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Figure 1: We address the problem of constructing polygonal 3D roof models from previously classified LIDAR
point data.

Abstract
Automatic extraction of building roofs from remote sensing data is important for many applications including 3D
city modeling, urban planning, disaster management, and simulations. In this paper, we propose an automatic
workflow for roof reconstruction by polygonal models from classified high-density LIDAR data. Roof planes are
initially delineated by a segmentation algorithm combining a robust Hough-based normal estimator and a region
growing strategy. Then, each roof is modeled by a 2D α-shape mesh which is used to discover not only building
outline but also all ridges defined by intersecting roof planes, without any geometrical calculations. The mesh
directly encodes the topological relations between neighboring planes which allows us to build the final polygonal
model straightforwardly. This topological approach makes our solution more simple and robust than existing
methods which mostly extract the intersection lines by means of geometrical computations. Experimental results
show that the proposed workflow offers a high success rate for extraction at plane level (94% completeness, 92.7%
correctness, 90.8% quality) when LIDAR point density is sufficiently high.
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1 INTRODUCTION

The digitization of real objects is increasingly used
in fields such as urban planning, architecture, disaster
management and homeland security. Acquisition tools
such as airborne light detection and ranging (LiDAR)
scanners make it possible to produce digital represen-
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tations of entire cities in the form of 3D point clouds
sampling the surfaces of the objects in the environment.
Despite the high degree of maturity achieved by dig-
itization techniques, effective computational solutions
for preprocessing and reconstruction from these mea-
surements are rare and ill-adapted to the complexity of
the environment (complex building structures and en-
tire cities).
Today, the process of creating a digital model from such
data is long, tedious and essentially manual. In this re-
verse engineering process, the human operator manu-
ally draws 3D model elements as close as possible to
the point cloud.
Although significant effort has been put into the de-
velopment of automatic and semi-automatic methods,
which are currently appearing on the market, no solu-
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tion proposed so far meets all industrial requirements
in terms of precision, accuracy and efficiency. This is
because the reconstruction of 3D building models is a
complex task that requires a workflow of several pro-
cessing steps such as classification, outline extraction,
segmentation, feature recognition, hypothesis genera-
tion and verification, geometric modeling and construc-
tion, adjustment and refinement.
In addition, the reconstructed models must respect a
number of structural constraints (planarity of roof seg-
ments, horizontal roof ridges, symmetry, etc.), which
cannot be retrospectively integrated into existing solu-
tions.
Despite the acquired knowledge, there is still a signifi-
cant number of unsolved problems coming from: gaps
in the data (due to occlusions or unwanted reflections
and absorption); noise and outliers; limited resolution
and variable point density; high variability and com-
plexity of building shapes in urban areas, to name a few.
In this work, we address the particular problem of con-
structing (creating) polygonal 3D roof models from
previously classified LIDAR point data. Our method
follows a pure data-driven approach and is fully auto-
matic, except for the parameters which must be chosen
with care by a human operator. The proposed method
strives for building roof models with a level of de-
tail (LOD2), as defined in the CityGML standard [18],
e.g. detailed roof structures but without superstructures
(such as chimneys, dormers, etc.). Moreover, each in-
dividual roof is assumed to be a set of flat planes.
A typical workflow of data-driven reconstruction meth-
ods consists of the following three steps:

1. Building points are aggregated to planar patches
(segments) which represent roof facets.

2. The resulting segments are then combined to extract
building modeling features or cues such as intersec-
tion and step lines, building outlines, corners, simple
surface primitives, etc..

3. Finally, 3D building models are constructed based
on the extracted modeling features and subsequently
regularized.

We are following this pipeline, improving steps 2 and 3.
Our originality comes from the fact that we fix in pri-
ority the topological properties of the resulting model,
which are known to be difficult to discover using geo-
metrical approaches.
In addition, this combinatorial approach makes it easier
to handle the step edges corresponding to height jumps.

2 RELATED WORK
Numerous building reconstruction approaches have
been proposed in the last two decades and are presented
in various surveying articles [37, 19, 8].

The model-driven approaches try to fit certain shapes
to the data, while the data-driven approaches try to ex-
tract shapes present in the data. Although the model-
driven methods are robust, their performance is limited
to known models [46, 51, 50]. The data-driven methods
work, in theory, for any rectilinear building shapes.

Here, we provide a brief overview of some data-driven
approaches that are appropriate to our work; the sec-
tions correspond to the above pipeline.

