed generating their own
intersection points with other objects in the scene in
turn providing sample intensities which can then be
combined as these intensities are summed upward
through the tree from leave nodes. Effect of lights for
intensity values being returned from all visible
intersection points can also be added as shown in
Figure 3. Ambient intensities approximate the
intensity returned by a ray when a ray travels out of
the scene. Usually this happens when a ray travel
outward away from all objects as it intersects the
bounding box containing the scene [Woo90]. The
direct line of sight from light sources to the
intersection points means that the light source effects
can also be incorporated into the intensities, as shown
in Figure 3. Aggregate of all these effects can be
summed incorporating the distance of light source,
reflectivity and transmissivity of the objects
mathematically. All these effects can be combine to
return the estimated intensity for the pixel IP as
shown in Figures 1 and 3. Subpixel samples can be
incorporated when multiple stochastic rays generate
effects based on bi-directional reflectance
distribution function (BRDF) based on material
properties of the objects in the scene. This leads to
the idea of path tracing which have been used to
create stunning realist images in many movies and
animation sequences. Path tracing has also been

implemented in several industry leading special
effects and movies recently as well.

Figure 2: Estimating Intensity IP for a primary ray at
point IP using secondary rays T1, R1, T2, R2 etc.
Path tracing has become the industry standard
creating photo-realistic images by judiciously
spawning several rays stochastically and applying
BRDF functions and its variations judiciously. Our
methods and new directions proposed can also be
extended to those industry leading implementations.
This includes path tracing renderers in Maya
[Geo18], Sony’s Arnold [Kul18], Weta’s Manuka
[Fas18], Disney’s Hyperion [Bur18] and Pixar’s
Ruderman [Chr18]. Cloud implementations of
raytracing are also working towards a goal of real
time ray tracing [Xie2021] with 8 frames per second
being reported, and NVidea is reporting GPU
enhanced ray tracers for some years now. In recent
work [Har21], the graphics pipeline is improved as
deep learning techniques generate frames in between
two graphics pipeline rendered frames. If the scenes
are not changing, then generated rendered frames can
be used as examples of images based on camera
angle when scene is invariant. In game playing, as
large number of frames are rendered for invariant
scenes and light sources, they can be used for
training and synthetic frame rendering and can
sometime be used to generate acceptable frames as
explained in [Har21]. The trained network is used to
create an in between to offload the rendering pipeline
and works for the case reported in [Har21]. The idea
is to offload graphics pipeline and use deep learning,
and supposedly faster frames in-between the
rendered frames [Har21]. Ofcourse, when the scene
or light source change then offloading can be
suspended in favor of graphics rendering again.
When the scene stabilizes then we can revert back the
load to using deep learning learned images. As we
will discuss later, most of the spatial data structures
do not handle change in scenes due to explosions or
when objects intersects the data structure updates are
necessary (i.e. preprocessing) needs to occur adding
delays in rendering. Once idea which we propose

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu

WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.2 4

later in this paper is to let the user know that the
scene is under construction, especially when
massively multiplayer games interactions are so
critical to happen in real-time.

Figure 3: Merging of samples of intensities using a
raytracing tree which us generated and thein
intensities combined.

Figure 4: Proximity Cloud (PC) vs Directed Safe
Zones (DSZ).

3. SET and DSZ ray tracing techniques.
The Slicing Extent Technique (SET) [Sem87,
Sem92] uses projection of the objects in the scene of
2-D planes surrounding the object. In 1990, is was
implemented using a 3D-grid interpretation, and was
called the modified slicing extent technique (MSET)
[Sem93]. The benefit was to allow the fast grid-
traversal to be incorporated while ray traverses
through the scene mimicking the SEADS
implementation [Fuj86]. In addition, we also
incorporated an octree [Gla84] to isolated isolate
dense and sparse area in the scene so that a finer grid
could be used for dense areas, and sparse areas can
be skipped quickly in comparison to octree [Gla84],
thus allowing multiple hierarchies to be managed
using MSET. Later, work on the proximity cloud
[Coh94a, 94b] further improved the grid-
implementations for ray tracing. A method was
developed during preprocessing so that a safe-
distance value (D) was determined for every grid-
voxel so that a ray passing through a voxel with

