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Figure 1: Exemplary results of the presented approach: input image (left), vectorized result of toon stylization
(middle), and vectorized result of half-tone stylization (right).

ABSTRACT

This paper presents a new approach for the vectorization of stylized images using intermediate data representations to interface
image stylization and vectorization techniques. It enables the combination of efficient GPU-based implementations of interac-
tive image stylization techniques and the advantages of vectorized image representations. We demonstrate the capabilities of
our approach using half-toning and toon stylization techniques.
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1 INTRODUCTION
1.1 Motivation
Image stylization techniques (e.g., half-toning [3] or
toon [14]), and their applications offer users the op-
portunity to express their creativity and increasingly
attracted attention during recent years. There are nu-
merous stylization techniques that operate on raster im-
ages. Often, these can be implemented efficiently using
Graphics Processing Units (GPUs). However, with re-
spect to viewing or reproduction (e.g., for printing pur-
poses), the resulting raster images are limited due to
their limited spatial resolution.

In contrast thereto, vector images or graphics can
be easily rasterized to required resolutions. However,
their creation, editing and manipulation is often a cum-
bersome task. This work aims at combining efficient

*These two authors contributed equally

GPU-based implementation for image stylization and
the advantages of vector-based presentations of their re-
sults (Figure 1).

1.2 Problem Statement

Vectorization techniques use raster images as input and
generate a respective output vector image based on user
defined settings such as number of colors and respective
thresholds. Thus, their output often differs with respect
to the number of colors being conveyed and the number
of polygon required to represent image features such
as colored areas or edges. However, they do not take
information about the respective stylization technique
into account (e.g., regions of unified color, edges, etc.).
This often impacts the visual and data quality of results
(e.g., high number of polygons or no explicit edge rep-
resentations) and can lead to imprecise presentations of
the stylization to be achieved (Figure 3).
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Figure 2: Comparison between a common vectorization approach (a) and the concept of stylization-specific inter-
mediate representations (b).

To counterbalance this, vectorization would require
high-resolution input data to convey fine features. Sub-
sequent editing or animation of vectorization results,
e.g., changing half-tone elements or its size and ori-
entation, is hard or would require to perform styliza-
tion and vectorization repeatedly, which can be a te-
dious process. Thus, to support fast image stylization
and high-quality vectorization results, it seems promis-
ing to research intermediate representations that encode
specifics of the respective stylization approach and fa-
cilitate representation and manipulation of the vector-
ized results.

1.3 Approach and Contributions
Using the naive method, the raster image is read in
with the custom parameters for a stylization technique,
which creates a stylized image. The stylization output
is again represented as a raster image and serves as the
subsequent input image for vectorization that generates
the final vector image. However, this vectorization is
performed without any prior information describing
the nature of the stylization. Instead of directly ap-
plying the stylization to an input image, our approach

(a) Input raster image
(1440×1920 pixels)

(b) Inkscape vector-
ization (12 colors)

(c) Proposed ap-
proach (114120
elements)

Figure 3: Comparison of vectorization results of a half-
toned input image (a). Using the method of (b), the
input image was vectorized with Inkscape yielding half-
tone elements that can hardly be recognized. With the
method of (c), the element’s position, size, and color is
defined by an intermediate representation that is used
for its instancing during vectorization.

encodes a stylization-specific raster-based intermediate
representation that is used to generate vector images,
subsequently. Such representations acting as “data
maps” are suitable for fast GPU-based processing and
facilitate interactive applications.

To summarize, this paper makes the following contri-
butions:

(i) Concept for generating intermediate representation
in order to create a vector image of a stylization ef-
fect.

(ii) Minimal adaptation of existing effect pipelines and
their rendering passes with shader programs to use
the raster-based outputs as basis for vectorization.

(iii) Provision of parameters for interactive modification
of vectorization, which we demonstrate by styliza-
tion effects such as toon and half-tone filter.

