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ADAPTIVE GALERKIN FINITE ELEMENT METHODS FOR

THE WAVE EQUATION

W. BANGERTH1 , M. GEIGER2, AND R. RANNACHER2

Abstract — This paper gives an overview of adaptive discretization methods for lin-
ear second-order hyperbolic problems such as the acoustic or the elastic wave equation.
The emphasis is on Galerkin-type methods for spatial as well as temporal discretization,
which also include variants of the Crank-Nicolson and the Newmark finite difference
schemes. The adaptive choice of space and time meshes follows the principle of “goal-
oriented” adaptivity which is based on a posteriori error estimation employing the
solutions of auxiliary dual problems.
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1. Introduction

For the numerical solution of linear second-order hyperbolic partial differential equations,
e. g. the scalar acoustic wave equation or the elastic wave equation governed by the Lamé-
Navier equations of linear elasticity theory, a broad variety of methods is available in order
to fully discretize the given equations and subsequently solve the discrete systems. Usually
the discretization can be split up into two main components, namely the discretization of
spatial variables and the one with respect to time. In this paper, we will primarily, but
not exclusively, discuss the latter while considering a rather conventional, though adaptive,
spatial discretization. Among the most attractive methods for time discretization are the
so-called “continuous Galerkin” (cf. Bales & Lasiecka [1] and French & Peterson [13]) and
the “discontinuous Galerkin” (cf. Johnson [24], Grote & al. [17]) schemes. For lowest
order, these methods can be identified with certain well-known difference schemes, e. g. the
classical trapezoidal Newmark scheme (see Wood [39, 40] and Hughes [19]), the backward
Euler scheme and the Crank-Nicolson scheme.

The main topic of this paper are methods for “goal-oriented” a posteriori error esti-
mation and mesh-size adaptation such as the “Dual Weighted Residual (DWR)” approach
described in Becker & Rannacher [7] and Bangerth & Rannacher [6]. This method is based
on “weighted” a posteriori error estimates for arbitrary error quantities such as point values
or line integrals and employs the solutions (generalized Green functions or influence func-
tions) of auxiliary “dual” problems. It depends fundamentally on the Galerkin character
of the discretization and guides the optimal adjustment of spatial and temporal mesh sizes
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according to the prescribed “goal” of the computation. However, by the same approach,
a posteriori error estimates can also be obtained with respect to global norms, e. g. the L2-
or energy norm. In view of the aforementioned close relation between low-order Galerkin
methods and finite difference schemes, the DWR approach developed for Galerkin methods
is equally applicable to these finite difference schemes.

The DWR method has already been successfully applied in the construction of local
mesh-size adaptation for various types of nonstationary partial differential equations (see,
e. g., Becker & Rannacher [7], Bangerth & Rannacher [6] and Schmich & Vexler [33]). The
a priori as well as a posteriori error analysis of Galerkin methods for the wave equation
using space-time duality arguments has been initiated by Johnson [24]; see also Bernardi
& Süli [8]. In this context the DWR method has been applied to the wave equation in
Bangerth [2] and Bangerth & Rannacher [5]. Other strategies for mesh adaptation using
heuristic smoothness-based error indicators, such as the “ZZ indicator”, have been proposed
in Li & Wiberg [37] and Schemann & Bornemann [32]. There have been several attempts
to construct a posteriori error estimators for the Newmark scheme during the past decades
(see Romero & Lacoma [31] or Schweizerhof & al. [34]), but so far none of these methods
fits into the DWR framework and uses its advantages.

The material of this survey paper is mainly based on the the articles of Bangerth &
Rannacher [3, 5] and the Diploma theses of Bangerth [2] and Geiger [14]. Its outline is as
follows. Section 2 presents the abstract setting of the continuous wave problem and its
variational formulations. In Section 3, we discuss the spatial and temporal discretization
methods. This includes the equivalence of the Newmark trapezoidal rule to the Crank-
Nicolson scheme and in turn the equivalence of the latter to a certain “continuous Galerkin”,
the so-called “cG(1)” method. Then, Section 4 outlines the DWR method for “goal-oriented”
a posteriori error estimation and mesh adaptation and its use for temporal and spatial
adaptivity in the Galerkin discretization of the linear wave equation. Finally in Section 5
the results of some numerical tests are presented in order to illustrate the potential of the
approach to adaptivity discussed in this paper.

