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THE DETERMINANT METHOD FOR NONSELFADJOINT

SINGULAR STURM — LIOUVILLE PROBLEMS

A.BOUMENIR1

Abstract — We are concerned with the computation of eigenvalues of singular non-
selfadjoint Sturm — Liouville problems by the method of determinants. The represen-
tation of a differential operator by an infinite matrix allows the use of Lidskii’s theorem
to define its determinant. The finite section is then used to compute eigenvalues in a
simple way. This direct method borrows stable methods from numerical linear algebra
to compute a large number of eigenvalues with high precision. Numerical examples
with nondifferentiable and complex valued coefficients are treated at the end.
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1. Introduction

Although the computation of eigenvalues is classical, there still remain challenging compu-
tational problems in the area of singular Sturm — Liouville (SL) operators [1]. This note is
motivated by the following computational issue: how can we compute eigenvalues of singular
nonselfadjoint SL operators defined by

l(y) := − (p(x)y′(x, λ))
′
+ q(x)y(x, λ) = λw(x)y(x, λ), −∞ 6 a < x < b 6 ∞, (1.1)

where the coefficient q(x) ∈ C is complex valued, 1/p, q, w ∈ Lloc (a, b) and p, w > 0 with
minimal numerical integration. For regular problems [4], interpolation is used to reconstruct
the characteristic function, whose zeros are the eigenvalues, from a few of its values by
sampling. Because the problem is regular, we could use numerical integration to generate
the a few samples. However, when the coefficients in (1.1) are not smooth, then numerical
integration and consequently the shooting method may not be able to provide those sample
points for interpolation. A typical class of singular differential operators, for example, would
be Legendre type Sturm — Liouville operators,

{
L(y) := − ((1 − x2) y′(x))

′
+ q(x)y(x) = λy(x), −1 < x < 1,

lim
x→±1

(1 − x2) y′(x) = 0,
(1.2)

where q ∈ L (−1, 1) and q(x) is complex valued, say q(x) = ln(x2) + I sin (1/x) . Clearly, at
the singular end x = −1, the derivative cannot be computed numerically and initial value
problems are not easy to set. Also known methods such as the Prüffer method and shooting
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methods are not applicable since the operator is not self-adjoint, which means the eigenvalues
are scattered in the complex plane [3]. Thus, the need for a method that does not rely on
numerical integration of initial value problems arises.

For nonselfadjoint problems, Osborn [9] first considered operators L̃ = L+A, where L−1

is a positive Hilbert — Schmidt operator and ‖A‖ < λ1, where λn are the eigenvalues of L.
A Gershgorin type theorem is first proven, that is, eigenvalues are in the disks Cm = {λ :
|λ−λm| 6 ‖A‖}. The proof uses the argument principle to detect the presence of eigenvalues
inside Cm by looking at the contour integral

N(t) =
1

2πi

∫

∂Cm

δ′t (λ)

δt (λ)
dλ,

where δt is a determinant function of the operator L + tA, and 0 6 t 6 1. In the case
of differential operators, this determinant could simply be a characteristic function, i.e.,
a function whose zeros are the eigenvalues, such as δ0 (λ) = (1/ 4

√
λ) sin( 4

√
λ) sinh( 4

√
λ) for

L(y)(x) = y(4)(x), 0 6 x 6 1 under the boundary condition y(0) = y′′(0) = y(1) = y′′(1) =
0 (see example (a) in [10]). In the case of infinite matrices, then δt(λ) is the Fredholm
determinant of the Hilbert — Schmidt operator (L + tA)−1 . By using a computable error
bound on the radii of the disks, Osborn could minimize the enclosures on the eigenvalues of
L̃ by taking the smallest disk. In [10], the results are then extended to unbounded operators
A, such that

∑
i>1 |(Ay, xi)| /Si 6 ‖y‖ holds for all y in the domain of A and for a certain

sequence (Si)i>1 .

