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IMAGE EDGE RESPECTING DENOISING WITH EDGE
DENOISING BY A DESIGNER NONISOTROPIC
STRUCTURE TENSOR METHOD

N.SANTITISSADEEKORN! AND E. M. BOLLT?

Abstract — We consider image denoising as the problem of removing spurious
oscillations due to noise while preserving edges in the images. We will suggest here
how to directly make infinitesimal adjustment to standard variational methods of
image denoising, to enhance desirable target assumption of the noiseless image. The
standard regularization method is used to define a suitable energy functional to
penalize the data fidelity and the smoothness of the solution. This energy functional
is tailored so that the region with small gradient is isotropically smoothed whereas in
a neighborhood of an edge presented by a large gradient smoothing is allowed only
along the edge contour. The regularized solution that arises in this fashion is then the
solution of a variational principle.

To this end the associated Euler — Lagrange equation needs to be solved numerically
and the half-quadratic minimization is generally used to linearize the equation and to
derive an iterative scheme. We describe here a method to modify Euler — Largrange
equation from commonly used energy functionals, in a way to enhance certain desirable
preconceived assumptions of the image, such as edge preservation. From an algorithmic
point of view, we may deem this algorithm as a smoothing by a local average with an
adaptive gradient-based weight. However, this algorithm may result in noisy edges
although the edge is preserved and noise is suppressed in the low-gradient regions of
the image. The main focus here is to present an edge-preserving regularization in the
aforementioned view point, and to provide an alternative and simple way to modify the
existing algorithm to mitigate the phenomena of noisy edges without explicitly defining
step where we specify an energy functional to be minimized.
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1. Introduction

Reconstructing an image contaminated by noise is a very important task in image process-
ing. During recent years, several approaches have been developed for image reconstruction
along three main categories: (1) wavelet-based methods introduced by Donoho and John-
stone [6, 7], (2) stochastic or statistical methods such as Markov random fields (MRF’s)
pioneered by Geman and Geman [8], and (3) variational approaches [2-4,9, 11, 13] with
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partial differential equations (PDE’s) [1,10]. The variational approach minimizes a suit-
able energy functional to smooth only the homogeneous regions surrounded by sharp edges
without degrading the slope of the edges. We first review the deterministic edge-preserving
variational approach introduced in [2,4,13] that employs the half-quadratic minimization
to construct an algorithm. However, we view this algorithm as an iterative scheme with
an adaptive gradient-based weight for a local average, which may also be described as non-
linear diffusions [1,10]. Note also that several recent works have been developed based on
the coherent structure analysis using the gradient structure tensor to determine the location
and orientation of the edges [12,14]. Then, we empirically demonstrate a result to show
that although the edges are preserved, the regions near the edges are still noisy as much
as they are in the noised initial image. Thus, we present a modification of the iterative
algorithm to allow the smoothing along the edge to eliminate the oscillations near the edges
and demonstrate experimental results on synthetic and real images.

2. Review: edge-preserving regularization

First we review the now traditional approach [2,4] as the counterpoint as contrast to our
method to come. A noisy image f(z) can be restored by a minimization of the following
energy functional:

Flu) = / (@) - ufz) Pde + A / H(V[u(x)?) d, (2.1)

where z € Q and € is an open bounded set in R2. Throughout this paper, we will denote
the reconstructed image by w(z) and the noisy image by f(x). The first integral term is
responsible for the data fidelity and the second is the smoothing term with a parameter A
as a positive weight constant. The function ¢ is chosen to allow smoothing within texture
regions and prevent smoothing across the edge. The criterions of the function ¢ can be found
in [2,4,13]. In general, the functional Eq. (2.1) is not convex and its associated Euler —
Lagrange equation is nonlinear. However, the half-quadratic regularization can be used to
recast Eq. (2.1) as follows

J(u,b) = / (@) - ufz) Pde + A / BV [u(0)?) + (b)) d, (2.2)

Q

where b is an auxiliary function usually called the dual variable and the convex function

Y(b) = 0((') (b)) — b(y)') "' (b) and 0(s) = $(V's). (2.3)

The new energy functional Eq. (2.2) is not convex with respect to the pair (u,b) but it
is convex in u when b is fixed and vice versa. Therefore, for each fixed b we have a convex
functional and the minimization is linear. Conversely, for each fixed u the unique minimum
of Eq. (2.2) is obtained at

¢'(Vl]u(z)))
bint(u) = ———————=. (2.4)
2Ju(x)]

This leads to the following algorithm.
Algorithm 2.1.