distance D can skip distance D without missing an
intersection as during pre-processing it was
determined that there we no objects withing a D
distance from this voxel, hence the name safe-
distance. This D distance allowed isolated areas to be
bypassed in much more efficient way in cormarison
to distance D=1 which will mimic the grid traversal
itself. It is much faster to skip areas of the scene with
no objects in it. During preprocessing, the value of D
was determined using transformation [Bor86] to
isolate areas of no-object efficiently by using a 3 by 3
by 3 filter on 3D-grid voxels. This is illustrated in
Figure 4 where a 2D-grid voxel, or cell, is shown and
nearest object for any ray through the edge of the 2D-
voxel (cell) are D1, D2, D3, and D4 away. So
minimum radius is D4 which is the safe distance a
ray could travel in any direction from this 2D-cell
without finding an object to intersect. Every cell thus
could have its own 2D-circle, or extending this idea
to 3D, its own 3D-sphere. Each voxel of the 3D-grid
could have such sphere. One can now imagine every
voxel to have different (yet close) values creating
many spheres with no objects in them. One could
imagine spheres of different radii, hence the term,
proximity clouds (PC) used in [Coh94b] to describe a
Proximity Cloud. Proximity Cloud was a major
improvement very as it was more efficient way
where ray tracing image generation times were
shown to improve over the previously known grid
implementations. Normal grid-traversal, moving
from one voxel to next voxel could be suspended in
favor of jumping D distance away without missing
any intersections. Figure 4 shows this concept in 2D
with four safe values in four directions. In PC, we
choose the minimum of these 4 values, and conclude
the safe distance of D4 for that voxel.
Usually city-block distance transformations are used
to implement Proximity Clouds so instead of radius
we could imagine city-block distances [Coh94b].
This faster method was further improved by a
variation of the slicing extent technique called
Directed Safe Zones (DSZ) in [Kva97] where the six
safe-distances in six direction are calculated as the
ray emerges out of a voxel through one of the six-
faces of a 3D-voxel (grid-cell). All such distances are
calculated during preprocessing by modifying PC’s
distance transformations filter to suit the DSZ
implementation [Kva97]. After preprocessing in DSZ
method each of the six faces of 3D-voxel of would
have a distance associated with it moving outward
from the cell towards left, right, bottom, top, up and
down directions. In 2D, this is shown as D1, D2, D3,
D4 values in Figure 4. In DSZ, the ray has the
capacity to skip six different distances based on its
direction of traversal as the ray passes through any of
these six faces. This meant that Directed Safe Zones,
which extends the Slicing Extent techniques, is more
efficient. As shown in Figure 4, DZS has the

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu

WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.2 5

flexibility to choose either of D1, D2, D3 or D4 as
safe-distances guaranteeing that image generation
time will always be better or same in DSZ in
comparison to PC implementations. DSZ uses larger
distance based on the traversal direction of the ray
showing in theory and is an improvement over PC.
Using scenes from [Hai98] called random, lanes,
snowflake, and cars, a comparative analysis in
[Kva97] showed that DSZ outperformed the
SEADS/grid and PC implementations for all four
scenes. As expected, because of the potential of more
empty areas in random and snowflakes scenes major
improvements in rendering times were obtained for
random and snowflake scenes using DSZ in
comparison to Proximity Clouds and SEADS/Grid
implementations. Typical performance speedup of 2
for DSZ were seen when compared with grid
implementation. For the PC, speedup was 1.5 with
respect to grid implementation. In all cases, as
expected, DSZ outperformed the PC method and grid
(SEADS) [Fuj86] method.
Additional benefits of DSZ method is that, in
addition to the outgoing rays emanating from a voxel,
DSZ method can treat incoming rays because each
face of the voxel can maintain two distances, as was
also explained in [Sem87,Sem93]. A ray passing
through the left face of a 3D-voxel to the right, or
from right to left, upwards-to-downwards or
downwards-to-upwards, and front-to-back and back-
to-front can be recognized, allowing two directions
per face so that 12 different classifications instead of
six are possible as a ray passed through a face of a
voxel. This is a useful benefit allowing us to manage
3D scenes better, as we plan to embed synthetic
scenes in active spaces as explained in next sections.