2.1 Segmentation of planar patches
We can classify the (data-driven) building reconstruc-
tion methods into four categories w.r.t the approach do
detect planar regions in point clouds:

Hough transform [20] is one of the earliest methods
used for building reconstruction [27], and it has been
enhanced and tuned many times [21, 32, 28].

RANSAC is another method that is applied fre-
quently [16, 9]. It tends to be more robust than Hough
transform. A comparison between these methods is
presented in [45] for automatic segmentation of planar
areas from point clouds.

Region growing gains its place thanks to its simplic-
ity and efficiency. In contrast to Hough transform and
RANSAC, it is a local segmentation technique. In [2]
surface growing is applied to a regularized raster of
building points to construct planar segments by a cell
aggregation technique. Further surface growing based
segmentation methods in the context of 3D building re-
construction are, for example, used in [4, 1, 44, 52].

Another viable (but costly) option is to perform a global
optimization. In [26], flat roof segments are determined
by minimizing an energy function formulated as a mul-
tiphase level set.

2.2 Model generation
After a set of segments has been determined, modeling
cues can be extracted for the subsequent construction
of 3D building models. For this, intersection lines, step
lines, and building outlines are frequently extracted.
Although building outlines can be considered as a spe-
cial type of step lines, they are often determined in a
separate processing step. There are several approaches
that focus on generating a construction draft and sim-
plifying or regularizing it. These approaches are, for
example, based on RANSAC [23], α-shape [36, 5, 38],
structured grids [52, 44], or line simplification such as
Douglas-Peucker [12].

For the detection of step edges, height discontinuities
between adjacent segments are searched in [48]. In
[41], step edges are determined based on statistical tests
and robust estimation. A so-called compass line filter
(CLF) is proposed in [17]. It determines the local edge
orientation for each step edge.
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The ridge lines are usually directly obtained by the in-
tersection of two planes that are derived from a pair of
adjacent segments. Other modeling cues are, for ex-
ample, extracted in [33]. Here, segments are enlarged
to roof faces by intersecting all segments, regardless of
their adjacency to each other. An approach to detect
modeling cues in form of ridge lines utilizing RANSAC
is presented in [15].
Most data-driven reconstruction methods generate a 3D
polyhedral model directly based on the modeling cues,
[41, 32, 36, 52, 49]. For this, the extracted lines are
extended and connected with each other so that each
roof surface is bounded by a closed sequence of con-
nected line segments. Further faces with a vertical ori-
entation are then added at step edges so that each edge
in the polyhedral model becomes part of two surfaces
defining line segment sequences. The implementation
of such a direct polyhedral model generation method
often comes, however, with quite a few problems be-
cause there are usually some ambiguities how the line
segments are to be connected to guarantee the planarity
of each polyhedral face without any gaps in between.
There are methods using 2.5D triangulation [11], but it
does not guarantee the correct topology of the model
(step edges).

2.3 Model regularization
Since building models derived from data-driven recon-
struction approaches resemble very closely the (imper-
fect) input data, several regularization and optimization
methods have been developed. For this, most of the
methods described above incorporate the main orienta-
tion of the building and support orthogonal and parallel
structures.
An adjustment model that considers the building topol-
ogy to improve the shape of a building model is, for
example, proposed in [40]. In [52], global regulari-
ties are incorporated during the construction. This in-
cludes orientation and placement regularities between
two roof surfaces, parallelism and orthogonality be-
tween building outlines and the normal of their owner
planes, and regularities between two boundary edges in
terms of their height and position. In order to automati-
cally determine independent and consistent constraints,
a greedy algorithm is proposed in [6] while Grobner
bases are used in [29]. In [43] and [24], a refinement
of building models is proposed based on aerial images
from which building edges are detected and incorpo-
rated in the reconstruction process. An implicit regu-
larization process in the framework of MDL in combi-
nation with hypothesize and test (HAT) is, for example,
proposed in [22].

3 PROPOSED METHOD
Our method takes as input a set of clusters of 3D points
where each cluster corresponds to the roof of an indi-

Figure 2: Detailed workflow. A: input points; B: delin-
eated planar segments; C: Delaunay triangulation; D:
α-shape; E: roof outline; F: ridge lines triangles; G:
raw topological graph; H: simplified graph; I: polygo-
nal mesh.

vidual building or a set of adjacent buildings. It pro-
vides a 3D geometric and topological roof model where
each planar patch is represented by a flat polygon and
these polygons are consistently sewn together. These
models are suitable for the subsequent reconstruction
of polyhedral buildings by geometric extrusion or as an
initialization for model-based fitting approaches.