1. Initialize (u®, %)
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2. Repeat

(a) Solve the associated Euler — Lagrange equation of u = inf J(u,b"), that is,
(u" — f) = Adiv (0"Vu"T) =0 in Q (2.5)

(b) Solve b = irl}f J(u""', b). This can be obtained at

bt = LXJVD (2.6)

3. Repeat until convergence

We refer the convergence analysis of this fixed point iteration to Dobson and Vogel [5].

Now observe that the auxiliary variable b can be considered as a weight function to the
anisotropic smoothing on u by the operator div(bVu). Remark that if b = 1, we have
an isotropic smoothing by the Laplace operator that is known to blur the edges. Since
the variable b tends to zero at the edges with a large |Vu|, we have that near the edges
the solution u is kept close to the observed image f(z), and hence the edge is preserved
as much as it is in the original image f(z). For this reason, the overshoot and oscillation
near the edges due to noise still appear in the solution u. Although one may argue that
this help to increase the contrast of the edges, we consider it undesirable because it can
cause instability in the above iterative algorithm when noise is large and it may bring out
an incorrect contrast to the entire image. We would also like to point out that the image
restored by minimizing Eq. 2.2 agrees very well with the isotropically smoothed image by the
Laplacian operator at the low-gradient regions surrounded by the edges since we have b ~ 1
in these regions. Another limitation of the above method is that the variable b interpreted
as an edge detector can be noisy. These two limitations are demonstrated by the example
illustrated in Figure 2.1 and Figure 2.2, where the fixed point iteration is used to solve the
the Euler — Lagrange equation and the function ¢ is chosen as

¢'(s) 1

Y (2.7)

Fig. 2.1. (a) A true image fo(x) of the size of

295 x 230 pixels. The red horizontal line shows

the location of the 1-d slice shown in Figure 2.2.

(b) A noisy image (SNR~ 13.4). (c¢) A restored

image by the edge-preserving regularization with

the smoothing parameter A = 10, (d) The edge
variable b
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Fig. 2.2. The 1-d slice at the location of the red line shown in Figure 2.1. Clearly, the

edges of the image reconstructed by the edge-preserving regularization is preserved as

desired but they are noisy, especially at the large edge. Notice that the images denoised

by the Laplacian operator and the edge-preserving scheme coincide at the low-gradient
regions, which include the small-scale edges

3. Modified algorithm by designer tensor

As explain in the previous section we may view the edge-preserving regularization as an
iterative scheme that iteratively smooth edges by using the variable b as an adaptive weight
for smoothing on u. However, the oscillations at edges may retain in the image and the
auxiliary variable deemed as the edge detector can be very noisy. First, let us present an
approach used also in [13] to suppress the small spurious oscillations due to noise for the
edge variable b and specify a sensitivity threshold to keep only edges with edge strength
above the threshold. For a given threshold 7, where 7 € (0,1) we define the function ¢ as

. 1
S) = — 3]_
) V14 (s/k)? (3.1)

where

2 1/2
To
= . 3.2
= 0

Figure 3.1 illustrates the role of the threshold 7. We can see that as 75 tends to 1 the small
oscillations due to noise are eliminated. However, if 75 is “too” close to 1, as a consequence,
the edge with a low contrast are also suppressed.

Now, we suggest a direct modification to the iterative algorithm of the edge-preserving
regularization to reduce the overshoot and oscillation at the edges as follow
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Algorithm 3.1 (designer diffusion tensor)

1. Initialize (u®,0°). Set the threshold 7y and & as in Eq. (3.2) and set the positive weight
parameters A and «

(a) Solve the equation
(u" ™ — f) = Adiv (0"Vu"™) — adiv (1 = 0")Vf) =0 in Q (3.3)

(b) Update the edge variable b : b"t! = ¢(V|ul)