4. Active Space Indexing Method Review
Setup and Data Capture
Active-Space Indexing Method [Sem01] uses ideas
of triangulation, including closest distance between
two rays to find 3 D (x,y,z) position of a point P.
Given image-imprint Im1, Im2, and Im3 on the
camera-images for a point P, Active Space Indexing
method preprocesses projections of several 3D grid
points on each camera images to determine the 2D-
indices for each camera images. If we assume that
2D grid points can be indexed between 1 to n and 1
to m then Im1, Im2, and Im3 must fall on some index
(x,y) using the projections of grid-patterns in p such
planes. When three such indices on for each Im1,
Im2 and Im3 points identified in all three camera
images as corresponding to the point P, then these
indices define an area, and that area will decrease
first and then increase as we process p of these plane
from front to back. This allows us to find a voxel
which contains point P. Active-space indexing
method connects the projection-space to the real 3D

space. More details of how Im1, Im2, Im3, called
imprint-set can be used to determine position P is
further explained in [Sem01] in more detail.
In summary, Active Space Indexing Method is a
study of 2D-projections of a set of 3D-points as seen
by three cameras. These set of 3D-points are
arranged in real 3D-grid in physical space in front of
the three cameras. This space in front of the camera
is called an active space [Sem98]. The active space
indexing method is created by projecting set of n by
m planer points inside a rectangle R which contains n
by m in an equal distance grid pattern. We used a
whiteboard for this purpose. The points on the
whiteboard can be shifted some distance away from
the previous placement of the whiteboard. In this
war, the whiteboard it has an effect of moving same
points inside the rectangle R will also move parallel
to previous plane positions. We repeat this process
several times to obtain images for a set of p
whiteboard positions. As the whiteboard moves, it
has an effect that 3D grid points inside the active
space are projected and preprocesses during
preprocessing to create an active space indexing
method. During preprocess, the exact pixel locations
of all grid points for all p whiteboard positions are
determined and stored during preprocessing. This
information is sufficient to estimate point P’s x,y,z
location in n by m by p space using point P’s imprint-
set as explained in [Sem01]. Assuming the process
repeats p times, using same distance. This will have
an effect of creating a set of 3D-grid points in the real
physical space which we call active-space. For
example, n=m=4 and p=8 in Figure 5 so that a 4 by 4
by 8 grid of points are in the active space. Each time
image-plane moves we record the projections of set
of 4 by 4 image-plane points on 3 cameras which are
called Left (L), Center (C) and Right (R) points as
shown in Figure 5 and then the as shown in Figure 6.
The three cameras are related in a way that all p
planes are visible from all the three camera and their
projections are therefore highly correlated. We also
have shown the projected shape of the rectangles in
Figure 5. As explained earlier, rectangle R was
created on a whiteboard which was available in the
lab [Sem98], and already had a 2D-grid-pattern and
the intersection of this points were highlighted with a
blue/black pen which were then easily picked up
during pre-processing. In this way, we were able to
correlated n by m by p points in active space to their
projections by preprocessing p of these projections
for every camera. All of these points were clearly
visible in the three cameras because we had planned
the arrangement. Figure 6 shows approximately the
front-plane, marked F, and back-plane, marked B,
and corresponding projections of rectangular B and F
planes and their projected shapes in all three cameras.
As the white-board moves from Back to Front p
planes create p projections of the grid-pattern on the

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu

WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.2 6

on three cameras. Sets of these projections are
created and processed during preprocessing and are
the basis of active space indexing method. Vertical
and horizontal lines and their projected lines on
image planes are used to first find the index in 2D
planes in all three cameras, as explained earlier, and a
triangulation algorithm is used to find the voxel
which contained the given 3D-point P using the
image print (Im1, Im2, and Im3) of the point P. The
image-print, i.e. Im1, Im2, Im3, is identified
manually in our implementation. Image-imrpint
could be detected automatically as well. Finding
image prints is called correspondence problem and
there are a variety of techniques including finding
significant points first and then correlating these
points as image prints using the projections of these
points on three cameras. We used significant points
extraction and correlation of these points as
mentioned in [Sem98a, Sem98b, Sem01].

