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ABSTRACT

We demonstrate the acceleration potential of the Chebyshev semi-iterative approach for fluid simulations in Projective Dy-
namics. The Chebyshev approach has been successfully tested for deformable bodies, where the dynamical system behaves
relatively linearly, even though Projective Dynamics, in general, is fundamentally nonlinear. The results for more complex
constraints, like fluids, with a particular nonlinear dynamical system, remained unknown so far. We follow a method describing
particle-based fluids in Projective Dynamics while replacing the Conjugate Gradient solver with Chebyshev’s method. Our re-
sults show that Chebyshev’s method can be successfully applied to fluids and potentially other complex constraints to accelerate
simulations.
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1 INTRODUCTION
The physically plausible simulation of the behavior of
various objects has been an important research topic
in computer graphics for the past decades. In the
early days, methods were adapted from simulations
in computational physics, like the Finite-Element-
Methods (FEM) [14]. These methods are derived from
continuum mechanical principles and therefore offer
high accuracy. This high accuracy is needed because
the goal of simulations in computational physics or
chemistry is to replace real-world experiments. In
computer graphics, however, physical simulations are
mostly used for special effects in film or for interactive
applications. High numerical accuracy is therefore of-
ten not needed as long as the objects behave plausibly.
This results in new methods that are specially tailored
to the needs of computer graphics simulation.

A common simulation method in computer graphics
is Position-Based-Dynamics (PBD) [13]. Classical
approaches use forces to apply a change of momen-
tum in a physical system, which leads to a position
change through numerical integration of velocities and
accelerations. In PBD there are specially designed
constraints, that enforce a change of position in a
quasi-static fashion. Constraints in PBD can be used
for simulating a broad variety of objects such as
rigid-bodies, soft-bodies, cloth, hair, muscles and
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even fluids. Unfortunately, this technique has limited
accuracy as the constraints are not directly derived
from continuum mechanical principles. In addition, a
large number of iterations are often required to solve
the entire system, as the constraints are projected onto
each other.

Projective Dynamics (PD) [3] is a relatively new
technique that also uses constraints to enforce posi-
tion changes. But in contrast to PBD, these constraints
are highly nonlinear energy potentials directly derived
from deformation energies in continuum mechanics.
PD bridges the gap between the physically correct FEM
and the fast, reliable and robust PBD. Since the emer-
gence of PD, research has continued to expand the num-
ber of objects that can be simulated, improve conver-
gence rate and increase speed. The Chebyshev Semi-
Iterative approach [17] is one method of accelerating
PD by using concepts from linear algebra to efficiently
solve the fundamentally nonlinear system in PD. This
approach has been successfully applied to deformable
bodies, which have a relatively linear behavior.

In this work, we demonstrate the acceleration poten-
tial of Chebyshev’s method on fluids, which in contrast
to rigid or even deformable bodies are particularly com-
plex and result in far more nonlinear dynamic systems.
To the best of our knowledge, we are the first to suc-
cessfully accelerate fluid simulation with Chebyshev’s
method. We use the approach proposed in [18] for sim-
ulating fluids in PD, borrowing Smoothed Particle Hy-
drodynamics (SPH) methods. Our results also show
the potential of Chebyshev’s method for other complex
constraints in PD (e.g. hair or cloth).
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2 RELATED WORK
In the following, we briefly introduce the concept of
Projective Dynamics and its extension to fluids. In par-
ticular, we also present the notation used, which is re-
quired in the section discussing the Chebyshev method.

2.1 Projective Dynamics
PD is a constraint-based simulation method using an
implicit integration scheme while projecting the con-
straints in an alternating Gauss-Seidel fashion onto a
common solution space. An object can be described as
a mesh consisting of m vertices. Each vertex (xi,vi), i∈
{1 . . .m} is characterized by a position xi and a veloc-
ity vi. All positions and velocities of the system can be
stored inside two matrices X ∈ Rm×3 and V ∈ Rm×3.
The implicit time integration from time tn to tn+1 of
these characteristics leads to:

Xn+1 = Xn +h ·Vn+1

Vn+1 = Vn +h ·M−1F(Xn+1)
(1)

with h being the simulation time-step and M ∈ Rm×m

a constant mass matrix. Forces F acting on the
system can be characterized as internal or external.
External forces fext , like gravity, are held constant
during the simulation. Internal forces can be under-
stood as material properties and are expressed by
strictly position-depended scalar energy potentials
fint(X) = −∑i ∇Wi(X). As shown in [11], for finding
the unknown Xn+1, the coupled system (1) can be
converted into the optimization problem

min
Xn+1

(
1

2h2

∥∥∥M
1
2 (Xn+1− (Xn +hVn +h2M−1fext))

∥∥∥2

F

+∑
i

Wi(Xn+1)

)
.