The remainder of this paper is structured as follows.
Section 2 reviews related work with respect to vector-
ization approaches in general and specific to stylized
images. Section 3 presents the basic concept of our ap-
proach as well as implementation details specific to two
exemplary image stylization techniques. Section 4 dis-
cusses the presented approach and Section 5 concludes
this paper.

2 BACKGROUND
Antoniou et al. [1] has pointed out the inflexibility of
raster image formats and describes a conversion of such
into XML-based structure like Scalable Vector Graph-
ics (SVG) files. While raster images are based on
pixels, in an XML-based environment elements such
as points, lines or polygons can be reused. However,
this approach only describes how to convert each pixel
directly into a rectangle and thus does not use other
shapes.

Further, Olsen and Gooch introduced an edge-based
image reconstruction method that extracts vector edges
using tracing, which can be applied on photographs [8].
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(a) Intermediate representation (adjusted) (b) Vector image using a dot element (c) Vector image using a flower element

Figure 4: Comparison of the intermediate representation (a) and two vector images (b) and (c). Each pixel of (a)
encodes element color, size, and position.

The result is a vector image in grayscale, which is qual-
itatively well done, but this simplification does not in-
clude the color details from the original image. With
respect to this, they showed that the vector-based im-
age representation can be more memory efficient than
raster images.

Noris et al. [7] present a vectorization method for
raster images of line drawings with a focus on junc-
tion configurations. It produces a vectorization repre-
sentation of the lines, but these have all the same width.
Additionally, small details are not be captured by the
topology extraction and the method needs solid color
areas in the input image. Our approach allows the ex-
traction of line widths from the input image and thus
lines of variable width.

Simo-Serra et al. [13] focused on simplify sketch
drawings and trained a convolutional neural network
with a new data set of pairs of rough and simplified
sketch drawings. The network provides a clean vector
result out of a raster image with a rough pencil sketch.
Their approach establishes the state of the art in sketch
simplification. Additionally, the computation time us-
ing the GPU-based model achieves times under a sec-
ond. Unfortunately, the approach depends on the qual-
ity and quantity of the training data. Furthermore, only

Figure 5: Half-tone image with multiple different ele-
ments (’W’,’S’,’C’,G’) at once.

line drawings are recognized, but no color areas or other
compositions of an image. Therefore, this method is
not suitable for vectorizing complex image stylization
effects.

Xie et al. [15] treats vector images in an artistic way
and promote the user to guide the vectorization inter-
actively. For this purpose, the possible edges are cal-
culated at first and the user then decides which ones
should be used. In addition, the user can also draw
edges or modify edges. The colors have to be applied
manually, so there is no recognition of colored areas.

Favreau et al. [6] present a vectorization algorithm
for photographs into cliparts based on stacking col-
ored polygons. These layers are either opaque or semi-
transparent and are faded to give the final result. But a
segmented image is used as input, which must be cre-
ated manually to generate a more stylized clipart.

Faraj et al. [5] explores the geometrical structure of
an image to perform local operations like replacing or
rotation. For it, a topographic map is used, which
has a hierarchical order of color shapes in stacked lay-
ers [2]. Thus, this work can be considered as an image-
abstraction method, which does not store the recog-
nized mathematical forms in a vector image but in a
tree. So this work is limited to the few operations that
are offered. Our approach, however, saves all recog-
nized components as SVG and can therefore be manip-
ulated with common editing tools.

Several papers focus on image vectorization by de-
tecting edges and shapes. Most of these works are lim-
ited to the color variety or only line vectorization. Both
aspects are considered in our approach and are espe-
cially important for e.g., the toon effect. Moreover, our
approach deals with the composition of stylization ef-
fects and examines the structure of effects in order to
create the best possible generation of a vector image
variant with the effect.

The previous works would try to generate a vector
image from an input image with applied stylization ef-
fect. Thus the recognized areas and lines are vectorized
independently of the applied style and the vector image
is not sustainable. Possible later editing of this image
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Figure 6: Comparison between a raster image half-toning pipeline (a) and our slightly modified vectorized ap-
proach (b).

e.g., replacing of elements by half-toning would be very
complex or not possible (see Figure 3b).