We follow the pipeline depicted in §1:

1. The planar roof segments are first extracted from
each cluster using a robust Hough-based normal es-
timator and a region growing approach.

2. Then, each cluster of 3D points is projected to the
xy-plan and its α-shape is built from its Delaunay
triangulation in 2D. The initial building outline, in
terms of edges, is extracted from the outmost trian-
gles. We extract roof ridge lines and corners directly
from the mesh using the set of triangles belonging to
two or three segments. This approach allows us to
build at first an accurate topological model (graph)
where each vertex corresponds to the intersection of
exactly three planar roof patches. Each edge cor-
responds to the intersection of adjacent planes and
each facet corresponds to a roof plane.
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3. Finally, we regularize the model by detecting the
step edges and ensuring the polygons planarity.

The rest of the section is organized as follows: §3.1
describes the plane detection step, then §3.2 explains
the model generation step, and, finally, §3.3 detailed the
model regularization step. Figure 2 provides a visual
representation of the method as a number of different
entities computed during the processing (A to I).

3.1 Plane detection
Our method for plane detection processes each build-
ing cluster individually and takes into account the co-
ordinates of the input points and the estimated surface
normal vectors. We used a robust Hough-based al-
gorithm provided by Boulch [7] which approximates
the tangent plane at each point by considering its 30-
neighborhoods. This method is particularly well suited
to our data because it does not smooth the normal vec-
tors at the intersection lines between adjacent planes.

Then, a Region Growing algorithm, provided by the
Point Cloud Library [35], is used to merge the points
that are close enough in terms of a smoothness con-
straint defined as the deviation between normals of the
points. In order to compute the Cartesian equation of
each detected planer patch, we compute the plane nor-
mal vector as the average of the normals of its points.

At the end of this step, each building cluster has its
points labeled with a value corresponding to the pla-
nar patch to which it belongs, as shown in Fig.2-B. In
addition, we keep the computed plane equations, as a
text file, which will be used in a next processing step.

3.2 Model generation
Based on the planar patch segmentation performed in
the previous step, this step deals with the construction
of a roof shape descriptor in the form of a graph con-
sisting of the roof’s outer edge, the ridge lines and their
mutual intersections, referred to as corners. It essen-
tially involves a surface mesh generation algorithm al-
lowing to build a triangular mesh connecting all the in-
put points which can then be used to extract the coarse
roof model. This initial model will be geometrically op-
timized during the last step, in order to deliver a valid
polygonal 3D roof model.

First, we project the input 3D points to the xy-plane by
ignoring the z coordinate. Then, we build the 2D De-
launay Triangulation of the points which is a mesh of
their convex hull and can be embedded in 3D, as shown
in Fig.2-C.

Since the building footprints are rarely convex poly-
gons, this initial mesh has to be carved from outside in
order to remove the triangles spanning the concave area.
This brings us exactly to the definition of the α-shape

Figure 3: On the left, dual ridge edges. The corner ver-
tices are in red, the connection vertex is in blue. On the
right, simplified ridges by removing ordinary vertices.

of the points which is usually computed from the De-
launay mesh by removing the triangles having an edge
longer than the parameter α > 0, [14]. Indirectly we
are performing a Delaunay sculpting approach as intro-
duced in [13] and [30].

In practice, we have implemented an erosion and
boundary discovery algorithm. It stats by constructing
the convex roof boundary as the list of outmost edges
(i.e. incident to only one triangle in the Delaunay
mesh). Then, it considers the shortest edge and checks
if it is smaller than the threshold value α . If yes, the
edge is kept and the algorithm continues with one of its
adjacent edges. Otherwise, the edge is removed from
the boundary list and is replaced by the two other edges
of the current triangle. The algorithm stops when all
the edges of the boundary list have been checked.

The most critical aspect of this algorithm consists in the
selection of an optimal value for the parameter α , since
it depends directly on point density and the desired level
of detail in the boundary extraction. Although there ex-
ist a recent attempt [38] to incorporate the density vari-
ation information in the algorithm in the particular con-
text of building modeling.