2. The wave equation and its discretization

Throughout this paper, we will consider the second-order hyperbolic PDE system

ρ(x)∂2
t u(x, t) + Au(x, t) = f(x, t) for (x, t) ∈ Ω× I,

u(x, t) = 0 for (x, t) ∈ ∂ΩD × I,
∂A
n u(x, t) = 0 for (x, t) ∈ ∂ΩN × I,

u(x, 0) = u0
0(x) for x ∈ Ω,

∂tu(x, 0) = u1
0(x) for x ∈ Ω,

(2.1)

with a positive density function ρ . Here, I = (0, T ] denotes a finite time interval, Ω is
a bounded convex domain in Rn (n ∈ {1, 2, 3}) which is for simplicity assumed to be a
polygon for n = 2 or a polyhedron for n = 3. Furthermore, ∂ΩD and ∂ΩN are disjoint,
time-independent parts of the boundary of Ω where we prescribe (homogeneous) Dirichlet
and Neumann boundary conditions, respectively. The operator ∂A

n is the usual directional
“normal” derivative associated to the operator A . We assume that ∂ΩD has positive
measure. The case of inhomogeneous Dirichlet conditions uD on ∂ΩD can be treated the



Adaptive Galerkin finite element methods for the wave equation 5

same way by interpreting uD as the trace of a sufficiently differentiable function ũ and
solving the differential equation for v := u− ũ instead of u.

The operator A is assumed to be a second-order, elliptic spatial differential operator with
sufficiently regular coefficients. Representative examples are the (scalar) diffusion operator

Av := −div(a∇v), (2.2)

occurring in the acoustic wave equation, and the (vectorial) Lamé-Navier operator

Av := −µ∆v + (λ+ µ)∇div v, (2.3)

governing the elastic wave equation. In the presence of uniform “weak” or “strong” damping
the wave equation takes the form

ρ(x)∂2
t u(x, t) + γw∂tu(x, t) + γs∂tAu(x, t) + Au(x, t) = f(x, t), (2.4)

with certain constants γw, γs > 0 . In most parts of this paper, we will consider the undamped
case, i.e., set γw = γs = 0 . The possible extension of results obtained for this situation to
the case with damping will be covered by remarks.

Let d be the number of components of the solution function u. For the initial values,
we assume u0

0 ∈ H1
0 (∂ΩD; Ω)d and u1

0 ∈ L2(Ω)d, where H1
0 (∂ΩD; Ω) is the space of all

H1-functions vanishing on ∂ΩD with dual space denoted by H−1(∂ΩD; Ω)d. The source
function f is assumed to be in L2(I;H−1(∂ΩD; Ω)d). The (scalar or vectorial) L2 inner
product and the corresponding norm are denoted by (u, v) and ‖u‖ , respectively, and the
usual 1st-order Sobolev norm by ‖ · ‖1, where no distinction will be made in the notation
between the case of scalar- and vector-valued functions.

From now on, we will use the abbreviations H := L2(Ω)d and V := H1
0 (∂ΩD; Ω)d with

dual space V ∗. With this notation, we define the space-time function spaces

H := L2(I;H), V :=
{
v ∈ L2(I;V )

∣∣ ∂tv ∈ H
}
.

For simplicity the spatial operator A is assumed to satisfy a strong coercivity estimate of
the form

(Av, v) > β‖v‖2
1, u ∈ V, (2.5)

with some constant β > 0. This condition is satisfied for the acoustic and the elastic wave
equation due to the Poincaré and the Korn inequality, respectively. Within this framework,
it is well known that there exists a unique so-called “weak” (or “variational”) solution u ∈
V ∩ C(Ī;V ) of the wave equation (2.1) with first-order time derivative ∂tu ∈ H ∩ C(Ī;H)
and second-order time derivative ∂2

t v ∈ L2(I, V ∗) ; see Lions & Magenes [26], Lions [25],

or Wloka [38]. Hence, for the given data the natural solution space V̂ for problem (2.1) is
defined by

V̂ :=
{
v ∈ V

∣∣ v ∈ C(Ī;V ), ∂tv ∈ C(Ī;H), ∂2
t v ∈ L2(I;V ∗)

}
.

