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ABSTRACT
We propose a technique to reconstruct a general 3D object using surface reflectance information from multiple

viewpoints. Our core optimization framework uses multi-view normal integration, which can recovers water-tight

surface of the object iteratively in a coarse to fine manner. The integration requires normal vector field from

multiple viewpoints, which we can derive from surface reflectance. We then handle the topological changes if

self-intersection occurs from the optimization. We also employ the idea of multi-resolution and weighted data

heuristic which helps dealing with noisy data and improves both accuracy and optimization time. Our experiment

shows that the framework is able to robustly recover 3D surface well with both synthetic and real data.
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1 INTRODUCTION

3D reconstruction has been widely focused in the field

of computer graphics and visions with various appli-

cations in today’s life, such as medical, engineering,

advertisement, and entertainment. This influences re-

searchers to develop new techniques to solve this prob-

lem more efficiently and with higher accuracy. Exist-

ing state-of-the-art algorithms can reconstruct 3D ob-

jects with great accuracy, however they typically cannot

handle surface that consist if both highly diffuse and

highly specular parts. We leverage recent acquisition

techniques that can accurately capture surface normal

vector and specular reflection vector [17], and focus
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our 3D reconstruction algorithm base on normal inte-

gration.

There has been a considerable amount of researches

that studied the multi-view normal integration prob-

lem [5, 15, 18]. Chang et al. [5] is the first to proposed

the energy functional for multi-view normal integration

that is derived from the classical single view shape-

from-shading problem [13] and variational framework

has been used in most researches to solve this error

functional. Techniques above used implicit functions

to represent the surface which gives an advantage on

topology adaptation while performing mesh deforma-

tion. However, accurately representing a 3D object

using implicit functions typically require large mem-

ory consumption and computation time, as it requires

three-dimensional voxels to represent all the surface.

[19] proposed an optimization framework which used

triangular-mesh to represent the surface. However, they

convert their mesh to an implicit surface in order to han-

dle topological changes. This causes the edge length of

the mesh to be up to the size of voxels in which fine

details can be lost from converting to implicit surface.
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Our technique aims to use multi-view normal integra-

tion to reconstruct an arbitrary 3D object using normal

and reflectance map from multiple viewpoints. We im-

plemented multi-resolution optimization scheme in our

framework which helps the overall optimization con-

verges faster. We applied gradient descent to the er-

ror functional and perform all operations directly on the

3D triangle-based mesh. This enables us to control the

resolution of the mesh during optimization. However,

using this explicit surface representation has its draw-

backs. Topology cannot be trivially change and self-

intersection may occurs during optimization. We em-

ploy the method from [20] to remove self-intersection

and handle topological change.

The rest of this paper is organized as follows: we review

the related works on Section 2. We define our problem

in Section 3. We then explain our proposed method in

Section 4, and Section 5 to 6 will be our results and

conclusion respectively.

Our main contributions are

• Mesh base optimization scheme that can handle

topological change and self-intersection without

conversion to implicit representation.

• Multi-resolution optimization.

• Optimization schedule that interleaves matching

cost optimization with normal integration.

• Target normal calculation that takes visibility and

multi-view information into account and can handle

missing data.

2 RELATED WORK
3D reconstruction has gain a lot of attention in com-

puter graphics and computer visions fields. In this

section, we will focus on reviewing 3D reconstruction

techniques that takes photometric and normal informa-

tion as their inputs from multiple viewpoints. We refer

the reading to an excellent survey for other 3D recon-

struction method by Herbort and Wöhler [12].

Early methods for recovering surface information is

shape-from-shading [3, 11, 13, 22]. These conventional

methods were designed for reconstructing 2.5D sur-

face from a single view information of texture-less ob-

ject with known light position. Chang et al. [5] intro-

duced a new technique that can reconstructs 3D surface

using normal vector information from multiple view-

points. They proposed their energy functional based

on the single-view variational framework for shape-

from-shading problem [13]. Geometric PDE is then de-

rived to minimize their proposed functional and level-

set method is used as their optimization framework. Re-

cently, Weinmann et al. [18] employed a similar con-

cept of multi-view normal integration in order to recon-

struct the surface of high specular object. They calcu-

lated the volumetric normal field from projected illu-

mination patterns and then applied global optimization

with octree-based min-cut framework. The benefit of

using an implicit surface (i.e. level-set, voxels, and oc-

tree) as their surface representation is that it automati-

cally handles the topological changes while deforming

the surface to the optimal target solution. However, it

suffers from a large amount of memory consumption

with more detailed mesh and can suffers from slow con-

vergence rate.