Figure 5: Scan&Track data collection – 4 by 4 planer
grid moves 8 times perpendicularly to create a 4 buy
4 by 8 active space, 128 grid points in 3D active-
space. A set of voxels in 3D-real space is created.

Image imprint and corresponding 3D
points in practice
Basic idea of Scan&Track [Sem98] system was
implemented project by a 10 by 10 by 10 set of 3D
grid points onto three highly corelated cameras
[Sem98a,, Sem98b, Sem01]. Highly corelated camera
would mostly maintain the geometric relationship
between any two grid points in the same plane. Data
collection step uses a planer whiteboard with, say
fixed 10 by 10 points clearly marked and visible from
each of the camera. Next whiteboard is moved by
fixed distance perpendicular to the present location of
the whiteboard 10 times to capture projection of 100
points spaced as 10 by 10 by 10 grid of 1000 points
all visible in the three cameras. Here the idea was to
create active space, a10 by 10 by 10 grid in physical
area) with over constrained systems of 1000 points in
3D space. For example, a 3D point P and their
associated projections image-imprint (Im1, Im2, and
Im3) are known by processing each of the
projections. Image imprint Im1, Im2, and Im3 are the
pixel locations in the images. Now if the person is

inside the active-space and we identify same point,
e.g. the tip of the nose in all three camera images as
Im1, Im2, and Im3, then active space can be used to
find P the location of the tip of the nose of the
participant. Scan&Track system can now be used to
identify set of image imprints. As explained, Active-
space indexing method uses a triangulation process to
find the 3D point given I1, I2, and I3 pixel location.

Figure 6: Scan and Track projections on left, center
and right. Distortions of the planes are exaggerated to
show the effect of projections of front and back
planes of active space.

Generating Image imprints using Deep
Learning
One of the tasks in the Scan&Track implementation
was to generate image imprints (Im1, Im2, Im3).
Identification of the imprint was done by a simple
filter in our [Sem01] implementation. Today we can
use deep learning algorithms to find distinct image
imprints specifically for the human participant. The
end points for hands and feet could be identified
across the three cameras, creating image imprints I1,
I2, I3 for hands and feet. This will identify 3D
positions in the active-spaces for hands and feet and
many such points, as explained in [Sem98b].

5. Future Proposed Work

Active-Spaces for both real and virtual
worlds
Both Scan&Track and DSZ methods are based on 3D
grid data structures. In DSZ, a voxel’s six faces
helped us define 12 different directional distance
measures which we can safely skip along the
direction of the ray. In the Scan&Track system
active spaces are the 3D-grids in real-space which we
can effectively use to embed both real and
synthetically generate worlds.
Our main idea is that virtual worlds consisting of C,
IP, A, B and L which can be used to generate
intensity values at point IP. Real world consisting of
human participant seen by three cameras. Active-
space allows us to place A, B, and L relative to
human participant while also isolating human
participants in the real-work inside an active space.
Now virtual objects (such as A, B, and L) can be

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu

WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.2 7

placed in the active space in front of the human
participant by using active-space Indexing method to
find the approximate location of the human
participant and then placing A, B and L relative to H.
Environment E could also be wrapped around all of
these, as shown in Figure 7. E could be another
projected image of some other active space, or
another active space could be defined in that place
behind the human participant as E. The idea is that
world of many active spaces can be populated by
synthetic scenes and synthetic objects as active
spaces provides us one way to define virtual and
realobject in the same 3D space. Once these objects
are placed, raytracing can be used to combined
overall scene. In Figure 7, we have tried to show the
mixed-reality scene in active-space merging both
synthetic and real objects together so that idea of
raytracing can be applied to render images with real
participant enclosed inside their active space, and E,
represented by active-space of its own in turn.
Extending the idea of multiple active spaces we can
now expand the 3D space to larger areas as well as
define the 3D-space recursively, e.g. one active space
can contain several other active spaces. The faces of
active space containing human participant H could be
samples by multiple cameras in outside-in manner so
that approximate intensities on the surface on the
active-space can be used during ray tracing as was
done in ASET [Dau90].