The second-order evolution equation (2.1) may be equivalently written in the form of a
first-order (in time) system for the unknowns u0 := u and u1 := ∂tu:

ρ(x)∂tu
0(x, t)− ρ(x)u1(x, t) = 0 for (x, t) ∈ Ω× I,

ρ(x)∂tu
1(x, t) + Au0(x, t) = f(x, t) for (x, t) ∈ Ω× I,

u0(x, t) = 0 for (x, t) ∈ ∂ΩD × I,
∂A
n u

0(x, t) = 0 for (x, t) ∈ ∂ΩN × I,
u0(x, 0) = u0

0(x) for x ∈ Ω,

u1(x, 0) = u1
0(x) for x ∈ Ω.

(2.6)
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According to the above remarks this system has a unique (weak) solution in the natural

solution space V̂0 × V̂1, where V̂0 := V̂ and

V̂1 :=
{
w ∈ H

∣∣ w ∈ C(Ī;H), ∂tw ∈ L2(I;V ∗)
}
.

The “mixed” formulation (2.6) is the starting point for Galerkin time discretization as
described below, while the “primal” formulation (2.1) is mainly used for finite difference
schemes.

An important feature of the wave equation is the conservation of the total energy

E(t) :=
1

2

{
‖∂tu(t)‖2

M + ‖u(t)‖2
E

}
,

where ‖ · ‖M , ‖ · ‖E are the natural “mass norm” and “energy norm” defined by

‖v‖2
M := (ρv, v), v ∈ H, ‖v‖2

E := (Av, v), v ∈ V.

Indeed, for any weak solution u of (2.1) with no forcing and damping terms, we obtain by
multiplying by ∂tu and observing the boundary conditions that

1

2

d

dt

(
‖∂tu‖2

M + ‖u‖2
E

)
= 0.

Integrating this with respect to time yields

E(t) =
1

2

{
‖∂tu(t)‖2

M + ‖u(t)‖2
E

}
=

1

2

{
‖u1

0‖2
M + ‖u0

0‖2
E

}
= E(0). (2.7)

In the presence of damping for strong solutions an “energy inequality” of the following form
holds true:

E(t) +

t∫
0

{
γw‖∂su(s)‖2 + γs‖∂su(s)‖2

E

}
ds 6 E(0), t > 0. (2.8)

We will investigate in Section 3 to what extent the various discretization schemes preserve
the conservation property (2.7) of the continuous wave equation.

3. Discretization of the wave equation

We begin with an overview of discretization methods for the wave equation. Starting from
the continuous model (2.1) or the equivalent system (2.6) there are essentially three different
ways to discretization indicated in Fig. 3.1

• In the “Method of Lines” at first the spatial variable is discretized, e.g. by a finite
element method, and then the resulting (large) system of ODEs is discretized in time.
This approach has the advantage of simple data structures and matrix assembly, and
that standard methods from ODE numerics may be used for time discretization. The
obvious disadvantage is that the spatial mesh is fixed and therefore adaptation to
time-varying features of the solution is prohibited. This is a critical limitation in
using “goal-oriented” adaptivity, particularly in the case of time-dependent local “goal
quantities”.
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• In the “Rothe Method” at first the time variable is discretized, e.g. by a finite difference
scheme, and then the resulting elliptic PDEs are discretized independently in space.
This approach has the advantage of accommodating dynamic spatial mesh adaptation
but the disadvantage of rather complex data structures and expensive matrix assembly.
In this context the design of higher-order (even second-order) space-time discretization
requires some care. In order to reduce the substantial work caused by the mesh transfer
from one time level to the next, one may employ hierarchically structured spatial
meshes.