A number of previous works uses other surface repre-

sentation. Esteban et al. [10] refined a visual hull by

finding photometric normal consistencies and then de-

formed their mesh on vertex space. However, problem

like self-intersection was not taken into account in their

paper. Similarly, Yoshiyasu and Yamazaki [19] used a

hybrid framework between intrinsic and extrinsic sur-

face representation by optimizing their energy terms on

triangular mesh and convert the mesh into an implicit

surface to handles self-intersections. Though, the de-

tail of target mesh can be washed out when converting

to implicit surface. Furthermore, Tunwattanapong et

al. [17] presented a technique for recovering the geom-

etry of 3D objects by projecting spherical harmonics

basis on the object to acquire its reflectance informa-

tion and then used message passing algorithm on vertex

space to minimize their energy functional.

Our proposed method performs optimization directly

on triangle mesh similar to [10, 19]. Our energy func-

tional is related to [5], but adding more terms in visibil-

ity function to handle inter-reflections and noisy infor-

mation better. We then minimize our energy functional

using gradient descent scheme applying the method

from Delaunoy et al. [9] which presented a framework

to optimize a triangular mesh with gradient descent

scheme. We handle the topological changes by em-

ploying similar algorithm from [20, 21]. Their algo-

rithm could fix a mesh with self-intersection without

losing details on the other part of the mesh. In addition

to surface normal, we used reflectance information as

our inputs. This allows our framework to work when

the surface is not texture-less Lambertian. Our works

compatible with other research in which they measured

specularity [17, 18].

3 PROBLEM STATEMENT
The goal of our framework is to recover a full water-

tight triangular 3D mesh with reflectance information

from multiple viewpoints with known intrinsic and ex-

trinsic camera parameters. Our mesh consists of n ver-

tices and m triangles which we denotes our vertices as a

matrix V = [v1 · · ·vn]
T where vi ∈ R

3, i ∈ [1,n] denotes
a point in 3D space, and triangle F = [f1 · · · fm] where
f j, j ∈ [1,m] is a set consists of three adjacent vertices.
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Each vertex vi has an outward normal N(pi), similarly,

each triangle also has its outward normal NF(f j). Our
framework also requires a set of l calibrated cameras

C = {c1, · · · ,cl} located around the target object. Each

camera ck where k ∈ [1 · · · l] has its own intrinsic and

extrinsic parameters which can be described as matri-

ces Kk and [Rk|tk] respectively, where tk is a translation

vector in R
3 for camera ck and the projection from any

point v∈R3 to image domain of camera ck can be writ-

ten as ṽk = Kk[Rk|tk]v ,ṽk ∈ R
2. For the simplicity, we

will also define this projection function to be ṽk = πk(v)
and a lookup function νk,X(ṽk) which will return infor-

mation of image X at pixel ṽk.

We need some information to describe how incident

light reflected the object surface which in this case, we

use diffuse and specular property of the surface as it is

well known and widely used in many research. These

information describe how the light reflect from the ob-

ject surface to the camera lens which we can then use

them to optimize the target surface. Our cameras will

capture (or synthetically generate) these reflection in-

formation separately in each viewpoint. Our research

will use four type of reflection data which are, dif-

fuse intensity, diffuse reflection, specular intensity, and

specular reflection. These information can then be de-

rived to surface normal and use them in the optimization

process which we will elaborate them on Section 4.1.

4 PROPOSED METHOD
In this section, we explain the core algorithm in order to

recover water-tight 3D mesh with reflectance informa-

tion. We perform optimization directly on triangle mesh

as in [5]. Therefore, we require an initial surface ap-

proximation which can be acquired from various proce-

dures. In our work, we use shape-from-silhouette [14]

to compute a visual hull and use them as an initial sur-

face. We assumed that such information is also given as

a part of the input data.

We optimize the energy functional in coarse-to-fine

manner by implementing multi-resolution optimiza-

tion. We schedule more optimization iterations at

coarse resolution and gradually decrease the optimiza-

tion iterations in finer resolution iteration. This helps

the overall framework to converge faster.

After we have a visual hull, we then minimize the cost

functional based on geometric and photometric normal.

The concept is to deform the mesh to match the target

geometric normal with observed photometric normal.