In this note we also look at operators L̃ = L+A, but L−1 is a positive trace class and A is
an unbounded operator. The advantage of trace class operators is Lidskii’s theorem, which
defines the determinant in a very simple and direct way [8]. Recall that if K is a trace class
with eigenvalues λn, then det (1 − K) =

∏
n>0 (1 − λn) . In the case of a Hilbert — Schmidt

operator, say H, the determinant is defined by det2 (1 + H) = det [(1 + H) exp (−H)] , which
is more difficult to compute (see [5]). The unboundedness of the operator A is described
in terms of the potential q, ||q(x)ϕn|| λ−β

n ∈ ℓ2 instead of A. The main reason is that an
estimate on the matrix may not be applicable to the multiplication operator q.

Legendre type operators are typical singular SL for which Lidskii’s determinant is ap-
plicable since their large eigenvalues are close to n2 + n. On the numerical side, the simple
fact that Legendre polynomials are defined through a 3 term recursion formula leads to
structured matrices, which simplifies significantly the process of filling up the matrix. For
example, the entries which are integrals can be computed symbolically with no round-off er-
ror, and obviously a finite determinant makes use of algebraic operations only, and so there
are no round-off errors when a computer algebra system is used

The main motivation stems from applications. In control theory, for stability, the spec-
trum of nonselfadjoint operators is usually required to be on the left hand side of the complex
plane, i.e., Re (λn) 6 0. In order to control a process in real time, engineers look for a reli-
able and fast algorithm to compute and track the evolution of these eigenvalues. In medical
imaging [7], Colton and Monk show how the eigenvalues of the scattering operator, which is
compact, can be used in the detection of leukemia. The diagnosis for Leukemia then reduces
to whether the eigenvalues of the scattering operator are contained in a certain unit disk
off the real line. Unfortunately, no numerical code was accurate enough for the numerical
experiments to be conclusive. We believe that the error estimates from Lidskii’s theorem [8]
would help obtain guaranteed bounds for eigenvalues. Recall that most numerical integra-
tors would require smooth coefficients, which we do not assume. Our algorithm is designed
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to handle integrable but nowhere differentiable coefficients such as q(x) =
∑

n>1 n−0.52ei2nπx

or q(x) =
∑

n>1 n−0.52Pn(x), where Pn are the normalized Legendre polynomials. Clearly, in
both cases q ∈ L2 (−1, 1) and is nowhere differentiable, and when the Fourier coefficients of
q are available, then the entries of the matrix associated with q can be computed without
numerical integration.

2. Preliminaries

Consider the singular SL operator defined by

Ly(x) =
−1

w(x)

(
(p(x)y′(x))

′
+ q(x)y(x)

)
,

where a < x < b. As usual for the right definite case, we assume 1
p
, q, w ∈ Lloc(a, b) and

p, w > 0. Denote the maximal domain for the operator L by

D
max

=
{
f ∈ L2

w (a, b) : pf ′ ∈ AC loc (a, b) and Lf ∈ L2
w (a, b)

}
,

where AC loc (a, b) is the space of absolutely continuous functions over [c, d] ⊂ (a, b) and

L2
w (a, b) =



f measurable:

b∫

a

|f(x)|2 w(x)dx < ∞



 .

The domain of any operator generated by L and acting in L2
w (a, b) is a restriction of Dmax,

which could be obtained by using boundary functionals. For example, if L is in the limiting
circle case, then we need two boundary conditions

DL = {f ∈ D
max

: Ba (f) = 0, Bb (f) = 0} ⊂ D
max

and the spectrum is discrete. In the case L 6= L∗, i.e., L is a nonselfadjoint operator, then by
an eigenvalue is meant a value λ for which Ly = λy has a nontrivial solution which belongs
to DL. In all that follows we assume that the spectrum of L is purely discrete, i.e., contains
eigenvalues only.

Since we are working in the separable Hilbert space H := L2
w (a, b) , let us denote by

{ϕn}n>0 one of its orthonormal bases, i.e., for any f ∈ H then f =
∑

n>0 cnϕn, where
‖ϕn‖ = 1 and in order to handle solutions in the domain DL, we assume that {ϕn}n>0 ⊂
DL. Denote the inner products

(f, g)w =

b∫

a

f(x)g(x)w(x)dx, (f, g) =

b∫

a

f(x)g(x)dx.