• A third option would be to use fully unstructured space-time meshes in a corresponding
space-time Galerkin finite element discretization. This would allow to optimally adapt
the mesh, for instance, to moving fronts in the space-time domain. However, the
practical realization of such a discretization is highly complex, particularly in 3D,
and very cost-intensive due to the complicated transfer of data between unstructured
spatial meshes. Therefore, this approach is only rarely used in practice (see, however,
Dumbser & al. [12] and Castro & al. [10]).

I I I

Ω ΩΩ x

t

x

t

x

t

b) c)a)

F i g. 3.1. Space-time meshes: structured in space (method of lines) (a); structured in time
(Rothe method) (b); unstructured in space and time (c)

Remark 3.1. If the spatial mesh can be kept fixed in time, for space-time Galerkin
methods such as the cG(1)/cG(1) or cG(1)/dG(0) method described below, the “Method of
Lines” and the “Rothe Method” yield equivalent discretizations. In the discussion below, the
Galerkin methods will be considered within the Rothe Method framework, while naturally
finite difference methods such as the Newmark scheme are used within the context of the
Method of Lines.

3.1. Spatial discretization by the Galerkin finite element method. We start
from the “primal” variational equation

m(∂2
t u, ϕ) + a(u, ϕ) = (f, ϕ) ∀ϕ ∈ V, (3.1)

which is satisfied on I by the solution u ∈ V̂ of problem (2.1). Here,

m(v, ϕ) := (ρv, ϕ), a(u, ϕ) := (Au, ϕ)

are symmetric and positive definite bilinear forms, which by continuity are defined on the
entire “energy space” V . We now replace the space V = H1

0 (∂ΩD; Ω)d by a standard finite-
dimensional finite element subspace Vh = Ssh(∂ΩD; Ω) of polynomial degree s (i.e. of order
s+ 1 ) where

Ssh(∂ΩD; Ω) :=
{
vh ∈ C(Ω̄)d

∣∣ vh|K ∈ P (K)d ∀K ∈ Th, vh|∂ΩD
= 0
}
.
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Here, Th = {K} is a decomposition of Ω̄ into non-overlapping triangles or quadrilaterals
in two and tetrahedra or hexahedra in three dimensions satisfying the usual admissibility
conditions (cf. Ciarlet [11] or Brenner & Scott [9]). Further, it is assumed that the decom-
positions Th match the given decomposition ∂Ω = ∂ΩD ∪ ∂ΩN of the boundary. The local
mesh size is hK := diam(K) and h := maxK∈Th

hK . Further, P (K) are certain polyno-
mial spaces containing the full s-degree polynomial spaces Ps(K) or Qs(K) , respectively.
The simplest cases, for s = 1 , are P (K) = P1(K) (“linear” elements) or P (K) = Q1(K)
(“bilinear” elements in 2D); the latter are exclusively used in the numerical examples below.
In this case the cellwise shape functions are constructed by bilinear transformations from a
reference cell K̂ (unit square) to the “physical” cells K ∈ Th .

In the test calculations presented below, we have used either sequences of uniformly
refined rectangular meshes or sequences of locally refined meshes involving “hanging nodes”
at the edges of neighboring cells (see Fig. 3.2). At these “irregular” nodes the nodal values
are eliminated by linear interpolation between the neighboring values at “regular” nodes.
For technical purposes, which will be explained below, it may be preferable to use meshes
composed of 2× 2 patches of cells (see Fig. 3.2).

F i g. 3.2. Refined quadrilateral meshes: uniformly (upper row);
locally (middle row); locally blockwise (lower row)

After having chosen an appropriate local basis {ϕk}Nk=1 of Vh (usually the so-called
“nodal basis”), the spatially semi-discrete formulation of problem (3.1) seeks an approximate
solution in the form

uh(x, t) =
N∑
k=1

yk(t)ϕk(x)

where yk(t) are the (time-dependent) spatial “nodal values” of the finite element function
uh . These are determined by the semi-discrete equation

m(∂2
t uh, ϕ) + a(uh, ϕ) = (f, ϕ) ∀ϕ ∈ Vh, (3.2)

or equivalently by the linear system of ODEs

Mÿ(t) +Ky(t) = F (t), (3.3)
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for the nodal value vector y(t) = (yk(t))
N
k=1 . Here,

M :=
(
m(ϕk, ϕi)