(2)

One of the key points in PD is the replacement of
the generally highly nonlinear energy function Wi(X)
by specially designed constraints. A fulfilled constraint
describes the rest state or undeformed configuration.
[3] showed that each constraint can be solved indepen-
dently with an auxiliary position variable P by projec-
tion to a common constraint manifold minimizing the
distance between the current and the projected posi-
tions, i.e.

W (Xn+1) = min
P

w
2
‖CXn+1−DP‖2

F +δC(P),

with constraint depended constant matrices C and D, an
indicator function δC that evaluates if the constraint is
fulfilled and a weighting factor w.

For solving the whole problem, two minimization
steps are necessary: a local and a global solve. Dur-
ing the local solve the minimization is executed over

the auxiliary variables Pi, while the positions Xn+1 are
kept fixed. This means that vertex positions are pro-
jected to their closest positions on the constraint man-
ifold. Since the auxiliary variables Pi are independent
for each constraint this can be done in parallel. In the
second minimization step the already projected auxil-
iary variables Pi are fixed and (2) is minimized over the
vertex positions Xn+1. This finds the configuration with
the best compromise between all constraints. Since the
unknown Xn+1 is quadratic in all terms of (2), the min-
imization is equivalent to solving the linear system(

M
h2 +∑

i
wiCT

i Ci

)
Xn+1 =

M
h2 (Xn +hVn)+

∑
i

wiCT
i DiPi + fext .

(3)

Since the objective function is bounded for an arbi-
trary choice of constraints, each iteration is guaranteed
to weakly decrease energies. Therefore the vertex po-
sitions Xn+1 converge iteratively towards the state of
minimal energy, without the need for any safeguards.

2.2 Projective Fluids
For the simulation of fluids in a constraint-based frame-
work, a fluid density constraint can be used, which
was first proposed for position based simulations in [9].
Later, [18] translated the methodology for the use in
PD. They defined the (incompressible) fluid constraint
as the state in which internal pressures force the contin-
uum into a resting state of constant density ρ0, i.e.

Wi(X) =
1
ρ0

(
∑
k

mkK(xi−xk, l)

)
−1, (4)

where local densities are calculated by the standard
SPH density estimator as an interpolation of neigh-
boring particles by an SPH Kernel function K with a
smoothing kernel length l.

The local solve is done by finding a position correc-
tion vector ∆P in the projected positions P that satisfies
the constraint W (P+∆P) = 0. A first-order approxi-
mation of the constraint with a restriction of ∆P in the
direction of the constraint gradient that conserves the
linear and angular momenta according to D’Alembert’s
principle leads to exactly one scalar Lagrange multi-
plier λ that solves the system (see [2])

W (P+∆P)≈W (P)+λ∇W T
∇W.

The gradient of the SPH density estimator is just de-
fined by the gradient of the kernel function. For an arbi-
trary particle k two cases need to be distinguished, i.e.
whether k is a neighboring particle or not and thus one
gets

∇pkWi =
1
ρ0

{
∑ j ∇pk K(pi−p j, l) if k = i
−∇pk K(pi−p j, l) if k = j
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Since the result is only a first order approximation the
fluid constraint (4) in general will not vanish. Therefore
iterative updates Pζ+1 = Pζ +∆Pζ are used to converge
Pζ towards the correct projected positions P, where
the (4) vanishes. The iteration can be stopped when
the constraint is smaller than a predefined constant, i.e.
W (Pζ +∆Pζ )< ε . Usually after three to four iterations
ε < 10−14 is reached, which is sufficient [18].