The operator L acting in L2
w (a, b) can then be represented by an infinite matrix A, whose

entries are

ank = (Lϕk, ϕn)w = −
(
(pϕ′

k)
′
, ϕn

)
+ (qϕk, ϕn) , A = M + Q,

where M and Q are infinite matrices. To proceed further, denote by T the isometry H → ℓ2

defined by
T (f) = (cn)n>0 ,
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where cn = (f, ϕn)w and ℓ2 :=
{
(cn)n>0 :

∑
n>0 |cn|2 < ∞

}
. The Parseval equality yields

||Tf ||2 =
∑

n>0 |cn|2 = ||f ||2 . Since the operators A and L are isometric, they both have the
same spectrum, and obviously the spectrum of A should be easier to compute. Denote by
Sn the set of compact operators acting in ℓ2 such that

Sn :=

{
K compact : ‖K‖n :=

( ∑

j>0

sn
j (K)

)1/n

< ∞
}

,

where sj (K) are the singular values of K. The class S1 is called the trace class while S2 is the
Hilbert — Schmidt class of compact operators. Also denote by Pn the finite rank projection
operator in ℓ2

Pn

(
(ck)k>0

)
= (c0, c1, c2, . . . , cn, 0, 0, . . .) .

Without loss of generality, we can assume that the matrix M has an inverse, otherwise
translate its spectrum to avoid the value zero. A further assumption which would simplify
the proof is that M is self-adjoint and positive, so its fractional powers M−α are well defined.

Proposition 2.1. Assume that M−1, M−αQMα−1 ∈ S1, where α > 0, then

λ ∈ σA ⇐⇒ lim
n→∞

det
(
1 + PnM−1/2QM−1/2Pn−λPnM−1Pn

)
= 0

Proof. If λ is an eigenvalue, λ ∈ σA, then there exists c ∈ ℓ2, c 6= 0 such that

Mc+Qc= λc.

Premultiplying by M−α and set c = Mα−1c̃ to obtain

c̃+M−αQMα−1c̃= λM−1c̃.

The above identity now reads as

(
1 + M−αQMα−1−λM−1

)
c̃ = 0

where M−αQMα−1−λM−1 ∈ S1 and thus by [8, Theorem II.6.1] we have

∆(λ) := det
(
1 + M−1/2QM−1/2−λM−1

)
= 0 (2.1)

and furthermore the eigenvalues of A and the zeros of ∆ coincide. Then use a variant of [8,
Theorem IV.5.2] to see that ∆ is in fact an entire function of λ. We now show that ∆ in
(2.1) can be approximated by determinants of finite sections. To this end, recall that the
mapping K → det (1 + K) is a continuous function over S1, [8, Theorem IV.5.2],

|det (1 + C) − det(1 + E)| 6 ||C − E||1 exp (1 + ||C||1 + ||E||1) (2.2)

where C and E are compact operators in S1. Also from the pointwise convergence, Pnx → x
for any x ∈ ℓ2, and for any fixed λ in the complex plane we have [8, Theorem 5.5, p. 63]

PnM−αQMα−1Pn−λPnM−1Pn
S1−→M−αQMα−1−λM−1 as n → ∞ (2.3)

in other words,

(1 − Pn) M−αQMα−1 (1 − Pn)
S1−→0 and (1 − Pn) M−1 (1 − Pn)

S1−→0 as n → ∞. (2.4)
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If we denote the polynomials

∆n (λ) := det
(
1 + PnM−αQMα−1Pn−λPnM−1Pn

)
, (2.5)

then by (2.2) and (2.3) we have

∆n (λ) → ∆(λ) as n → ∞,

and
|∆n (λ) − ∆(λ)| 6 m(λ)

∥∥(1 − Pn)
(
M−αQMα−1−λM−1

)
(1 − Pn)

∥∥
1

(2.6)

where

m(λ) := exp
(
1 +

∥∥PnM−αQMα−1Pn−λPnM−1Pn

∥∥
1
+

∥∥M−αQMα−1−λM−1
∥∥

1

)
.