)N
i,k=1

, K :=
(
a(ϕk, ϕi)

)N
i,k=1

are the so-called “mass matrix” and the “stiffness matrix”, respectively, and F :=
(
(f, ϕi)

)N
i=1

is the “force vector”. The initial conditions are given in the form

uh(x, 0) =
N∑
k=1

y0
0kϕk(x), ∂tuh(x, 0) =

N∑
k=1

y1
0kϕk(x),

where y0
0 := (y0

0k)
N
k=1 and y1

0 := (y1
0k)

N
k=1 are the nodal value vectors of the L2 projections

Phu
0
0 and Phu

1
0 in Vh of the initial data u0

0 and u1
0 , respectively, or simply of the corre-

sponding “nodal interpolations” Ihu
0
0 and Ihu

1
0 in Vh . Clearly, with these initial values the

linear system (3.3) possesses a unique solution.
An alternative starting point for semidiscrete formulations begins with the “mixed” vari-

ational system

m(∂tu
0, ϕ1)−m(u1, ϕ1) = 0 ∀ϕ1 ∈ H,

m(∂tu
1, ϕ0) + a(u0, ϕ0) = (f, ϕ1) ∀ϕ0 ∈ V, (3.4)

which is automatically satisfied on I by the pair {u0, u1} where u0 := u and u1 := ∂tu
and u is the solution of (2.1). With the above nodal basis the corresponding spatially
semi-discrete approximation is determined in the form

u0
h(x, t) =

N∑
k=1

y0
k(t)ϕk(x), u1

h(x, t) =
N∑
k=1

y1
k(t)ϕk(x),

by the semi-discrete system

m(∂tu
0
h, ϕ

1)−m(u1
h, ϕ

1) = 0 ∀ϕ1 ∈ Vh,

m(∂tu
1
h, ϕ

0) + a(u0
h, ϕ

0) = (f, ϕ1) ∀ϕ0 ∈ Vh. (3.5)

This is equivalent to the system of ODEs

Mẏ0(t)−My1(t) = 0, Mẏ1(t) +Ky0(t) = F (t). (3.6)

Remark 3.2. We note that due to the regularity of the mass matrix M the system (3.6)
is equivalent to (3.3) and therefore, for any set of initial data, possesses a unique solution as
well. This property depends on the fact that the same finite element ansatz has been chosen
for the variables u0

h and u1
h . This choice also implies that both variables strongly vanish

on ∂ΩD although the original mixed formulation (2.6) did not imply any boundary values
for u1.

3.2. Time discretization by finite difference schemes. We will consider time dis-
cretization by some of the most popular finite difference schemes, namely the “one-step-θ
schemes”, including as special cases the “backward Euler scheme” and the “Crank-Nicolson
scheme”, and then the class of “Newmark schemes”. Here, for notational simplicity, we
restrict ourselves to the “Method of Lines” since below these schemes will turn out to be
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closely related to Galerkin time-stepping schemes which are more natural within the “Rothe
method”. At first, for a sequence of discrete time levels

0 = t0 < t1 < · · · < tm < · · · < tM = T,

we define the time-step lengths km := tm − tm−1 and set k := max
m=1,...,M

km.

3.2.1. The one-step-θ schemes. The first-order system (3.6) is taken as starting point for
the construction of the so-called “one-step-θ schemes”. The approximations at the different
time levels tm are denoted by y0

m and y1
m, respectively. Then, for any parameter value

θ ∈ [0, 1] the classical “one-step-θ scheme” reads as follows:

M(y0
m − y0

m−1)− km
(
θMy1

m + (1−θ)My1
m−1

)
= 0,

M(y1
m − y1

m−1) + km
(
θKy0

m + (1−θ)Ky0
m−1

)
= km

(
θFm + (1−θ)Fm−1

)
. (3.7)

For θ = 0 this scheme corresponds to the “explicit Euler scheme”, for θ = 1 to the “implicit
Euler scheme”,

M(y0
m − y0

m−1)− kmMy1
m = 0, M(y1

m − y1
m−1) + kmKy

0
m = kmFm. (3.8)

and for θ = 1
2

to the “Crank-Nicolson scheme”,

M(y0
m − y0

m−1)− 1
2
km
(
My1

m +My1
m−1

)
= 0,

M(y1
m − y1

m−1) + 1
2
km
(
Ky0

m +Ky0
m−1

)
= 1

2
km
(
Fm + Fm−1

)
. (3.9)

The following properties are well-known from the literature (see Großmann & Roos [16]):

• Stability: The one-step-θ scheme is unconditionally stable in the L2 norm (i.e. without
any condition on the time-step sizes km ) if and only if θ ∈ [1

2
, 1].