The input from cameras typically have some noises. We

add target normal blending term in order to filter out

unwanted noise and make the reconstruction more ro-

bust and visually appealing.

We minimized our energy functional using a gradient

descent scheme on vertex domain (Section 4.1). This is

similar to surface evolution on implicit surface frame-

work, instead we evolve our triangular mesh towards

the gradient direction directly. This may leads to un-

wanted self-intersection artifacts. We perform an adap-

tive remeshing algorithm [20, 21] on self-intersected

surface. Our overall procedures is shown in Algorithm

1.

Algorithm 1 Reconstruction Pipeline

1: (V,F)← Shape-from-silhouette � Initial shape
2: for each resolution iteration do
3: if mesh is coarse then
4: (V,F)←matchingcost-optimization(V,F)
5: for each optimization iteration do
6: Find target normal of each V and F
7: Calculate ∇E of each V and F
8: repeat
9: α ← argminα E(deform(V,F,∇E,α))
10: (V,F)← deform(V,F,∇E,α)
11: (V,F)← fix-self-intersections(V,F)
12: until E(V,F) is converges
13: (V,F)← resample(V,F)
14: return (V,F)

4.1 Multi-view Reflectance Integration
As in prior research about multi-view normal integra-

tion [5, 15, 18], we employ an error functional mini-

mization framework based on the conventional shape-

from-shading approach [13]. We minimize the cost

functional with variational methods by minimizing the

disparity of geometric and observed normal fields on

the surface domain. In the other words, we evolve the

surface so that its geometric normal field matched the

observed normal field. However, a normal vector at a

point on the given surface can be ambiguous with noisy

data which should be taken into account.

We adjusted the multi-view normal field integration

functional proposed by Chang et al. [5] which required

an initial approximation of surface to integrate with.

In this research, we acquired an initial shape approx-

imation using shape-from-silhouette [14] as it is good

enough for our algorithm.

From a given initial approximation surface, we refine

them by displacing every vertices such that its geo-

metric normal field of both from vertices and triangles

matches the observed one. Thus, we define our cost

functional of a given vertices V and triangles F as fol-

lows:

E(V,F) = ∑
v∈V

ω(v)[1− (Nt(v) ·Ng(v))]

+ ∑
f∈F

ωF(f)[1− (NF
t (f) ·NF

g(f))] (1)
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where, Nt(v) and NF
t (f) are observed target normal at

vertex v and triangle f respectively, Ng(v) and NF
g(f) are

geometric normal at vertex v and triangle f, ω(v) and
ωF(f) are a weighting function of vertex v and triangle

f, based on the surface area.
Our reflectance information can be derived to normal

vector so that it is consistent with our proposed cost

functional. For diffuse component, we can derive them

with the following equation:

Ñk,diff(p) = Normalize
(
αrνk,diff(p̃k)−p

)
(2)

where νk,diff(p̃k) is a lookup function for diffuse reflec-

tion of kth camera at pixel p̃k, Ñk,diff(p) is calculated

diffuse normal at point p from camera k, αr is a radius

constant of a projection sphere where the incident light

reflected to, and for specular component:

Ñk,spec(p)=Normalize

(
αrνk,spec(p̃k)−p
|αrνk,spec(p̃k)−p| +p− C̄k

)
(3)

Similarly, where νk,spec(p̃k) is a lookup function for

specular reflection, Ñk,spec(p) is calculated specular

normal ,and C̄k is position vector of the k
th camera.

4.2 Target Normal Calculation
According to (1), there are both Nt(v) and NF

t (f) terms

which we need to obtain by observing normal vectors

from the photometric information provided. At a ver-

tex v, we calculate the normal vectors from diffuse and

specular component separately and blend them with

weighting constants as follows:

Nt(v) = Normalize(wdiffNt,diff(v)+wspecNt,spec(v))
(4)

where wdiff and wspec are the weight for diffuse and

specular component which can be calculated as follows:

wdiff = ∑
k∈C

αθ ,k(v)ψk(v)νk,diffalbedo(ṽk) (5)

wspec = ∑
k∈C

αθ ,k(v)ψk(v)νk,specconf(ṽk) (6)

αθ ,k(v) =max(0,(−l̂k ·Ng(v))) (7)

where l̂k denotes a camera direction vector, Ng(v) is ge-
ometric normal at vertex v, ψk(v) is visibility function

which will determine if camera ck is visible for vertex

v. νk,specconf(ṽk) is a look up function for diffuse albedo
at point v, and νk,specconf(ṽk) is specular reflection con-

fidence which depends on the acquisition technique.