3 CHEBYSHEV’S METHOD
The Chebyshev method is a semi-iterative approach to
solve a linear system Ax = b, like the global solve (3)
in PD. Contrary to the Conjugate Gradient method (CG)
proposed in [18], it doesn’t depend on inner products,
which offers more potential for parallelization [17],
since less safeguards are needed to prevent race con-
ditions. The key idea behind the method is to obtain
better results from an iterative solution, by blending in
previous results as a convex combination with blending
weights νi,k > 0, ∑

k
i=0 νi,k = 1. These blending coeffi-

cients νi,k can be determined by minimizing the error

ek = x′k−x =
k

∑
i=0

νi,k(xi−x) (5)

where x′k is the total iterative solution after k iterations,
x is the exact solution and

xi = Q−1 (Rxi−1 +b) (6)

is the result of the i-th iteration, where A = Q−R and
Q being an easily invertible matrix (e.g. a diagonal ma-
trix). Substituting (6) into (5) results in

ek =
k

∑
i=0

νi,k
(
Q−1(Rxk−1 +b)−x

)
=

k

∑
i=0

νi,kQ−1Rek−1

=
k

∑
i=0

νi,k
(
Q−1R

)i e0 = pk(Q−1R)e0

with pk(Y) = ∑i νi,kYi being a polynomial.
A polynomial of a matrix Y can be minimized by

minimizing ‖pk(Y)‖2 = maxλi |pk(λi)|, the analog
polynomial function for the scalar Eigenvalues λi of
matrix Y. Finding the eigenvalues of a large linear
system is not practical, but the spectral radius ρ gives
a measure of the range in which the eigenvalues must
lie. This means t hat pk can be minimized over a range
x ∈ [−ρ,ρ], i.e.

pk(x) = arg min
(

max
−ρ≤x≤ρ

|pk(x)|
)
. (7)

[17] showed that pk(x) = Tk

(
x
ρ

)
/ Tk

(
1
ρ

)
with the

Chebyshev polynomials of the first kind Tk(x) (for more
details on Chebyshev Polynomials see e.g. [7]) is a so-
lution to (7). Furthermore, [17] showed in detail that,

based on relations for these polynomials, an iterative
solution with a minimized error term only depending
on the range limiter ρ is given by

x′k+1 = ωk+1
(
Q−1(Rx′k +b)−x′k−1

)
+x′k−1 (8)

with a recursive resulting factor ωk+1 =
4

4−ρ2ωk
∀i ≥ 1

and ω1 = 1.
The idea of using the Chebyshev approach for PD

is to replace the global solve with the Chebyshev For-
mula (8) using the results of the previous iterations for
x′k and x′k−1. Furthermore, the matrix Q is chosen as the
diagonal matrix of the projective system matrix. For a
linear system, ρ is well defined by the spectral radius
of Q−1R. For PD where the combination of local and
global solves forms a fundamentally nonlinear system
this definition of ρ can’t be used any longer and an al-
ternative approach is needed. [17] proposed to use a
fixed ρ for the whole simulation. This ρ can be found
in two steps before the actual simulation starts. First it
is initialized by the error rate in the last iteration K of a
test run, i.e. ρ =

‖eK‖2
‖eK−1‖2

. After that, ρ is modified in a
couple of further test runs to minimize the convergence
rate. When ρ is overestimated the results begin to oscil-
late and when ρ is underestimated the results converge
slower.

4 IMPLEMENTATION

Algorithm 1 PD solve from t = n→ t = n+1

1: X(0)← InitialPositionGuess(Xn, Vn)
2: for iterations k = 0 . . . K-1 do
3: for all constraints i do
4: Pi← ProjectConstraint(Ci, X(k)) //(4)
5: end for
6: X̃(k+1)← SolveLinearSystem(Xn, Vn, Pi) //(3)
7: X(k+1)= ωk+1

(
X̃(k+1)−X(k−1)

)
+X(k−1) //(8)

8: end for
9: Xn+1 = X(K)

10: Vn+1 = (Xn+1−Xn)/h

We implemented a fluid simulation framework
in C++ 11, using OpenMP for parallelization and
the Eigen library for mathematical operations. The
parallelization is used, among other things, to project
fluid constraints in parallel onto their manifolds, while
updating the solution vector atomically to prevent race
conditions, as described in [18]. We used parallel
Spatial Hashing by [8] for finding particle neighbors
(see also [15]) and a cubic b-spline kernel [12] as
the SPH kernel for interpolating field quantities from
neighboring particles. Boundary and object collision
handling is done by surface sampled boundary particles
as proposed in [1]. The particle sampling on arbitrary
surfaces is done with an improved parallelized version
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Figure 1: A diagonal double dam break in a squared bounding box with one collision object and 298k fluid
particles.