Figure 7: Mixed Reality Setup. Light source L has
been placed in front of human participant H. Ray
tracing camera is shown with C and IP (See also
Figures 1 and 2). A and B are synthetic objects. Note
E is environment which could be another Active
space Index Mixed Reality Setup or can be
green/blue screeded real camera-captured natural
scene.

Proposal to merge moving Active-Spaces
and multiple scales of grids
Both Scan&Track and DSZ methods are based on 3D
grid data structures. In DSZ, a voxel’s six faces
helped us define 12 different directional distance

measures which we can safely skip along the
direction of the ray. In the Scan&Track system active
spaces are the 3D-grids or real world where we can
embed other active-spaces or even synthetically
generate virtual world objects. As the objects move
the grid-spaces can be managed such that light-
effects can be collected in the voxels as an
approximation method as we have explored this idea
in [Dau90] where primary rays, rays starting from
point C in Figure 1 and secondary rays at first level
called T1 and R1 or even second level T2 and R2 are
checked for intersection with real objects to create a
some level or correctness. However, at some level,
say level 3 onwards, secondary rays may start to
consider that the object occupies the whole voxel
which it passes through, thus discarding any
intersection checks for level 3 or more secondary
rays. Our motivation in [Dau90] was to avoid the
actual intersection where such approximation could
suffice. Here we are proposing that external facing
active spaces faces can be approximated by camera
images which capture the human participants actions,
and the image’s r,g,b values can suffice as intensity
value to combine with other effects during ray
tracing process. This needs to be further
investigation in future.

Scene changes and updates
One of the challenges for ray tracing has been that
any movement of objects or light source, even if
minor, can severely impact the final image. Spatial
data structures need to be completely updated if such
events occur. Also, any changes in the shape or the
objects such as explosions can severely affect the
whole data structure during ray tracing forcing us ton
first manage those updates to objects before
rendering can occur. We think that such updates in
the grid method can be managed by hierarchical
embedding of one active-space in another or
extending the active-spaces of multiple voxel size.
As the objects move, some voxels may be vacated by
the object and other will be occupied based on the
movement of the object itself. By mapping both
synthetic object and real-objects in active-spaces and
their grids allows us one way to manage as both the
real and imaginary worlds can be combines using
number of active-spaces. Active spaces with high
activity, handling major explosions, can be isolated
and can be label as “under construction” where the
walls of that active space would be considered
“approximate” while under construction thus giving
time to synchronize itself to “available again” while
that active space completes whatever it was “under
construction” for.

6. Summary

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu

WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.2 8

Main idea here is that both virtual worlds and real
worlds are in appropriate scale merged using a
variety of active-space grids holding both synthetic
and real object at an appropriate scale.
Labelling a particular active space under construction
is similar to real-life, for example when we see
“under construction” sign—we know that experience
will usually improve in future. More processor
resources could be allocated to fix the restructuring
of the active space to manage fragments of data in
case of explosion, or movement due to scaling.
translation and rotation which object may go through.
Rendered frames which are labeled “under-
construction” may also appear to notify the user that
their experience will improve later.

7. CONCLUSION AND FUTURE
RESEARCH
Using distance transformation, we developed a faster
method for ray tracing called the directed safe zones
(DSZ) where the direction of incoming and outgoing
ray from a 3D voxel can be classified based on which
face of the voxel the ray emerges out of or goes into.
We also used rays to develop a triangulation method
to first find the voxel which contains a 3D point P
when point P’s image imprint (Im1, Im2, Im3) is
known. This led to calculating the location of point P.
In this paper, we proposed that active spaces could be
distributed in real-world of human participants and
these worlds can be places with synthetic objects by
adding them to the active spaces so that synthetic
objects and active-spaces can raytraced, hopefully
avoiding the mismatch of scale when synthetic and
real-worlds are combined in Mixed Reality 3D
applications. In our case, we are proposing that such
scenes can be raytraced.