For each component, we project this point to a set of

visible cameras Cseen and look up for reflectance infor-

mation. We then use weighted average function based

on camera angle towards the surface to calculate for the

target normal as follows:

Nt,diff(v) = ∑
k∈C

αθ ,k(v)ψk(v)Ñk,diff(v) (8)

Nt,spec(v) = ∑
k∈C

αθ ,k(v)ψk(v)Ñk,spec(v) (9)

Similarly, for the triangle case, we used its centroid as

a point of projection and then obtain target normal for

the triangle.

The visibility terms ψk(v) can be easily calculated us-

ing ray tracing algorithm like in previous research [5,

9, 15]. However, determining whether the surface in

consideration is visible by just ray-tracing might not be

enough as there could be some outliers (noise and inter-

reflections) which can leads to inaccurate target normal.

Therefore, we need to filter such outliers out first by re-

stricting more conditions to visibility terms as follows:

ψk(v) = κm(v)κp(v)κcg(v)κct(v)κtg(v) (10)

κm(v) =

{
1, if v is visible at camera k

0, otherwise
(11a)

κp(v) =

⎧⎪⎨
⎪⎩
1, is not self-intersected

along the reflection vector

0, otherwise

(11b)

κcg(v) =

{
1, −(l̂i ·Ng(v))> 0

0, otherwise
(11c)

κct(v) =

{
1, −(l̂i ·νk,spec(ṽk))> 0.5

0, otherwise
(11d)

κtg(v) =

{
1, Ñk,spec(v) ·Ng(v)> 0

0, otherwise
(11e)

Like in [5, 9, 15], the first term (11a) can be determine

by tracing a ray from camera to vertex, if it is not oc-

cluded by any surface then this counts as visible. Al-

though from our observation, there are several sources

that lead to incorrect target normal acquisition, such as

inter-reflections. (11b) checks whether the gathered in-

formation is bad from inter-reflection by tracing a ray

from position v along the reflection vector respected

to each viewpoint. If the ray hit the mesh itself, we

will discard the information and treated this pixel as in-

valid. The term (11c) checks boundary cases when the

ray-tracer hits back-face surface. This can be occurred

when tracing to a point located near the silhouette or

thin surfaces. For specular component, (11d) filters out

the reflection vectors that have wide angle respected

to its camera direction vector as the surface that face

off the camera are likely to be noisy. Lastly, the term

(11e) filters out the bad photometric reflection which

face backward respected to the mesh geometry. This

mostly occur in the area with inter-reflection.
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4.3 Gradient Descent Optimization
Scheme

With observed target normal being calculated on ev-

ery vertices in V and triangles in F, we then mini-

mize our energy functional in (1) with gradient descent

framework. Similar to [9], but with our proposed en-

ergy functional. Basically, we will deform our mesh by

translating each vertex vi along the calculated deforma-

tion direction vector di which can be written as:

v′i = vi + tdi (12)

where v′i denotes a deformed vertex vi with scalar

weight t for direction di. This deformation vector

can be computed by finding the gradient of energy

functional in (1) and energy decreases when the surface

is deformed in the opposite gradient direction. Thus,

the deformation equation of the whole mesh can be

written as:

V′ = V−β∇E(V,F) (13)

d

Figure 1: Vertex deformation of point v toward the di-

rection vector d which can be calculated by finding gra-

dient of vertex v

Finding the gradient for each vertex vi is not trivial,

since our energy functional (1) is based on normal

terms. Besides, we need to calculate the gradient re-

spect to its position:

∇E(V,F) =
[

δE
δx

(V,F),
δE
δy

(V,F),
δE
δ z

(V,F)
]

(14)

Our normal can be derived from its adjacent vertices

using the following equations:

t1 =
k−1
∑
i=0

cos

(
2πi
k

)
Adj(v, i) (15a)

t2 =
k−1
∑
i=0

sin

(
2πi
k

)
Adj(v, i) (15b)

where v has k adjacent vertices, t1 and t2 are tangent

vectors, and Adj(v, i) returns the position of ith adjacent
vertex of v. The cross product t1× t2 is then calculated

for vertex normal. (For more in details please refer to

[16]) With this we can solve for an analytic gradient of

the energy with a symbolic differentiation package such

as sympy [1].