From the fact that
∥∥PnM−αQMα−1Pn−λPnM−1Pn

∥∥
1

6
∥∥M−αQMα−1−λM−1

∥∥
1

we have
m(λ) 6 exp

(
1 + 2

∥∥M−αQMα−1−λM−1
∥∥

1

)
.

Next, if we now restrict λ to any compact domain of the complex plane, Ω say, then (2.6)
leads to

sup
λ∈Ω

m(λ) 6 exp
(
1 + 2

∥∥M−αQMα−1
∥∥

1
+ w

∥∥M−1
∥∥

1

)

where w = supλ∈Ω |λ| and

sup
λ∈Ω

|∆n (λ) − ∆(λ)| 6 sup
λ∈Ω

m(λ) sup
λ∈Ω

∥∥(1 − Pn)
(
M−αQMα−1−λM−1

)
(1 − Pn)

∥∥
1

6

sup
λ∈Ω

m(λ)
{∥∥(1 − Pn)

(
M−αQMα−1

)
(1 − Pn)

∥∥
1
+ w

∥∥(1 − Pn) M−1 (1 − Pn)
∥∥

1

}
.

Thus we deduce from (2.4) that supλ∈Ω |∆n (λ) − ∆(λ)| → 0 as n → ∞. Each zero of ∆, say
of multiplicity k, can be enclosed in a small enough disk, say D. Now by Hurwitz’s theorem,
there is an N(D) such that for each n > N(D) ∆n has the same number of zeros as ∆ in D,
i.e., k zeros. Therefore, any eigenvalue of A, which is a zero of ∆ in C, can be approximated
by the zeros of ∆n. �

Observe that when M is diagonal, then the determinant of these finite matrices is easier
to compute. Assume that M =diag(µn)n>0 and µn > 0, in other words, the basis {ϕn}n>0

is made of the eigenfunctions of the operator M, then M−1 = diag(µ−1
n )n>0 and PnM−1 =

M−1Pn. Thus, we can factor the finite determinant

∆n (λ) = det
(
1 + PnM−αQMα−1Pn−λPnM−1Pn

)
=

det
(
PnM−αPn

)
det (PnMPn + PnQPn−λIn) det

(
PnMα−1Pn

)
=

( n∏

k=0

1

µk

)
det (PnMPn + PnQPn−λIn) =

n∏

k=0

1

µk
det (Pn (M + Q) Pn−λIn) . (2.7)

It is readily seen that although the functions ∆n and det (Pn (M + Q) Pn−λIn) are different,
their zeros coincide. These are nothing but the eigenvalues of the finite section of the matrix
M + Q and this establishes a direct connection between the Rayleigh — Ritz method and
the determinant. Since the inverses of M and Q are not needed, this yields a low cost
computation. We now prove
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Proposition 2.2. Assume that M is a diagonal matrix with eigenvalues µn > 0 such

that
∑

n>0 µ−1
n < ∞ and Q is a bounded operator acting in ℓ2. Then ∀λk ∈ σL, ∃λk(n) such

that det (Pn (M + Q) Pn − λk(n)Id) = 0 and λk(n) → λk as n → ∞.

Proof. It is enough to see that M−1 ∈ S1 while M−1/2 ∈ S2. Thus, QM−1/2 ∈ S2 and the
product M−1/2QM−1/2 ∈ S1, as the product of two Hilbert — Schmidt operators is a trace
class. Thus, the conditions of Proposition 2.1 hold. �

We next recall that the condition for Q is bounded.

Proposition 2.3. Let q be the multiplication operator L2
w(a, b) → L2

w(a, b) with q ∈
L∞(a, b). Then Q is a bounded operator in ℓ2.

Proof. It is enough to see that f → qf is a bounded operator in L2
w (a, b)

b∫

a

|q(x)f(x)|2 w(x)dx 6 esssup
a6x6b

|q(x)|2
b∫

a

|f(x)|2 w(x)dx.