8. ACKNOWLEDGMENTS
My deepest thanks to my colleagues Dr. Jun Ohya,
Department Head, and Dr. Ryohei Nakatsu, Director
of ATR Media Integration and Communication Lab.
hosting my Summer Research visits at ATR, Kyoto,
Japan during 1997-99 where Scan&Track systems
was developed. My deepest thanks to Dr. Vaclav
Skala for providing me this opportunity to present
this keynote at one of the finest graphics conference
in the world – WSCG 2023! Thank you.

9. REFERENCES
[Bor86] Borgefors G. Distance transformation in

digital images, Computer Vision, Graphics and
Image Processing, 34, pp. 344-371 (1986).

[Bur18] Brent Burley, David Adler, Matt Jen-Yuan
Chiang, Hank Driskill, Ralf Habel, Patrick Kelly,
Peter Kutz, Yining Karl Li, and Daniel Teece.
2018. The Design and Evolution of Disney’s
Hyperion Renderer. ACM Trans. Graph. 37, 3,

Article 33 (July 2018), 22 pages.
https://doi.org/10.1145/3182159

[Chr18] Per Christensen, Julian Fong, Jonathan
Shade, Wayne Wooten, Brenden Schubert,
Andrew Kensler, Stephen Friedman, Charlie
Kilpatrick, Cliff Ramshaw, Marc Ban- nister,
Brenton Rayner, Jonathan Brouillat, and Max
Liani. 2018. RenderMan: An Advanced Path-
Tracing Architecture for Movie Rendering. ACM
Trans. Graph. 37, 3, Article 30 (Aug. 2018), 21
pages. https://doi.org/10.1145/3182162.

[Cle88] Cleary J.G. and Wyvill G. Analysis of an
algorithm for fast ray tracing using uniform space
subdivision, The Visual Computer 4, pp. 65-83
(1988).

[Coh94a] Cohen D. Voxel Traversal along a 3D
Line, Graphics Gems, IV, pp. 366-368 (1994)..

[Coh94b] Cohen D. and Sheffer Z. Proximity clouds
- an acceleration technique for 3D grid traversal,
The Visual Computer, 11, pp. 27-38 (1994).

[Dau90] David Dauenhauer and Sudhanshu Kumar
Semwal, Approximate Raytracing, Graphics
Interface, Halifax, Nova Scotia, Canada, pp. 75-
82. Canadian Information Processing Society,
International Association for Computing
Machinery’s Special Interest Group on Computer
Graphics and Interactive Techniques (ACM
SIGGRAPH) (ACM SIGGRAPH), and Canadian
Man-Computer Communication Society (1990).

[Fas18] Luca Fascione, Johannes Hanika, Mark
Leone, Marc Droske, Jorge Schwarzhaupt, Tomáš
Davidovič, Andrea Weidlich, and Johannes
Meng. 2018. Manuka: A Batch- Shading
Architecture for Spectral Path Tracing in Movie
Production. ACM Trans. Graph. 37, 3, Article 31
(Aug. 2018), 18 pages.
https://doi.org/10.1145/3182161.

[Fuj86] Fujimoto A, Tanaka T. and Iwata K. ARTS:
Accelerated ray tracing system, IEEE Computer
Graphics And Applications, 6(4), pp. 16 26
(1986).

[Geo18] Iliyan Georgiev, Thiago Ize, Mike
Farnsworth, Ramón Montoya-Vozmediano, Alan
King, Brecht Van Lommel, Angel Jimenez, Oscar
Anson, Shinji Ogaki, Eric Johnston, Adrien
Herubel, Declan Russell, Frédéric Servant, and
Marcos Fajardo. 2018. Arnold: A Brute-Force
Production Path Tracer. ACM Trans. Graph. 37,
3, Article 32 (Aug. 2018), 12 pages.
https://doi.org/10.1145/3182160

[Gla84] Glassner A.S. Space subdivision for fast ray
tracing, IEEE Computer Graphics And
Applications, 4(10), pp. 15-22 (1984).