We then perform line search algorithm to find the value

β in (13) which will minimize our energy toward the

current surface. Then from (13), we have:

argmin
β

E(V−β∇E(V,F),F) = 0 (16)

4.4 Target Normal Blending
Some part of the surface may not be captured with high

quality information (e.g. highly concave surface) or that

part of the surface is totally occluded. This could be

problematic as observed target normal vector Nt(v) or
NF

t (f) could be an undefined vector which caused by

our visibility terms in (10) of every camera returns zero.

This may leads to an undefined behavior for our opti-

mization process. Therefore, our framework will need

to handle this case, so that at least the surface without

information can still be reconstructed with visually ap-

pealing output. We define a confidence function λ (v)
for our observed target normal or can be also called nor-
mal blending weight. This confidence value decreases
as the calculated target normal become unreliable. We

then use the confidence term to blend the calculated tar-

get normal with smoothed geometric normal using the

following equation:

Nblend
t (v) = λ (v)Nt(v)+(1−λ (v))N̄g(v) (17)

where, N̄g(v) is normal vector of smoothed geometric

surface at point v. Our normal blending weight is varied

to the number of visible viewpoints and variance of
photometric curvature of visible viewpoints:

λ (p) = λH(p)λC(p) (18a)

λH = exp
(
min

(
0,−σH

2

))
(18b)

λC = exp

(
min

(
0, |Cseen|−

⌈
(1− cosθ)

2

⌉
|C|

))
(18c)

where λH is photometric curvature variance term which

can be calculated by looking up all normal components

from visible cameras and compute its variance. That is,

if the photometric normals are consistent, the calculated

target normal is more likely to be reliable. Where, λH

captures the photometric curvature variance. The term

λC represents the vertex visibility. If the calculated tar-

get normal are computed frommore viewpoints, the tar-

get normal is acceptable. We assumed that camera set

C are uniformly located along the sphere that covers

the scanning object. Then, at a particular vertex v on
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Figure 2: Input reflectance information of speccat and hammerman. From left to right, diffuse albedo, diffuse

reflection, specular albedo, specular reflection, and mask information for our optimization framework.

0
0.5 1

1.5 2 0

10
0

0.5

1

Figure 3: Blending weight function of our camera con-

figuration, varied to σH and |Cseen| with 31 total cam-

eras and θ = 45◦

Figure 4: Cameras within an infinite radius spherical

sector (hi-lighted in blue) will be marked as visible.

a surface, v will have a set of visible cameras Cseen.

The term (1− cosθ)/2 is derived from the ratio be-

tween surface of spherical sector to the whole sphere,

where at a particular point v should be at least visible

to the camera that is located on the part of spherical cap

which in this research we set the θ value to be 45 de-

gree. However, this equation is only based on our cam-

era configuration. It could be adjusted to be suitable for

other configuration as well.

4.5 Matching Cost Optimization
Normal integration has its limitation about ambiguity

as stated in [2], which can result in an incorrect answer

even the energy functional is converged. Especially in

the concave area where the observed target normal can

be inaccurate due to projection error. We can solve such

problem by using similar idea to stereo reconstruction.

We solved this problem in a similar manner to the nor-

mal integration by defining the normal correspondence

energy function based on mesh vertices and move them

to the optimal solution. Given, a vertex v ∈ R
3 and

camera set C. We assumed that, if the vertex v is at the

correct position, then its projected normal from each

camera should be correspond to every other cameras.

In order to find such correspondence, we defined our

matching cost function to be a variance of observed

normal of visible viewpoints where the number of vis-

ible viewpoint is more than 3. Otherwise we will force

the matching cost to be +∞

We sampled points along the vertex normal both out-

ward and inward, then calculate the matching cost at

each sampling. After that, from all computed matching

cost samples, we fit a quadratic equation for the dis-

placement from the sample with minimum cost and its

adjacent samples. We then compute the location of the

tip of the parabola. Finally, based on the matching cost

of the optimal point, we translate the vertex along its

normal with the displacement calculated earlier.

4.6 Remeshing
The drawback of using explicit surface representation

like triangular mesh is that it could not automatically

deal with topology changes unlike implicit surface rep-

resentation. It is likely that self-intersection will oc-

curred in our mesh due to our mesh evolution in Section

4.3.
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Figure 5: Synthetic data of bunny, dragon, and dis-

colobus. From left to right, ground truth mesh, diffuse

reflection, and specular reflection. We omitted diffuse

and specular albedo since we set all the value into one.