Since the matrix Q is isometric to the multiplication by q, it follows that Q is also a bounded
operator in ℓ2. �

In differential equations, we usually need q ∈ L1(a, b) or q ∈ L2(a, b), which means that
q may not be a bounded operator.

Proposition 2.4. Assume that M =diag (µn)n>0 where 0 < µn ↑ ∞ and for a cer-

tain 1 > 2α > 1
2
, we have µ2α−1

n ∈ ℓ2, together with ‖q(x)ϕn(x)‖µ−2α
n ∈ ℓ2. Then both

M−αQMα−1 ∈ S1, and M−1 ∈ S1. Thus, the eigenvalues of L can be approximated by the

eigenvalues of Pn (M + Q) Pn.

Proof. To prove that M−αQM−αM2α−1 = M−αQMα−1 ∈ S1, we only need to show that
both M−αQM−α ∈ S2 and M2α−1 ∈ S2 are Hilbert — Schmidt operators. Observe that
M2α−1=diag(µ2α−1

n )n>0 exists and is a Hilbert — Schmidt operator, since µ2α−1
n ∈ ℓ2. To see

that M−αQM−α ∈ S2, let us denote its entries by

Q̃ij = µ−α
i

b∫

a

q(x)ϕi(x)ϕj(x)w(x)dxµ−α
j .

Clearly, we have

∑

i,j>0

|Q̃ij |2 6
∑

i,j>0

µ−2α
i

∣∣∣∣

b∫

a

q(x)ϕi(x)ϕj(x)w(x)dx

∣∣∣∣
2

µ−2α
j 6

∑

i,j>0

µ−4α
i

∣∣∣∣

b∫

a

q(x)ϕi(x)ϕj(x)w(x)dx

∣∣∣∣
2 ∑

i,j>0

µ−4α
j

∣∣∣∣

b∫

a

q(x)ϕi(x)ϕj(x)w(x)dx

∣∣∣∣
2

.

Observe that

∑

i,j>0

µ−4α
i

∣∣∣∣

b∫

a

q(x)ϕi(x)ϕj(x)w(x)dx

∣∣∣∣
2

=
∑

i>0

µ−4α
i

∑

j>0

∣∣∣∣

b∫

a

q(x)ϕi(x)ϕj(x)w(x)dx

∣∣∣∣
2

=

∑

i>0

µ−4α
i ‖q(x)ϕi(x)‖2 < ∞.
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Thus,
∑

i,j>0 |Q̃ij |2 < ∞ and so M−αQM−α ∈ S2, i.e., Hilbert — Schmidt operators. Then

M−αQM−α × M2α−1 ∈ S1 since the product of two Hilbert — Schmidt operators is a trace
class, we have

M−αQMα−1 ∈ S1.

Next to see that M−1 ∈ S1, i.e.
∑

j>0 µ−1
j < ∞, we use 4α > 1 to deduce that

0 < µ−1
j = µ−4α+1

j µ4α−2
j 6 cµ4α−2

j

and M−1 ∈ S1. Therefore λ is an eigenvalue of L if and only if

det
(
1+M−1/2QM−1/2−λM−1

)
= 0

which can be uniformly approximated by det
(
1 + PnM−1/2QM−1/2Pn − λPnM−1Pn

)
(see

proof of Proposition 2.1). �

In the next section, as an example, we study one family of not self-adjoint singular
Sturm — Liouville problems generated by the Legendre differential operator.

3. The Legendre polynomials

Consider the Legendre differential expression

−
((

1 − x2
)
y′(x)

)′
= λy(x) − 1 < x < 1, (3.1)

whose known solutions, for non-real λ, are explicitly given by c1Pµ (x) + c2Pµ (−x), where
ci, for i = 1, 2 are constants and Pµ is the hypergeometric series

Pµ (x) = F

(
µ + 1,−µ, 1;

1 − x

2

)
, (3.2)

where λ = µ (µ + 1) . The boundary conditions are derived from the fact that as x → −1+

(see [2]),

Pµ (x) / ln

(
1 − x

1 + x

)
→ − sin(πµ)/π and

(
1 − x2

)
P ′

µ (x) → 2 sin(πµ)/π.