3 VECTORIZATION CONCEPT
3.1 GPU-based Image Stylization
In order to access different intermediate steps of a styl-
ization effect to be used for vectorization, a system
is required where a stylization effect is divided into
individual sub-steps, which can be combined as de-
sired. Our approach is based on the work of Semmo
et al. [12], which provides a GPU-based framework for
complex image stylization effects and was also used
for ProsumerFX [4]. It consists of three components,
which are explained below:

Effect pipeline: An effect pipeline defines the individ-
ual steps that are applied to an input image to pro-
duce an output image at the end.

Effect: A single step of the effect pipeline is an effect
(e.g., difference-of-Gaussians filter [14]). This ef-
fect can have parameters that can be adjusted by the
user.

(a) Half-tone vector image with-
out sub pixel offset

(b) Half-tone vector image with
sub pixel offset

Figure 7: Comparison of the half-tone stylization with
and without sub pixel offset. Without it the rounding
to whole pixel positions can create error patterns which
are visible in the output (a). The use of the offset tex-
tures increase the positional resolution enough to elim-
inate the error patterns (b).

Rendering pass: For the execution of the effects the
rendering passes are needed, which are available as
shader programs or C++ code.

3.2 General Approach
Figure 2 shows a comparison between a common vec-
torization approach (a) and the proposed one (b). While
common vectorization of stylized images is performed
by applying a stylization technique to an input image,
resulting in a stylized raster image that is converted to a
vector image using tracing [11]. In contrast thereto, our
approach comprises the following main components:

Data Encoder: The encoder basically implements the
image stylization technique and generates the inter-
mediate data specific to this technique. Therefore,
it reads in the image data and user parameters and
executes the GPU-based stylization.

Intermediate Representation: The intermediate data
represents the major components of the stylization
Gestalt (e.g., colored areas edges, half-toning ele-
ments) and is represented using textures. These dif-
ferent textures can have different channel counts,
do not necessarily have to have the same resolu-
tion as the input image, and can be obtained us-
ing render-to-texture in combination with multiple
render-targets.

Vectorizer: A stylization-specific vectorizer receives
the intermediate representation with user parame-
ters and generates a final vector image. This makes
it possible to separate the vectorization into sub-
steps: thus, different components of the effect can
be vectorized separately and then merged for the re-
sult. This approach enables to generate an specifi-
cally structured vector image for the respective styl-
ization. To allow easy reuse of data encoders and
vectorizers we integrated these as image processing
passes into a modular system. These components
can be combined with different image preprocessing
steps to create new image stylizations.

In the following, we describe how these three compo-
nents can be adapted to different stylization techniques.
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(a) Half-tone vector image with
no rotation applied to the ele-
ments

(b) Half-tone vector image with
random rotation applied to the el-
ements

Figure 8: Comparison of aligned and randomly rotated
halftone elements. Aligned half-tone elements with an
recognizable orientation introduce noticeable patterns
(a). This can be avoided by randomly rotating the ele-
ments (b).

3.3 Half-toning Vectorization
Half-toning is a common reproduction technique for
photography in printing, where the continuous tones of
the images are represented by full-tone dots of varying
size, shape, and density [3]. For the printing medium,
usually the Cyan-Magenta-Yellow-Key (CMYK) col-
ors are used for the point-data, which are mixed sub-
tractively. This image style can be recreated perfectly
with SVGs since it requires only single colored shapes,
which can easily be represented in the SVG format.

Effect Pipeline. The original pipeline consists only
out of one step. This is a GLSL shader getting a raster
image and some parameters as input and outputting
a raster image with the half-tone effect applied (Fig-
ure 6a). In our pipeline the shader is slightly mod-
ified and becomes the data encoder and its output is
the intermediate representation. Furthermore, as a new
step, a vectorizer is added, that reads the intermedi-
ate representation and generates the SVG output (Fig-
ure 6b). Vectorization for half-toning stylization can
be achieved by implementing these components as fol-
lows.