At this stage of the processing, we have a dense tri-
angular mesh which perfectly fits to the input data, as
depicted in Fig.2-D. Note that we keep the labels at
the vertices computed at the previous stage. They are
shown in different colors and indicate to which plane
each vertex belongs to. This information will be used to
discover the ridge lines and the corners between planes
of the polygonal model.

In addition, the mesh edges of the concave border are
also tagged with a specific value, their vertices are
shown in red in Fig.2-E. We assume that the building
footprint (outline) has only one connected component.
Otherwise, processing stops and the input building clus-
ter must be refined in order to correctly separate the var-
ious connected components.

In deferential geometry, the ridge lines are defined as
the locations of local extrema of the principal curvature
of the surface, whereas their intersecting corners are
locations where the principal curvature vanishes.
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In our particular case, the ridge lines are defined by the
intersection of two adjacent planar patches, while the
corners corresponds to the intersections of exactly three
of them. These topological features are easily accessi-
ble from the mesh as the set of triangles having more
than two different vertex labels, as shown in Fig.2-F.

This simple observation, allows us to design a robust
combinatorial algorithm in 2D which essentially con-
sists in a simple mesh traversal and does not use any
user-given parameters.

This is in sharp contrast with most of the concurrent
methods which usually relay on 3D geometrical com-
putations (adjacent planes searching, planes intersec-
tion infinite line computation, ridge line end points
searching, etc.) which are known to be tricky to be ro-
bustly implement with floating point numbers [10].

In addition, by choosing to work as long as possible
in 2D, we avoid many complex 3D configurations and
defer the consideration of height jump edges to the last
step of the workflow.

In practice, there is no technical difficulty to build the
topological graph from the mesh as far as the mesh is
encoded in an appropriate data structure, for example
the half-edge data structure [31, 25].

The algorithm starts by adding to the graph the vertices
and the edges of the outline border which have been
previously tagged in the mesh. Then it adds the dual
edges of the ridge triangles that have been previously
tagged (spanning two or three planes). This consists
in adding a vertex in the center of each triangle and
connecting the barycenters of the triangles that share
a common edge (see zoom in Fig.3). The algorithm
also records, for each graph vertex, an attribute com-
posed of the labels of the involved planes. In 2D, there
are three possible configurations, as follows: If a ver-
tex has exactly three labels, it is tagged as a corner and
will be locked up and kept forever in the graph. If a
vertex has exactly two labels, it is an ordinary vertex
and could be removed during the optimization step. If a
vertex has a unique label, it is a connection vertex and
must be preserved. It is connected to the outline border
by projecting it to the closest boundary edge (which is
necessarily one of the edges of the triangle it belongs
to) (see zoom in Fig.3).

The resulting raw topological graph is shown in Fig.2-
G where the corner vertices are depicted in red, while
the connection ones are in blue. The ordinary vertices
are not highlighted for better visibility but the edges be-
tween them are drawn in blue.

Notice that, at this stage of the processing, the topologi-
cal graph is composed of many small edges which have
been extracted from the dense α-shape mesh. How-
ever, we are able to anticipate the model optimization
by simply removing all ordinary vertices, which allows

Figure 4: Model regularization step. Top row: input
points as seen from above and corresponding 2D poly-
gons after the simplification. Bottom row: side view
of the original input points and the regularized model.
Red dots show the vertices that were duplicated.

is to already simplify the internal ridge lines, as shown
in Fig.3.

3.3 Model regularization
The model computed by the previous steps already has
the correct topology but needs to be geometrically op-
timized to become an acceptable roof model. First we
need to simplify the polygon boundaries, then we have
to deal with the planarity constraint as well as the de-
tection of height skip lines.

There are several methods in the literature to simplify
polylines. While Douglas-Peucker’s algorithm [12] is
the best known, we have implemented Visvalingam’s
algorithm [47], because it is more efficient. The idea is
very simple: we gradually remove points with the least-
perceptible change, as in [34].

We have a polygonal (non-planar) mesh and the Carte-
sian plane equations. Each vertex of our model to be
regularized is incident to one, two or three facets. Ac-
cording to the connectivity we move the vertices:

• One incident facet: we project it onto the corre-
sponding plane.

• Two incident facets: we project it onto the intersec-
tion line.

• Three incident facets: we move it into the intersec-
tion of the corresponding planes.

While the projection is conceptually simple, care must
be taken. Refer to the bottom left image of the Fig. 4 for
an illustration. Yellow and blue planes do not intersect
each other, yet the 2D α-shape is not aware of that.