Solver Dam
Break
30k

Dam
Break
88k

2Dam
Break
128k

Squirrel
298k

CG 1 It. 73ms 277ms 484ms 883ms
CG 94ms 616ms 889ms 2558ms
LDLT 88ms 306ms 486ms 1057ms
Jacobi 1 It. 89ms 276ms 476ms 1163ms
Jacobi 101ms 381ms 555ms 1225ms
Chebyshev 89ms 295ms 459ms 995ms

Table 1: Timing results for different scenarios. Fastest
runtimes without artifacts in bold.

of Poisson disk sampling [4]. The simulation time-step
size is restricted by the CFL condition [5]. The
pseudo-code for one PD solve, also referred to as one
time-step from a time t = n to t = n + 1 is shown in
Algorithm 1. The corresponding formulas from this
paper are added in parentheses behind code lines.

5 RESULTS
In this section, we present the simulation results and
discuss the time advantage over previously used solving
methods. We use four different simulation scenarios to
emphasize our statements. The first one is a dam break,
which is a classical test case in fluid simulation. In this
setup, a block of water containing 30k particles flows
under the influence of gravity in a rectangular bounding
box. For the second scenario we used the same setup
(see Fig. 2), but this time with 88k particles. The third
setup, the double dam break, involves two blocks of
water in a rectangular bounding box on opposite sides
containing a total of 128k particles (see Fig. 3). In the
last setup, two blocks of water with each 149k parti-
cles in opposing corners of a squared bounding box are
set loose, while a squirrel as a complex collision object
stands inside the bounding box (see Fig. 1).

As mentioned in section 3 the first thing that needs
to be done is finding an equivalent to the spectral ra-
dius ρ that minimizes the convergence rate. Figure 4
exemplary displays the averaged runtime of the first 80
simulation time-steps for different values of ρ , for the

Figure 2: A dam break scenario in a rectangular bound-
ing box with 88k particles.

Figure 3: A double dam break scenario in a rectangu-
lar bounding box with two bodies of water on opposite
sides with a total of 128k particles.

second scenario. The minimum is found in ρ = 0.925.
Furthermore, it shows that for an overestimated ρ the
convergence rate slows significantly, probably due to
oscillating results, as proposed in section 3.

For evaluating the quality of the solver we took the
average runtime during one time-step. Since all com-
pared solvers have different convergence behavior, we
used a common criteria for stopping the local/global it-
eration. It is stopped when the maximum Euclidean dis-
tance between two corresponding particle locations in
the current and the previous iteration is bellow a fixed
threshold. We compared our solver to other commonly
used solvers (see Table 1). For the Conjugate Gradients
(CG) solver, we used the matrix-free implementation
proposed in [18]. As an iterative method, we imple-
mented a standard Jacobi method [16]. We also com-
pared our results to a direct solving method the LDLT
Cholesky decomposition [6]. For this method, we used
Eigen’s SimplicialLDLT with sparse matrices. We
tested the CG and the Jacobi method until convergence
for the global solve (as stated in [18]) and for a sin-
gle global solve iteration only. While the CG method
with only one iteration was often the fastest in our tests,
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Figure 4: Average runtime for the dam break scenario
with 88k particles for different values for the equivalent
to the spectral radius ρ .

it produced artifacts and therefore isn’t feasible. The
Chebyshev method doesn’t generate any artifacts and
is the fastest method of all tested fully working meth-
ods for higher particle counts. This shows, that even for
complex and highly nonlinear constraints, like the fluid
constraint, the Chebyshev method accelerates the sim-
ulation. Compared to [18]’s CG solver (until conver-
gence), we were able to reduce solving times between
41% and 52% without creating undesired visual side ef-
fects. All results have been produced on a MacBookPro
with an Intel Core i7-4980HQ processor with 4 cores (8
threads), clocked at 2.80GHz and 16GB of RAM.

6 FUTURE WORK
In the future, we want to further investigate the ac-
celeration potential of our solving approach on mas-
sively parallel hardware like the GPU. Since the ap-
proach does not depend on inner products we believe
that there is a strong potential of increasing the perfor-
mance even more. Furthermore, we plan on testing the
solver in more complex simulation setups with different
non-fluid constraints. Additionally, it would be inter-
esting to see if the small substep method from [10] for
extended position-based dynamics (XPBD), could also
further improve Chebyshev’s method in PD.
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