Data Encoder. We use a variation of a single-pass
GLSL shader-based half-tone stylization. Here, the in-
dividual elements constituting a half-tone stylization
are not rendered directly into a raster image, but the
determined element positions, colors, and sizes are en-
coded in three textures.

Usually the half-tone shader would determine for
each pixel the position of the closest half-tone element
center and the size of this element. This information
is than used to determine if the examined pixel is in-
side the element radius and colored accordingly. This

(a) Line thickness modulated
multi channel image

(b) Line thickness modulated sin-
gle channel image1

Figure 9: Color intensity modulated using line thick-
ness instead of shape size.

is done for each of the color layers (usually cyan, ma-
genta, yellow and black). In our modification we only
set the value if the pixel is less then half a pixel away
from the center, therefore only modifying the pixel at
the center of the element. Also instead of choosing the
color dependent on the half-tone color that is processed,
this just determines which texture channel is written to,
as described in the next paragraph.
Intermediate Representation. This is a set of three
textures with pixels of different colors (Figure 4a). The
color of the half-tone element is determined by the color
channel where the red, green, blue and alpha channels
represent the cyan, yellow, magenta and black channels
respectively. The half-tone element size is determined
by the intensity of each pixel in the corresponding chan-
nel in the first texture. Pixels with a value of zero do not
represent an element. The position of the half-tone el-
ement is determined by the position of the pixel. To
improve the positional accuracy and therefore prevent
artifacts introduced by rounding to a full pixel position,
we use the other two textures. These encode a sub-pixel
offset in the x- and y-direction respectively (Figure 7).
This increase in resolution allows us to decrease the ac-
tual resolution of the three intermediate textures. The
resolution of the three textures is not dependent on the
input image but on the half-tone frequency. The resolu-
tion must be big enough that two elements of the same
color layer do not correspond to the same pixel position.
Vectorizer. This outputs an SVG for further editing.
First, half-tone elements are generated using a template
(cf. Line 5 in Listing 1). Following to that, a group
element (<g>) is created for each of the CMYK color
channels. Inside these, instances of the template are
created for each of the non zero pixels in the main tex-

1 Depending on the used PDF viewer it might be necessary to zoom
this figure to full screen size.
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(a) Half-tone vector image with the color space CMYK for the half-
tone elements.

(b) Half-tone vector image with the color space RGB for the half-tone
elements.

Figure 10: Comparison of the CMYK and RGB color spaces for the halftone elements. Images with a high black
content would have to generate a lot of black halftone elements (a). It is easier to change the color space, since
black is the basis for the RGB color space (b).

ture (<use>). The position and intensity of the pixel
is used for the transformation, which consists of a scal-
ing and a shift. The x- and y-offset textures are used for
fine adjusting the position. To achieve the characteristic
subtractive color mixing, the SVG blending mode is set
to multiplication (Line 2) and applied to the respective
color group. For wider support of display and editing
tools the blend mode is specified using the comp-op
attribute and Cascading Style Sheet (CSS) styling.

Figure 3b shows the vectorization result of a styl-
ized half-tone image (Figure 3a) in a common way us-
ing Inkscape. For comparison, Figure 3c shows that
the appearance of half-tone elements can be conveyed,
yielding high-quality visual output. The common vec-
torization achieves only colored areas that do not repre-
sent the half-tone elements sufficiently. Using the blend
mode for creating the mixed color areas instead of cre-
ating separate shapes for the overlapping areas, we can
save calculation time and decrease the file size. This
also allows users to modify the resulting SVG more in-
tuitively because the shapes of the half-tone elements
are still intact and can be manipulated as a whole.