Consider the vertices highlighted in red in top right im-
age of the figure; if we project them onto both planes
simultaneously, we get an inconsistent result. Fortu-
nately, it is very easy to detect this inconsistency.
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Gross density Average density Beam divergence Accuracy x, y Accuracy z Mean distance between points

28 pts/sqm 30 pts/sqm 0,25 mrad 10 cm 6 cm 20 cm

Table 1: Lidar parameters.

Indeed, an inconsistency can be detected thanks to the
distance between the original position of the point and
its possible new position. If this distance exceeds a cer-
tain threshold then it’s an inconsistency. If the incon-
sistent point has a valence of three, then among the ad-
jacent planes, we identify a pair of planes that appear
to be the most parallel (the ones that will generate the
greatest inconsistency). And we duplicate the point so
as to separate the two planes. If it has a valence of two
then we simply duplicate the point and separate the two
planes as shown in the bottom right image. So, the reg-
ularization step can be seen as the following loop:

1. project all vertices onto the corresponding planes;

2. if there are no inconsistent configurations, stop;

3. else duplicate the inconsistent vertices and go to the
projection step.

The remarkable aspect here is the fact that our algo-
rithm detects and recovers the inconsistencies that cor-
respond to the step edges (height jump lines). The step
edge detection is a hard problem and our combinato-
rial approach is more robust than the geometry-based
algorithms like 3D α-shape or snapping outlines of in-
dividual roof panes. Fig. 5 presents some examples of
the regularization algorithm.

4 EXPERIMENTAL RESULTS
Data set description
The data set used in our tests was captured over
Breuschwickersheim of the Eurometropolis of Stras-
bourg in France using the LMS Q780 Riegl laser
scanner (see Tab. 1). It covers an area of approximately
1000 m×1000 m.

The classification of the point cloud is obtained dur-
ing the acquisition by return wave analysis. From this
classification, we were able to extract a set of 2.5M
points corresponding to the building roofs of the en-
tire area (Fig.1). This single point cloud has been fur-
ther delineated into clusters corresponding to individ-
ual buildings. We obtained 445 clusters using the Eu-
clidean Cluster Extraction algorithm provided by the
Point Cloud Library [35]. Any other clustering algo-
rithm could be used for this purpose. Each resulting
cluster corresponds to the roof of a single building or
a set of adjacent buildings (Fig.1). Note that, in very
densely built-up areas, the latter configuration may be
the norm and no automatic tool can determine a limit

between neighboring buildings if there is no gap be-
tween them, without cadastral information. Since we
are not interested in the problem of building detec-
tion, we assume that the building delineation is correct.
We have kept the large clusters as they were delivered,
without cutting them manually. This allows us to pro-
vide reasonably challenging inputs to our roof model-
ing method, presented here.

As a reference data, a human operator has built man-
ually the polygonal models for every cluster shown in
Fig.1 using the RhinoCapture software [39]. An exam-
ple of a reference roof is given in Fig. 6.

Figure 5: Models with step edges. First column: anno-
tated points; Second column: topological graph; Third
column: model after regularization.

Figure 6: Left: labeled input point set; Middle: man-
ually constructed roof model; Right: automatic recon-
struction.
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Cm Cr Ql

Mean 94.0 92.7 90.8

Median 100 100 100

First quartile 91.2 89.6 80.8
Table 2: Accuracy assessment of the plane detection
over the entire data (445 building clusters).

Quantitative evaluation
We have used the evaluation system proposed in [42, 3]
which assumes that the roofs are represented by polyg-
onal models and each individual roof consists of a set of
flat planes. We have carried out an object-based evalu-
ation at plane level since, let us recall, our method ad-
dresses only the problem of roof modeling by detecting
planes in already segmented building clusters.

In object-based evaluation, completeness (Cm), correct-
ness (Cr), and quality (Ql) are estimated by counting the
number of true positive (T P), false positive (FP) and
false negative (FN) planes in the extracted results, as
follows : Cm = T P/(T P+FN), Cr = T P/(T P+FP)
and Ql = T P/(T P+FN +FP). Ideally, these values
should be maximum at 100%. The completeness indi-
cates the detection rate and is the percentage of entities
in the reference data that were detected. The correct-
ness indicates how well the detected entities match the
reference data and is closely linked to the false alarm
rate. The quality provides a compound performance
metric that balances completeness and correctness.