Since ln (1 ± x) ∈ L2 (−1, 1), it follows that the deficiency indices of the minimal operator
generated by (3.1) are (2, 2) . For simplicity we add 1/4 to avoid the zero eigenvalue and use
the boundary conditions (1 − x2)P ′

µ (x) → 0 as x → ±1

{
L0 (y) (x) := − ((1 − x2) y′(x))

′
+ (1/4)y(x) = λy(x), −1 6 x 6 1,

(1 − x2) y′ (x) → 0 as x → ±1.
(3.3)

Thus, L0 is a self-adjoint operator in the Hilbert space L2 (−1, 1) whose eigenvalues are pos-
itive λn = n2 +n+1/4 = (n + 1/2)2, where n = 0, 1, 2, . . . The corresponding eigenfunctions
are the well-known normalized Legendre polynomials of the first kind

Pn (x) =
√

n + 1/2F

(
n + 1, n − 1, 1;

1 − x

2

)
=

√
n + 1/2

2nn!

dn

dxn

[(
x2 − 1

)n]
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since series (3.2) terminates. The set {Pn}n>0 is orthonormal in L2 (−1, 1) .
Consider the eigenvalue problem
{

L (y) (x) := − ((1 − x2) y′(x))
′
+ (1/4)y(x) + q(x)y(x) = λy(x), −1 6 x 6 1,

(1 − x2) y′ (x) → 0 as x → ±1,

where q ∈ L2(−1, 1). The matrix representation of L as an operator acting in ℓ2, is given by

A = M + Q,

where M := diag
((

n + 1
2

)2
)

n>0
and

Q =(q(x)Pk (x) , Pn (x))n,k>0 (3.4)

is the matrix associated with q. In order to use Proposition 4 we need the following Lemma.

Lemma 3.1. If q2(x)/(1−x2) ∈ L (−1, 1) , then the entries Qij =
∫ 1

−1
q2(x)Pj(x)Pi(x) dx

are bounded for i, j = 0, 1, 2, . . .

Proof. The Cauchy — Schwartz inequality shows that it is sufficient to consider the case
i = j > 1. From the inequality

|Pj(x)| 6

√
π

2j (1 − x2)

we have

Pj(x) 6

√
2j + 1

4j

π

(1 − x2)
,

which leads to

||qPj||2 =

1∫

−1

|q(x)|2 |Pj(x)|2 dx 6
π (2j + 1)

4j

1∫

−1

|q(x)|2
(1 − x2)

dx.

�

Proposition 3.1. Assume that either q2(x)/(1 − x2) ∈ L (−1, 1) or q ∈ L∞ (−1, 1).
Then the eigenvalues of L can be approximated by the eigenvalues of the finite matrix

Pn (M + Q) Pn as n → ∞.

Proof. We only need to show that the conditions of Proposition 2 or 4 hold. We already
have that M is positive, self-adjoint, and its eigenvalues satisfy

∑
n>0(n + 1/2)−2 < ∞, and

so M−1 ∈ S1. We now verify the conditions of proposition 2.4. From µn = (n + 1/2)2 we
obtain

µ2α−1
n = (n + 1/2)2(2α−1) ∈ ℓ2 ⇒ 8α < 3

Since q2(x)/(1 − x2) ∈ L (−1, 1), then sup
n>0

||qPn|| < ∞, and ||qPn||µ−2α
n ∈ ℓ2 implies

(n + 1/2)2(−2α) ∈ ℓ2 ⇒ 1 < 8α.

Thus it follows that there are α that satisfy both 1/4 < 2α < 3/4 and 1/2 6 2α < 1 in
Proposition 2.4, i.e., 1/2 6 2α < 3/4.