1 <svg width="1280" height="484" ...>
2 <style>.blend{mix-blend-mode: multiply;}</style>
3 <g>
4 <g opacity="0">
5 <g id="element"> <!-- Graphical element to re-use -->
6 <path transform="..." d="m 0.0,-0.5 ..."/>
7 </g>
8 </g>
9 <!-- Cyan color group -->

10 <g fill="#0ff" comp-op="multiply" class="blend">
11 <use xlink:href="#element" transform="..."></use>
12 <use xlink:href="#element" transform="..."></use>
13 ...
14 </g>
15 <g fill="#f0f" comp-op="multiply" class="blend">...</g>
16 <g fill="#ff0" comp-op="multiply" class="blend">...</g>
17 <g fill="#000" comp-op="multiply" class="blend">...</g>
18 </g>
19 </svg>

Listing 1: Exemplary structure of a SVG re-using
elements to represent the results of an half-tone
stylization.

The usage of an instanced template decreases the
overall file size for half-tone elements more complex
than a circle. This also allows the user to modify the
shape of all the elements at once by just editing the
template. Actually instancing the group containing the
shape even allows swapping the shape for an entirely
new one easily. Also, the reference for all the ele-
ments does not always have to refer to the same tem-
plate and thus displaying different elements at once is
possible. Figure 5 shows how four templates are dis-
played at once, which have the four letters "W", "S",
"C" and "G" defined as path. Not only the reference can
be changed, also the transformation matrix. Thus each
element can be rotated as desired. This has the ben-
efit that the grid structure is not immediately visible.
Figure 8a shows that the half-tone element of a heart
reveals the direction of the grid through its tip, but by
random rotation the grid is no longer recognizable. Fur-
thermore, the scaling in the transformation matrix can
also be adjusted. Thus, the size can be easily changed
for all elements and allows the user to define the size
according to his own perception.

It is also possible to make all elements the same size
and allow intensity modulation through the outlines of
the elements. Therefore, the fill is changed to transpar-
ent and the stroke width is scaled differently. Figure 9a
shows how even a complex half-tone element can ex-
press the intensity through the line thickness and Fig-
ure 9b shows this with a circle as half-tone element.
Currently, the color space CMYK is used with a sub-
tractive blend mode. This can also be changed to addi-
tive and the color space Red-Green-Blue (RGB). For
this purpose, the SVG blend mode must be changed
from multiply to lighten and the shader of the render-
ing pass must use the color space of RGB instead of
CMYK, accordingly. Also only certain color channels
can be displayed. For this purpose, the grayscale rep-
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(a) Raster image approach as abstract overview of the 29 rendering passes based on Semmo et al. [12]
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(b) Our vectorized approach

Figure 11: Comparison between a raster image toon pipeline (a) and our slightly modified vectorized approach (b).

resentation of the image is used for the intensity value.
There are many ways to generate a grayscale represen-
tation, e.g., using the brightness value per pixel. Fig-
ure 10 shows how the respective color components can
also be displayed individually. The frequency can be
adjusted by the user for the level of detail of the dis-
play. A higher value means that the grid for the color
channels has a higher resolution and therefore more el-
ements are displayed.

In addition to the many interaction possibilities, the
SVG structure allows easy access to a representative
element. Thus, further modifications, e.g., using
JavaScript, are possible to animate the elements.

3.4 Toon Vectorization
Toon stylization [14] is a typical representative for im-
age abstraction techniques, e.g., for expressing carica-
ture drawings. This image style is a good candidate for
vector image representation because it is composed of
mostly uniform colored shapes as well as lines, which
both are geometric primitives of SVG.
Effect Pipeline. The original pipeline already con-
sists of several steps. The underlying GPU-based effect
pipeline based on Semmo et al. [12] for toon styliza-
tion calculates two parts from an input image. On the
one hand an edge detection is performed with the ex-
tended difference-of-Gaussians and on the other hand a
color quantization based on local luminance in the LAB

(a) Input raster image
(1280×1920 pixels)

(b) Inkscape vector-
ization (11 colors)

