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ABSTRACT

This article presents results of the simulation of SIFT based algorithms in the context of the identification of

tattoos. The algorithms studied are the SIFT - Scale Invariant Feature Transform, ASIFT - Affine SIFT, BOV -

Bag of Visual Words and FV - Fisher Vector. The use of the OPF - Optimum-Path Forest and SVM - Support

Vector Machine classifiers is exploited in conjunction with SIFT and ASIFT algorithms as well as BOV and FV.

The present study uses the National Institute of Standards and Technology (NIST) Tatt-C dataset in a reduced and

complete version. This work uses runtime and accuracy to compare the results of the simulations.
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1 INTRODUCTION

The area of tattooing is a comprehensive area of acti-

vities that deal with the identification and detection of

tattoos, search for similarities between tattoos, search

for regions of interest in tattoos, treatment of tattoos on

various materials/surfaces among their important appli-

cations. It is an area, for example, that supports impor-

tant forensic activities related to law enforcement for

offenders and victim support.

This paper is dedicated to the area of tattoo identifi-

cation 1. Although many important tattoo-related ac-

tivities have been and are in progress in the scientific

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

1 "operational use-cases defined by the NIST challenge –

2015/2016: 1. Tattoo Similarity – matching visually similar

or related tattoos from different subjects; 2. Tattoo Identifi-

cation - matching different instances of the same tattoo im-

age from the same subject over time; 3. Region of Interest -

matching a small region of interest that is contained in a larger

image; 4. Mixed Media - matching visually similar or related

tattoos using different types of images (e.g. sketches, scanned

print, computer graphics, or natural images); 5. Tattoo Detec-

tion - detecting whether an image contains a tattoo or not."

[NG15]

community, we believe that the comparison among al-

gorithms we bring in this paper can be very useful in

the choice of solutions for many applications in tattoo

identification.

Most approaches that exist in the literature to solve the

problem of identification of tattoos are strictly based on

SIFT (Scale Invariant Feature Transform) and ASIFT

(Affine SIFT) algorithms. This paper explores the idea

to use both algorithms to provide reference results

and to support other techniques - BOV (Bag of Visual

words), FV (Fisher Vectors) and classifiers - to solve

the tattoo identification problem. Thus we combined

SIFT and ASIFT with BOV and FV approaches and

additionally we applied these algorithms with the

classifiers SVM (Support Vector Machine) and OPF

(Optimum-Path Forest) to the tattoo identification

problem. Our previous experience, in another area of

application, showed a very encouraging performance

of the OPF algorithm, compared to SVM, in that

case with the descriptor BIC (Border/Interior pixel

Classification) [DSFM11].

Section 2 gives a brief description of all simulated

methods. These methods, as commented above, are the

SIFT and ASIFT algorithms, the combination of both

algorithms with the use of Bag of Visual words, Fisher

Vectors, matching algorithms, and the use of the OPF

and SVM classifiers. After that, Section 3 presents

a comparison based on the accuracy and performance

of the simulated approaches. For this comparison, the

NIST Tatt-C dataset [NG15] is used in a reduced ver-

sion and in its full version as explained in the section.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu/ Vol.26, 2018, No.1

41
https://doi.org/10.24132/JWSCG.2018.26.1.5



ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu/ Vol.26, 2018, No.1

42



encodes the visual vocabulary using Gaussian Mixture

Models (GMM) and adds information related to local

feature descriptors.

Regarding the classification process of images, the clas-

sifiers Support Vector Machines (SVM) and Optimum-

Path Forest (OPF) are algorithms explored in this work.

We use the libraries LIBSVM and LIBLINEAR for

SVM and LIBOPF for OPF. LIBSVM Chang and Lin

[CL11] implements algorithms for training and test-

ing for SVM and supports several SVM formulations

for classification, regression and distribution estima-

tion. LIBLINEAR [FCH08] is an open-source library

for large-scale linear classification. It supports logistic

regression and linear SVM.

Perronnin and Dance [PD07] applied Kernels Fisher

in visual vocabulary using nonlinear support machines

(SVM) in the classification process. Schneider and

Tuytelaars [ST14] successfully used FV together with

the SVM classifier in sketches classification, surpassing

the performance of existing techniques, a concept that

can be applied to the recovery of tattoo images based

on sketches. The present paper explores FV in tattoo

identification.