On the other hand, if q ∈ L∞ (−1, 1) then proposition 3 implies that Q is a bounded
operator in ℓ2 and obviously then Proposition 2 holds. �

Remark 3.1. The case q2(x)/(1 − x2) ∈ L (−1, 1) includes unbounded operators.
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4. Examples

We consider the following singular operator defined by

{
Ly := − ((1 − x2) y′(x))

′
+ (1/4)y(x) + q(x)y(x) = λy(x), −1 6 x 6 1,

lim
x→±1

(1 − x2) y′(x) = 0.

where q(x) will be given in each example. We show that no numerical integration is used.
The finite section generated by M for n = 8, for example, is given by

P7MP7 :=
1

4
diag (1, 9, 25, 49, 81, 121, 169, 225)

Example 4.1. Take q(x) = x7 − x4, then P7QP7 is




−1
5

√
3

9
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√
5

35
2
√

7
33

− 8
105

8
√

11
429

0 16
√

15
6435√

3
9

−3
7

8
√

15
99

−4
√

21
63

16
√

3
143

−8
√

33
693

64
√

39
6435

0

−4
√

5
35

8
√

15
99

−3
7

23
√

35
429

−136
√

5
1155

4
√

55
165

−8
√

65
1001

56
√

3
1683

2
√

7
33

−4
√

21
63

23
√

35
429

−13
33

16
√

7
143

−8
√

77
273

656
√

91
36465

−8
√

105
1287

− 8
105

16
√

3
143

−136
√

5
1155

16
√

7
143

−1929
5005

19
√

11
221

−212
√

13
3003

10066
√

15
230945

8
√

11
429

−8
√

33
693

4
√

55
165

−8
√

77
273

19
√

11
221

− 521
1365

296
√

143
12597

−196
√

165
9945

0 64
√

39
6435

−8
√

65
1001

656
√

91
36465

−212
√

13
3003

296
√

143
12597

− 71
187

8299
√

195
415701

16
√

15
6435

0 56
√

3
1683

−8
√

105
1287

10066
√

15
230945

−196
√

165
9945

8299
√

195
415701

−17481
46189




Q is a band matrix since its coefficients are given by Qij =
∫ 1

−1
(−x4 + x7) Pj(x)Pi(x)dx = 0

if 8 6 |j − i| , where i, j > 0. Since we used the exact entries of the matrix Q, the error
is only due to the truncation of the infinite matrix. Some eigenvalues obtained from the
determinant for N = 30 and 50 are given by

N λ0 λ10 λ20

30 0.0103708662351945 109.874079259079380 419.874757610736480
50 0.0103708662351915 109.874079259079494 419.874757610734660

Example 4.2. Here the real potential q(x) = sin (1/x) is nondifferentiable and highly
oscillatory at x = 0, but is bounded. The entries of Q can be computed without numerical
integration and are linear combinations of the numbers Si(1), sin(1), cos(1), π which can be
approximated to any precision. For example,

1∫

−1

P4(x)P5(x) sin (1/x) dx =
622271

368640
Si(1) +

50329

73728
sin(1) +

391033

368640
cos(1) − 622271

737280
π

and

N λ0 λ29

30 0.0474674667282716 870.2552588145592
60 0.0474499121064421 870.2509831859029
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Example 4.3. Here the potential q(x) = (1− i) ∗ (1− x2)x−10/11 is complex valued and
satisfies q(x)/(1−x2) ∈ L(−1, 1). The eigenvalues are complex and so ranking is meaningless

[2362.109510156776− 16.59060143401068 ∗ I, 2172.922350508070− 15.19943486722927∗ I,

1991.181625270057− 14.63137874251782 ∗ I, 2452.704117132835− 2.527964596485432 ∗ I,

1817.333454688336− 14.30584516783639∗ I, 2258.688942177950− 2.468611285330135∗ I],

Example 4.4. Here the potential q(x) = i ln (x2) is also complex valued and satisfies
q2(x)/(1 − x2) ∈ L(−1, 1). Some eigenvalues are

−.8560212272279310− .6693645194250938∗ I, 9.531273016378190−1.406739258667220∗ I,

16.97611211032472− 1.437130849354581 ∗ I, 27.31640303824101− 1.280713509081845 ∗ I,

39.03172259630585− 1.480828981619380 ∗ I, 53.22650579024753− 1.282648510409766 ∗ I,

87.18341985521134− 1.295046074559962 ∗ I.
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