(c) Normalize the edge variable b so that b varies from 0 to 1

2. Repeat until convergence

In comparison to the previous algorithm, we have introduced the following difference.
Here we have merely added to Eq. (2.5) an additional term of the form

adiv((1=0")Vf) (3.4)

to smooth along the edges. The idea is to use the weight 1 — b, which approximates the edge
contour, for an anisotropic diffusion on the noised initial image. Therefore, this modified
algorithm prevents an overshoot and oscillation at the edge. Figure 3.2 shows a denoising
example of the same 1-d slice in Figure 2.2 restored by our suggested algorithm. We can see
that the overshoots at the edges are significantly reduced while the edges is still preserved.
Figure 3.3 shows an example of a noisy edge due to the overshooting problem in comparison
with the smooth edge obtained from our algorithm. To justify the influence of « to the
numerical performance, we use the following norm, denoted by E, to measure an error:

o lu—fll [ IFul 195
Bl =70 Hmwm mwowH’ (3:5)

where fp is the true, noiseless image, Vf = (0f /0x,0f/0y), and || - || denotes the 2-norm.
The first term in the above norm measures an error in term of data fidelity and the second
term measures the error in“steepness” of the edges. Figure 3.4(a) shows quantitative tests
of the parameter o based on the above error norm for different values of A. Furthermore,
one may observe that the performance in term of A, based on the above error norm, becomes
“saturate” as A increases and this saturation can also be observed from the SNR plot as
shown in Figure 3.5.

Now we apply our proposed algorithm to the noisy image of Lena (512 x 512 pixels).
Figure 3.6 compare the results using the conventional edge-preserving regularization and the
modified algorithm. We can see that the edge and other discontinuities are preserved and
noise is suppressed in both methods. However, after a careful observation as illustrated in
Figure 3.7 we can clearly see the noisy edges of the image denoised by the edge-preserving
regularization whereas these noisy edges are smoothed along the edge by our modified algo-
rithm. Figure 3.4(b) shows the error given by 3.5 for different values of A\. Notice that the
error reaches the optimal at a larger value of « since the size of the Lena image is twice as
large as that of the previous one, whence makes the norm of the data fidelity term in the
cost function 2.1 larger. Thus, this requires, for a given A, a larger value of parameter a so
that the error reaches the optimal.
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Fig. 3.1. Illustration of the behavior of the sensitivity
threshold 7y on the edge variable b, which varies from 0
to 1. From (a) to (d), 7o varies from 0.99, 0.9, 0.85 and
0.8, respectively. This shows that as the threshold tends
to one the edge with a low contrast will be ignored.
However, a low value of 79 may allow a presence of
small oscillations due to noise in the edge variable b

---Exactimage
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Fig. 3.2. llustration of the restored image by the suggested algorithm with the same

A = 10, as used to obtain the result in Figure 2.2, and a = 2. In comparison with the

image restored by the edge-preserving regularization, the oscillations at the large edges
are moderated while the edges are not over-smoothed
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Fig. 3.3. (a) The restored image by the proposed
algorithm. (b) The edge variable obtained from
the proposed algorithm. (¢) The enlarged picture
of the region surrounded by the square in (a) from
the image restored by the edge-preserving regular-
ization (d) The enlarged picture of the same region
of the image restored by the suggested algorithm,
which shows a smoother edge since the oscillations

at the edges are mitigated (@)
(@ (b)
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Fig. 3.4. The influence of the parameter « on the error given by (3.5). (a) The error as a function of « for

the image shown in Fig. 2.1(a). After being optimal, the error slightly increases. (b) The error for the Lena

image. The error reaches the optimal at a comparatively larger value of o. This is due to the size of the
Lena image is approximately twice as large
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Fig. 3.5. The influence of the parameter o on the SNR. (a) The SNR as a function of « for the image shown
in Fig. 2.1(a). Again, after being optimal, the SNR slightly decreases. (b) The SNR for the case of the Lena
image
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Fig. 3.6. (a) The true image of Lena (512 x 512 pixels). (b) The Lena image corrupted with

zero-mean Gaussian noise(SNR~ 5.8). (c) and (e) The image and edge variable obtained from

the edge-preserving regularization. (d) and (f) The image and edge variable reconstructed
using the proposed algorithm
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(a) | ()

Fig. 3.7. We enlarge a part of Lena to closely observe and compare the result using (a) the
edge-preserving regularization and (b) our proposed algorithm. Notice that the noisy edges
appear in (a) but they are smooth in (b)

4. Summary

The edge-preserving regularization method is used to remove small oscillations due to noise
while preserving the edges in an image. We view this method as an iterative scheme with
an adaptive gradient-based weight for a local average. The result of this method not only
provide a denoised image with sharp edges but also has a potential use as an edge detector.
However, our empirical result demonstrates that this method results in noisy edges in the
denoised image and the unacceptable noisy edge variable if we want to use it as an edge
detector as well. Moreover, the overshooting at the edge occur as a generic problem of this
algorithm. We then improve this method at the level of the iterative scheme by adding a
term to allow a smoothing along the edge contour so that the overshooting near the edges
and the noisy background in the edge variable is diminished.
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