OPF – Optimum-Path Forest classifier proposed by

Papa et al. [PFS09] is a supervised classification

method that represents each data class by its optimal

path tree whose root nodes are called prototypes. The

training samples correspond to the nodes of a com-

plete graph whose arcs are weighted by the distances

between its nodes.

The Section 3 will explore the combination of algo-

rithms and classifiers using SIFT and ASIFT as base

elements. The results will be compared considering ac-

curacy and runtime.

3 RESULTS AND COMMENTS

The results of the simulations presented in this section

were obtained by programs executed in a 4GB and 4-

core virtual machine using a CPU-i7 with 8GB of mem-

ory, 4-core and 8 threads.

The simulations used the NIST Tatt-C dataset [NG15];

two datasets were generated, one for training process-

ing and one for test processing. Each of the two sets

was organized in five subsets - folds - to allow mean

values across a five run-test, using the same procedure

followed by Ngan et al. [NQG16].

In order to better understand and tunning the algo-

rithms, the first set of simulations was performed us-

ing a “reduced” set of the Tatt-C dataset composed of,

using the terminology of the NIST report, all #probes

images (157 true images of interest), all #mates images

(215 related images to probe-images) and none (zero)

background images. In this way, the folds were defined

for training containing approximately 302 images (157

minus 30 true images of interest added to 215 minus

40 images). For test processing, about 30 images were

used (different true images for each fold). The results

of these simulations are depicted in Table 1 and in Fig-

ures 3 to 5 always presenting mean and standard devia-

tion of five rounds.

Considering the algorithms SIFT and ASIFT (lines 1

and 2 of Table 1) the process of searching for an im-

age involves two basic steps, one denominated training

which is the step in which the image database is pro-

cessed and the image descriptor(s) is(are) generated,

and the step denominated test that corresponds to the

step where one or more images are displayed and the

query is performed based on a match function. In the

SIFT method, one aspect that influences in the results is

the key point matching algorithm. In the experiments,

we utilized the Knn Brute Force method of the OpenCV

for both algorithms SIFT and ASIFT.

After the generation of the descriptors using SIFT or

ASIFT we performed for the training phase the code-

book generation for BOV based on KMeans and im-

age coding, and for FV using the Gaussian Mixture

Model (GMM) and image coding. Following, for the

test phase, the image coding and rank generation (Fig-

ures 3 to 5) were performed for both methods. Numbers

75 to 1000 express the size of the codebook for BOV

method and numbers 5 and 10 express the number of

Gaussians for the FV method. Lines 3 to 12 depict the

runtime for the different methods.

We have adopted in this paper the same definition of

accuracy as NIST [NQG16]. Thus, accuracy is the

amount of correctly identified images divided by the to-

tal number of probe images of the current fold.

The execution of the BOV for the reduced Tatt-C

dataset with different codebook sizes showed us that

for the BOV_SIFT the accuracy expressed by the

Cumulative Matching Characteristic or CMC curve

decreases with the increase of the codebook (Figure 3).

In this way, the BOV_SIFT_75 has the best CMC

curve compared to BOV_SIFT_500 and _1000. For

ASIFT, a codebook of size 500 or 1000 resulted in

almost the same CMC curve, overcoming codebooks

with fewer elements (see Figure 4). Figure 5 showed

us FV_SIFT_5 and _10 with similar behavior, and

FV_ASIFT_5 with the best CMC for all FV.

In the next step, see Table 2, we applied classifiers

SVM and OPF to the best algorithms - BOV_SIFT_75,

BOV_ASIFT _500, FV_SIFT_5, FV_ASIFT_5 -

obtained in the last step. The training and test phases

show that the OPF classifier presents the best run-

time and accuracy values compared to SVM. For

training considering mean values, the best result for

runtime was obtained for OPF + BOV_SIFT_75,

followed by OPF + FV_ASIFT_5, OPF + FV_SIFT_5

and OPF + BOV_ASIFT_500. For test phase the
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OPF SVM

Training time (s)

(all images)

Testing time (s)

(one image)
Accuracy

Training time (s)

(all images)

Testing time (s)

(one image)
Accuracy

Method mean std dev mean std dev mean std dev mean std dev mean std dev mean std dev

BOV_SIFT_75 (25%) 0.1542 0.0147 0.000211 0.000040 67.8313 2.7196 2.9266 0.0748 0.018228 0.000939 38.7097 7.9573

BOV_SIFT_75 (100%) 1.3295 0.0196 0.000648 0.000051 64.1376 1.9630 34.8473 1.4027 0.313152 0.006051 32.2581 6.3311

FV_SIFT_5 (25%) 0.6112 0.0236 0.000904 0.000087 71.6280 2.1479 7.3247 0.2340 0.021415 0.001260 43.7500 5.5115

FV_SIFT_5 (100%) 6.7016 0.0208 0.003131 0.000104 68.6940 2.5677 81.6082 1.4602 0.376530 0.015259 40.0000 5.4561

Table 4: Runtime in seconds for the training and test phases for classifiers OPF and SVM with correspondent

accuracy in % using the complete Tatt-C dataset.