(c) Proposed ap-
proach

Figure 12: Comparison of the vectorized results for a
toon effect (a). In method (b), the stylized image was
vectorized with Inkscape. In method (c) the intermedi-
ate representation was used to generate a vectorized re-
sult, which has a typical toon color area and the edges
are paths with individual line width.

color space. These two partial results are merged again
for the output (Figure 11a). In our pipeline the result
of the edge detection is passed to a thinning step. The
thinned edges are then used for the edge vectorization.
Additionally, the quantized color data is used for an
area vectorization. Instead of blending the intermedi-
ate results pixel based, the two vectorization results are
merged to create the final vector image (Figure 11b).
Data Encoder. We use the output of the multi-pass
stylization technique to generate on the one hand a styl-
ized color quantized raster image and on the other hand
an edge raster image from the input. Usually these two
images would be blended on a per-pixel basis to gener-
ate the stylized output image. The edge image is addi-
tionally passed through a thinning pass to create lines
of one pixel thickness.
Intermediate Representation. Two textures are used
to represent the stylization outputs for subsequent vec-
torization: (1) a RGB texture stores quantized colored
areas and (2) a luminance texture stores edge data. The
edge data contains a Boolean (Figure 13b), whether an
edge exists at the pixel and another value, how thick the
edge would be at the location. To calculate these values
the rendering pass is used, which creates the edge image
for the toon stylization. This is used as the input image
to perform a thinning [9, 10]. Thereby the edge widths
in the image are always reduced by one pixel from out-

1 <defs>
2 <inkscape:path-effect
3 end_linecap_type="round"
4 scale_width="1"
5 miter_limit="4"
6 linejoin_type="round"
7 start_linecap_type="round"
8 interpolator_beta="0.2"
9 interpolator_type="CentripetalCatmullRom"

10 sort_points="true"
11 offset_points="0,9.5| 1,2.5 | 2,9.5"
12 lpeversion="1"
13 is_visible="true"
14 id="path-effect998"
15 effect="powerstroke" />
16 </defs>
17 <path
18 id="CPUVectorizeEdgePassProcessor998"
19 style="fill-rule:evenodd"
20 inkscape:path-effect="#path-effect998"
21 fill="rgb(0,0,0)"
22 stroke="none"
23 stroke-linecap="round"
24 inkscape:original-d="M 79 9.5 Q 74.1 1.8 68.5 1 L 67 4.5"
25 d="m 87.014,4.399 c 0,0 0.411,0.350 0,0 C 85.193,2.849

81.295,0.691 77.096,-0.392 73.863,-1.227 70.964,-1.173
68.853,-1.474 a 2.5,2.5 15.554 0 0 -2.651,1.490 c
-0.5,1.166 -6.611,0.618 -7.934,0.742 -0.180,0.016 0,0 0,0 A
9.5,9.5 90 0 0 75.731,8.242 c 0,0 0.112,0.142 0,0 C
74.909,7.199 70.297,3.151 70.797,1.984 l -2.651,1.490 c
1.338,0.191 2.260,1.885 2.607,3.967 0.428,2.568 0.093,5.734
0.231,7.157 0.033,0.349 0,0 0,0 A 9.5,9.5 90 0 0
87.014,4.399 Z" />

Listing 2: Definition of offset points in Inkscape to
apply this effect to a path via the Id.
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(a) Thresholded
edge-pass texture
(720×1080 pixels)

(b) Edge texture after
thinning

(c) Distance data
used for local line
thickness

Figure 13: Edge preprocessing for the toon stylization.
The edge pass from the toon effect is thresholded to cre-
ate a binary image (a). This is than thinned iteratively
to yield the edge skeletons (b) necessary for the vector-
ization. During the thinning the shortest distance from
outside the to the middle is determined (c).