The author in [20, 21] proposed a framework to effi-

ciently solve topological changes on triangular mesh

called Transformesh. The algorithm solves topology

changes by using an intuitive geometrically driven so-

lution which we found it suitable for our framework.

We perform Transformesh algorithm after the whole

mesh deformation process is completed in every itera-

tion. Other self-intersection algorithm such as [4, 6, 7]

can also be used in this step.

Then, after every resolution iteration, we resample our

mesh to be finer with edge splitting operation and re-

move short edge with edge collapsing operation. We

then use the mesh in the next optimization iteration.

5 RESULTS
In this section, we will discuss and evaluate the result of

our reconstruction pipeline with both real and synthetic

data. All procedures are executed with Intel i7-5820K

3.30GHz, with 64GB of RAM.

5.1 Real data
We performed the reconstruction on two real data (As

shown in Fig.2). There are 31 viewpoints uniformly lo-

cated on faces of truncated icosahedral (except one on

the bottom-most) with 30 centimeters in radius which

we can set our parameter αr in (2) and (3) to be 30.

All input images are captured in 4896 by 3684 pix-

els and camera matrices are already calibrated. Visual

hull is then extracted for initial mesh with 1 millime-

ter in voxel edge length. We optimized more iterations

in coarser resolution mesh as the coarse details will

converged before refining the mesh in the finer itera-

tion so that the optimization converges faster in overall.

We scheduled 10 iterations or the coarse resolutions,

then decreasing the number of optimization iterations

in finer resolution iteration.

Figure 6: Reconstructed 3D models of speccat and

hammerman. The real objects are shown on the left and

rendered reconstructed outputs are shown on the middle

and right.

Figure 6 shows the results of reconstructed mesh of

speccat and hammerman. Our framework success-

fully recovered both data. The output of speccat has

reasonable geometric features and being able to render

an appealing result.

Figure 7: Additive white gaussian noise is added to

bunny data with coefficient 0.1, 0.2, and 0.3

5.2 Synthetic data
We simulate the configurations from real data recon-

struction from the last section, so that it is not biased

or favoring to our framework. We used three ground

truth meshes (As shown in Figure 5) and projecting re-

flectance information needed with similar camera cal-

ibration to the prior section. We replaced every pixels

to be one for diffuse and specular intensity since there

were no such information to project and this would

not violate our framework. In addition, additive white
gaussian noise is added to the generated images with

coefficient AWGN coeff value set to 0.1, 0.2, and 0.3

(As shown in Fig. 7) and compared the result to evalu-

ate the robustness of our framework.

We measure the error of our output with Hausdorff dis-

tance [8] as shown in Table 1. Note that our framework

can reasonably recovered the shape even with noisy

data. Only the concave area seems to far off the ground

truth due to the matching cost optimization could not

perfectly find the correct optimal point with noisy data.
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Figure 8: The Hausdorff distance of the outputs toward its ground truth.

Table 1: Hausdorff distance of outputs toward ground

truths

Model AWGN coeff meandH (mm) RMS

Bunny

0 0.06026 0.07269

0.1 0.06405 0.07791

0.2 0.16838 0.27443

0.3 0.23536 0.47291

Dragon

0 0.12251 0.27265

0.1 0.15447 0.33639

0.2 0.24416 0.46701

0.3 0.30370 0.55531

Disco-

lobus

0 0.21390 0.30124

0.1 0.22146 0.30930

0.2 0.36786 0.55528

0.3 0.44007 0.71934

6 CONCLUSION
We have presented a novel multi-view normal integra-

tion framework using reflectance information. With our

mesh-based optimization, we are able to reconstruct

fine details without sacrificing unnecessary memory

consumption unlike implicit surface framework. Al-

though it can presents self-intersection, we exploit such

problem by using Transformesh [20] which fix topol-

ogy changes completely in triangular mesh domain. We

also deal with those surface which only a few or none

of the camera can be seen with target normal blending

which will smooth out the surface without photometric

information.

Our framework also has some limitations toward the

area with high details and thin surface. This is due to

the inability to observe high frequency target normals

on the coarse iterations which result it smoothed out

surface like in hammerman (Fig.6). This could be re-

solved with adaptive mesh w.r.t. photometric curvature

and is an interesting area of future work. While our

method can handle topological change during optimiza-

tion, if the initial mesh is of different genus from the

real mesh, our algorithm may not be able to change the

genus. Hence, using a good initial mesh with matching

genus may be needed. Creating a better initial mesh is

hence another interesting area of future work.
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