Method Rank 1 (in %)

1 SIFT (100 %) 65

2 SIFT (25 %) 61

3 BOV _SIFT _75 (100 %) 20

4 BOV _SIFT _75 (25 %) 27

5 FV _SIFT _5 (100 %) 27

6 FV _SIFT _5 (25 %) 32

7 OPF + BOV _SIFT _75 (100 %) 64

8 OPF + BOV _SIFT _75 (25 %) 68

9 OPF + FV _SIFT _5 (100 %) 69

10 OPF + FV _SIFT _5 (25 %) 72

11 SVM + BOV _SIFT _75 (100 %) 32

12 SVM + BOV _SIFT _75 (25 %) 39

13 SVM + FV _SIFT _5 (100 %) 40

14 SVM + FV _SIFT _5 (25 %) 44

Table 5: Rank 1 list for the used algorithms.

the more suitable algorithms to be used in the simula-

tions with the complete Tatt-C dataset.

As pointed in Section 3 we selected the SIFT (base-

line), BOV_SIFT_75 and FV_SIFT_5 to be simulated

with OPF and SVM algorithms using two Tatt-C dataset

configurations, 100% and 25% of the background im-

ages. As already highlighted in Section 3, the idea of

using two different amounts of background images was

to simulate the quality of the image dataset (number of

true tattoos).

The Rank 1 information provided by Table 5 in con-

junction with the information provided by Table 3 and

Table 4 allowed the completion of the experiment.

The training time column provided the runtime for the

training phase of the different methods. So, for ex-

ample to create the set of information used by OPF +

FV_SIFT_5 (25%) we had to process the SIFT (runtime

= 790s - Table 3), then the FV_SIFT_5 (25%) (runtime

= 920s - Table 3) and then the OPF_FV_SIFT_5 (25%)

(runtime = 0.61s - Table 4) totalizing 1710.6 seconds.

The same goes for the other cases.

The test time columns are calculated in the same way.

For example, for OPF + FV_SIFT_5 (25%), runtime is

taken from Table 4, line 3 (0.000904s), while Table 5

points to this algorithm as the best for Rank 1 choice,

presenting 72% accuracy.

Comparing (see Tables 3 and 4) the values obtained

with the SIFT algorithm (baseline) and with SIFT com-

bined with BOV or FV (without OPF) we observed a

longer execution time and less precision compared to

the same algorithms used in conjunction with OPF. In

these cases, we obtain precision values that exceed the

values obtained with SIFT (baseline). In the simula-

tion results of Rank 1 presented in Table 5 using the

Tatt-C data set with 100% of background images we

obtained accuracy of 69% versus 65% (lines 9 and 1 re-

spectively) and with a quantity of 25% of background

images, accuracy of 72% versus 61% (lines 10 and 2

respectively).

In conclusion, it is important to bear in mind that the

presented results were obtained with a relatively small

image base and few cases of use per image. Thus, al-

though we presented time values, for the test phase, by

image, factors such as a considerable increase in the

amount of images in the base will imply in the need

to use memory management certainly impacting the ac-

cess time of the images. On the other hand factors such

as preprocessing in the images and optimization in the

libraries, elements not used here, can contribute to the

minimization of the times.

As a continuation of this work we see some scenar-

ios. For example, the use of Deep Learning in the area

of tattoos identification; the current literature presents

studies in other use-cases - detection, similarity and de-

identification [DP16], [HBRM16], [XGXHK16] - pos-

sibly due characteristics of current image databases (for

example the NIST Tatt-C dataset presents a reduced

number of tattoos for detection-training). A scenario

we are already considering, taking advantage of a pre-

vious work [DSFM11] and also results related by Jain

et al. [JLJ07], intend to couple the use of feedback by

relevance to the identification process of tattoos leading

the user to the decision loop.
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