side to inside during an iteration until only one-pixel
thick skeleton results (Figure 13b). Thus, the number of
times a pixel has been deleted is saved as distance data
in the resulted skeleton and this value can be used later
to reconstruct the actual width of the line (Figure 13c).
Vectorizer. This consists of three components: a area
vectorizer for colors, a edge vectorizer, and a merger.
The area vectorizer generates colored polygons from
separate quantized color-areas using a standard vector-
ization approach2. The edge vectorizer generates paths
based on the edge image. This is performed by first cre-
ating paths with one node per pixel and than simplifying
the path using line and curve segments where possible.
The resulting nodes read the actual width from the lu-
minance texture. This can then be used for the varying
line thickness of a path. The SVG standard does not
support varying line widths, but there is a proposal for
this3. However, the most common vector graphics ed-
itors e.g., Inkscape and Adobe Illustrator support the
display of this. In our approach, we have exported the
results for display in Inkscape. For it, we set the path
effect powerstroke. This requires offset-points (List-
ing 2), where the first value is the position on the path
(e.g., 0 for the first node, 1 for the second node, etc.)
and the second value is the distance from the node, the
value we got during the thinning process.

Finally, the merger combines the two partial results to
an SVG (Figure 12c). Figure 14b and Figure 14c show
the difference and added value achieved by varying path
thicknesses. This option has advantages over previous

2 https://github.com/jankovicsandras/
imagetracerandroid/blob/master/process_
overview.md

3 https://www.w3.org/Graphics/SVG/WG/wiki/
Proposals/Variable_width_stroke

(a) Combined color
and edge layer of
the raster sylization
(720×1080 pixels)

(b) Vector output
with average line
width per path

(c) Vector output
with dynamic line
width along paths

Figure 14: Different line width representations. In the
raster based stylization the line thickness can vary along
the line (a). The SVG standard (1.1) does not include
a way for varying line thickness along a path. There-
fore the width information can only be used to set the
thickness to e.g., the average (b). Vector graphic editors
like Inkscape support dynamic stroke widths with there
own extinctions and therefore allow for a higher degree
of detail (c).

work, where only paths of constant thickness could be
created.
Figure 12a shows an exemplary raster-image output of
the toon stylization technique. By using the common
method, both color areas and edges are represented
as colorized polygons in the final vector image (Fig-
ure 12b). In contrast thereto, our approach handles col-
ored areas and edges separately by creating line paths
on top of polygons (Figure 12c), which can be edited
individually. This technique is closely related to how
vector artists work, namely creating different layers for
different elements of the image like the line and color
layer. This also allows for easy manipulation of all the
lines or shapes at once (e.g., changing the thickness or
color). Also by including the outlines as paths in the
SVG they can be edited as such e.g., path patterns or
stylizations can be applied.

4 DISCUSSION

4.1 Performance Evaluation
We tested the run-time performance of prototypical ap-
plications of our approach to two stylization techniques
with respect to the following resolutions: 1280× 720
(HD), 1920 × 1080 (FHD), 3840 × 2160 (4K), and
7680× 4320 (8K-UHD) pixels. The performance tests
were conducted using a NVIDIA GeForce GTX1080Ti
GPU with 12 GB VRAM on a Intel i7 CPU with
3.7 GHz and 32 GB RAM. We used two different
input images with different level of detail in the form
of existing edges and number of colors (Figure 15).
Measurements are averaged over 100 runs per input
image (Table 1).
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(a) Low detail raster image used
for performance test.

(b) Split view of toon and half-tone
vector outputs of the low detail im-
age.

(c) High detail raster image used
for performance test.

(d) Split view of toon and half-tone
vector outputs of the high detail
image.

Figure 15: Images used for the performance test. Image (a) has very little detail. Image (c) on the other hand has
a lot of details.

One can observe an increase of run-time with respect
to the (1) input image resolution, (2) the complexity of
the stylization techniques, (3) the number of vectoriza-
tion passes, and (4) level of detail. For simple single-
pass stylization techniques such as half-toning, which
yield only a single vectorization pass, interactive frames
rates could be achieved. Additionally, this image styl-
ization technique is independent from the level of detail
in the input image.