As depicted on Table 2, the average completeness, cor-
rectness and quality metrics, computed on the entire
dataset (445 clusters of buildings), were respectively
94%, 92.7% and quality 90.8%.

In addition to these quantitative results, qualitative anal-
ysis is also presented via visualization (see Fig.7).

Table 3 gives detailed evaluation metrics for the clusters
depicted in Fig.5, Fig.7 and Fig.8. All of the clusters
corresponding to individual buildings were perfectly re-
constructed (see Fig.7). Large clusters corresponding
to adjacent buildings were also correctly handled (see
Fig.7:#10,#23). In the case of clusters presenting step
edges (Fig.5), some true planes were missed and some
roof planes were wrongly constructed. The last four
clusters (Fig.8) are considered as fail cases which are
mainly due to poor plane segmentation.

Discussion
The proposed method strives for building roof models
with a level of detail LOD2, as defined in the CityGML
standard [18]. This means that we look for a detailed
roof structures without superstructures (e.g., chimneys,
dormers, etc.).

Figure 7: Resulting models for 8 clusters.

The small roof superstructures such as chimneys, anten-
nas and various noisy components are mostly removed
by the plane segmentation algorithm (step 1).

However, some small roof extensions and detail
roof structure were correctly modeled as shown in
Fig.7:#105.

The dormers are roof elements defining small planes
which are topologically inside the primary roof planes.
Large dormers are recognized and accurately delineated
by our step 1 algorithm, as shown on Fig.7:#53. But
these structures are usually removed by the model gen-
eration algorithm (step 2).
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# #ref T P FP FN Cm Cr Ql

92 2 2 0 0 100 100 100
105 5 5 0 0 100 100 100
69 3 3 0 0 100 100 100
70 7 7 0 0 100 100 100
115 6 6 0 0 100 100 100
53 7 7 0 0 100 100 100
23 8 8 0 0 100 100 100
10 18 18 0 0 100 100 100

13 13 13 1 0 100 92.9 92.9
30 9 8 0 1 88.8 100 88.8
37 13 11 1 2 84.6 91.7 78.6
28 19 18 1 1 94.7 94.7 90

151 7 7 4 0 100 63.6 63.6
214 3 3 2 0 100 60 60
215 9 8 0 1 88.9 100 88.9
256 2 2 1 0 100 66.7 66.7

Table 3: Detailed evaluation metrics for the roofs in
Fig.7, Fig.5 and Fig.8.

Let us recall that our model generation algorithm works
in 2D, which allows us, on one hand, to design a ro-
bust combinatorial algorithm avoiding many 3D prob-
lems, on the other hand, to postpone the 3D embedding
problems due to height jumps. This makes our method
able to handle roofs with simple geometry quite effi-
ciently. For simple flat, gamble and hip roofs, the al-
gorithm achieved 100% completeness, correctness and
quality. Our data contains 40% of this kind of structure.
For cross-fipped, cross-gabled, hip and valley and inter-
secting roofs, the method achieved 98% of perfect mod-
els. These shapes constitute about 30% of our dataset
(Fig.7). As show on Fig.5, most of the complex struc-
tures with height jumps are correctly optimized by our
model regularization algorithm. The remaining 30%
are complex structures, 20% of them are successfully
handled and the resulting models are acceptable for fur-
ther use (see Fig.7:#10,#23), while 10% of our data are
real failures which are mostly due to poor plane seg-
mentation, as shown in Fig.8.

5 CONCLUSION
In this paper we propose a new workflow for the recon-
struction of building roofs from pre-classified LIDAR
point data. The method takes as input a cluster of 3D
points corresponding to the roof of an individual build-
ing. It delivers a 3D polygonal model where each pla-
nar roof patch is represented as a flat polygon and their
ridge and corner intersections are topologically consis-
tent. The main contribution is a combinatorial approach
that is more robust than the geometrical methods trying
to snap intersection lines. Having the combinatorial in-

Figure 8: Examples of failure cases due to incorrect
plane segmentation.

formation, we easily reconstruct step edges during the
regularization phase.

Experimental testing has shown that the proposed
pipeline successfully deals with challenging input data.
It achieves a plane detection rate of 94% and a quality
rate of 90%.

We believe that the resulting models will be suitable for
further polyhedral building reconstruction through geo-
metric extrusions, for example. Moreover, they could
also be useful for the initialization of model-driven
methods for roof modeling.
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