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu

WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.2 9

[Gla89] Glassner, A.S. An Introduction to Ray
Tracing edited by A.S. Glassner, Academic Press
(1989).

[Gla21] Andrew Glassner, Deep Learning: A visual
approach, Penguin Random House, 776 pages,
2021.

[Hai87] Haines E.A., A Proposal for Standard
Graphics Environments, IEEE CG&A, 7(11), pp.
3-5 (Nov 1987).

[Har21] Mark W Harris and Sudhanshu Kumar
Semwal, A multi-stage advanced deep learning
Graphics Pipeline, SA’21 Technical
Communications: SigGraph Asia 2021 technical
communications, Article No.: 7, pp. 1-4.
https://doi.org/10.1145/3478512.3488609 (2021).

[Har23] Hartholt, Arno; Mozgai, Sharon Creating
Virtual Worlds with the Virtual Human Toolkit
and the Rapid Integration & Development
Environment, In: 2023 IEEE 17th International
Conference on Automatic Face and Gesture
Recognition (FG), pp. 1–6, 2023.

[Kul18] Christopher Kulla, Alejandro Conty, Clifford
Stein, and Larry Gritz. 2018. Sony Pictures
Imageworks Arnold. ACM Trans. Graph. 37, 3,
Article 29 (Aug. 2018), 18 pages.
https://doi.org/10.1145/3180495

[Kva97] Kvanstrom H. The Dual extent and Directed
Safe Zones techniques for ray tracing, Graphics
Interface, 1-72 (1997).

[Li20] Li, Jiaman; Kuang, Zhengfei; Zhao, Yajie; He,
Mingming; Bladin, Karl; Li, Hao, Dynamic
Facial Asset and Rig Generation from a Single
Scan, In: ACM Transactions on Graphics, vol. 39,
no. 6, 2020.

[Sem87] Sudhanshu Kumar Semwal, The Slicing
Extent Technique for Ray Tracing, Ph.D.
dissertation supervised by Dr. Mike Moshell,
Department of Computer Science, University of
Central Florida, Orlando, Summer 1987, pp. 1-
227 (1987). https://stars.library.ucf.edu/rtd/5062/

[Sem92] Sudhanshu Kumar Semwal, Ray Tracing
using the Slicing Extent Technique, Institute of
Electronics, Information and Communication
Engineering (IEICE) Spring Conference, Tokyo,
Japan, pp. 7-367 (1992).

[Sem93] Semwal S.K., Kearney C.K., and Moshell
J.M. The Slicing Extent Technique for Ray
Tracing: Isolating Sparse and Dense Areas, IFIP
Trans actions, vol. B-9, pp. 115-122 (1993).

[Sem98a] Semwal SK, Ohya J. The scan&track
virtual environment, Virtual Worlds 98, LNAI
1434, pp.63-80, 1998.

[Sem98b] Sudhanshu Kumar Semwal and Jun Ohya,
Geometric-Imprints: A Significant Points
Extraction Method for the Scan&Track Virtual
Environment, Proceedings of the IEEE Third
International Conference on Automatic Face and
Gesture Recognition (F&G98) Conference, April
14-16, 1998, Nara, Japan, pp. 480-485, IEEE
Computer Society.

[Sem01] Sudhanshu Kumar Semwal and Jun Ohya.
Spatial Filtering using the Active-Space Indexing
Method, in the Graphical Models and Image
Processing, Academic Press journal, vol 63, pp
135-150 (2001).

[Wes17] West Geoffrey, Scale: The universal Laws
of life and death in organisms, cities and
companies, Weidenfeld & Nicolson, Great Briton,
pp. 1-455 (2017)

[Whi80] Whitted T., An improved illumination
model for shaded display, CACM, 23(6), 343-349
(June 1980).

[Woo90] Woo A. Fast Ray-Box Intersection,
Graphics Gems, I, pp. 395-396 (1990).

[Xie21] Fen Xie, P. Mishchuk, W. Hunt, Real-time
cluster path tracing, SA’21 Technical
Communications: SigGraph Asia 2021 technical
communications, Article No.: 17, pp. 1-4.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu

WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.2 10