However, for more complex stylization techniques
that yield multiple vectorization passes, the resulting
performance is below interactive constraints for input
resolutions greater than High Definition (HD). Further-
more, the level of detail affects the running time of the
complex toon effect. An input image with more edges
and colored areas leads to slower performance espe-
cially for the tracing step. Thus, this effect takes almost
double the time with a more detailed image as with a
less complex one. This is mainly due to the higher num-
ber of steps for thinning and also a higher quantity of
path effects that have to be generated for the individual
line thicknesses.

4.2 Image Stylization Representation

Our approach to use intermediate representations to
create stylized vector images was successfully demon-
strated using two stylization effects. Here we use the
output of the existing rendering passes and extend them
only with calculations like thinning. Furthermore, we
enable interaction with parameters to change the vec-
torization. We could show that our result of the stylized
vector image is more suitable for further use than a vec-
tor image that is only based on a stylized image. This is
due to our representation in the SVG structure, which
facilitates editing. For example, the use of cloning in
the half-tone effect allows the shape of the half-tone el-
ement to be easily replaced in the final SVG. Only the
one template element needs to be adjusted. Besides the
exchange of elements, these can also be animated by
accessing the certain SVG elements and their attributes,
e.g., line thickness, displacement or rotation.

4.3 Limitations
Besides the many advantages of an SVG, the presented
implementation has a few limitations.

Currently, the variable line thickness of the toon ef-
fect can only be displayed in an appropriate editor (e.g.,
Inkscape) that supports variable line thickness. For
each effect we have considered individually how this
effect can be logically broken down into vectorization
steps. Now vectorization steps exist to trace edges and
surfaces. There are also other pipelines for the placing
of clones and the thinning step. All these vectorization
steps can be reused for future effects.

Another limit is e.g., if the user edits the shape of
the template object in a half-tone SVG, then all clones
would be edited as well. This leads to high update times
in vector image editors like Inkscape. But this is rather
due to the software than the vector file.

4.4 Future Work
For future work, we plan to test our approach with ad-
ditional image stylization techniques and explore possi-
bilities of further intermediate representation variants.
With respect to run-time performance improvements, a
more compact intermediate representation could speed-
up the vectorizer by avoiding scan-lining during trac-
ing.

5 CONCLUSIONS
This paper shows how the extension of image vector-
ization by means of intermediate data can be used to
increase the output quality of vector images for certain
types of image stylization techniques. Our approach,
which is to perform stylization as part of vectorization
rather than as a pre-process, is actually close to how
vector artists work, since they commonly create com-
plex artworks as multiple layers (e.g., one layer for
color regions and another layer for outlines), and fill-
in regions with vector patterns. We enable the combi-
nation of fast GPU-based image stylization techniques
and high-quality visual output by means of vector im-
ages. However, this requires minimal changes for en-
coding the output of each technique to yield the inter-
mediate representation that drives the particular vec-
torization. We implemented and tested the presented
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Table 1: Run-time performance comparison in total (Total), for the stylization (Style), and tracing stages (Trace)
(in milliseconds) for input images of different spatial input resolutions (in pixels).

Half-tone (H) [3] Toon (T ) [14]
Single GPU-pass 29 GPU-passes

1 Vectorization pass 2 Vectorization passes

Low Detail Image High Detail Image Low Detail Image High Detail Image

Input Resolution HStyle HTrace HTotal HStyle HTrace HTotal TStyle TTrace TTotal TStyle TTrace TTotal

1280×720 26.5 35.0 61.5 24.7 37.7 62.4 24.8 792.2 817.0 20.0 1389.4 1409.4
1920×1080 23.6 57.2 80.8 20.6 57.3 77.9 26.5 1590.7 1617.2 30.4 2822.5 2852.9
3840×2160 33.1 154.9 188.0 34.7 147.3 182.0 37.2 6037.0 6074.2 35.3 10655.1 10690.4
7680×4320 52.3 545.9 598.2 47.6 544.1 591.7 91.0 28167.6 28258.6 102.3 53362.9 53465.2

concept using GPU-based half-tone and toon styliza-
tion techniques.
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