• Convergence: The one-step-θ scheme is at least of order one in the time step size k;
order two is achieved only for the choice θ = 1

2
.

• Energy conservation: The one-step-θ scheme is energy conserving only for the choice
θ = 1

2
. For θ > 1

2
energy loss occurs, while for θ < 1

2
the scheme becomes unstable

in the L2 norm.

3.2.2. The Newmark schemes. The system (3.3) of second-order ODEs is taken as starting
point for the construction of the Newmark schemes. This scheme attempts to approximate
y(tm), ẏ(tm), ÿ(tm) by a set of independent variables y0

m, y
1
m, y

2
m, respectively. Using Taylor

expansion up to order three and following the steps described in Wilson [36], one arrives at
the fully discrete Newmark system,

My2
m +Ky0

m = Fm,

y0
m = y0

m−1 + kmy
1
m−1 + 1

2
k2
m

(
(1− 2β)y2

m−1 + 2βy2
m

)
,

y1
m = y1

m−1 + km
(
(1− γ)y2

m−1 + γy2
m

)
, (3.10)

where β and γ are weighting parameters (“Newmark parameters”).
All properties of the Newmark scheme (such as order of convergence, stability, discrete

energy conservation, etc.) depend on the parameters β and γ. This is well known and can
be found in more detail, e. g., in Wood [39, 40] and Hughes [19]. From the literature, we
recall the following facts:
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• Stability: The Newmark scheme is unconditionally stable in the L2 norm (i.e. without
any condition on the time-step sizes km ) if and only if 2β > γ > 1

2
.

• Convergence: The Newmark scheme is at least of order one; the order two is achieved
only for the choice γ = 1

2
.

• Energy conservation: The Newmark scheme is energy conserving only for the choice
γ = 1

2
. For γ > 1

2
energy loss occurs, while for γ < 1

2
the scheme becomes unstable

in the L2 norm.

In view of these properties the choice 2β = γ = 1
2

appears as particularly attractive in the
Newmark scheme and leads to the equations

My2
m +Ky0

m = Fm,

y0
m = y0

m−1 + kmy
1
m−1 + 1

4
k2
m

(
y2
m−1 + y2

m

)
,

y1
m = y1

m−1 + 1
2
km
(
y2
m−1 + y2

m

)
. (3.11)

This configuration is known as the “average acceleration method” (c.f. Hughes [19]) or
the “Newmark trapezoidal rule”. Below, we will demonstrate that this scheme is closely
related to the Crank-Nicolson scheme described above. The restrictions imposed on the
parameters β and γ are sharp, as can easily be verified through simple test problems. For
a computational comparison of these methods, we refer to Goudreau & Taylor [15].

Remark 3.3. In order to apply the DWR method, it is crucial to start with a Galerkin
formulation of the underlying method. Schweizerhof & al. [34] have derived an interpretation
of the Newmark scheme as a Petrov-Galerkin method, for a special choice of the Newmark
parameters. However, this Petrov-Galerkin approach is not satisfactory in the DWR frame-
work, because the space of test functions resulting from the construction is merely the linear
hull of one single quadratic polynomial. Hence, this interpretation yields no possibility to
exploit Galerkin orthogonality, which is an essential feature of the DWR method.

Numerical tests. In order to illustrate the importance of the above restrictions on the
parameters β and γ , we consider a simple test problem, namely the one-dimensional wave
equation

∂2
t u(x, t)− ∂2

xu(x, t) = 2t cos
(

1
2
πx
)
− 1

12
π2 cos

(
1
2
πx
)

(3.12)

on the space-time region (−1, 1) × (0, 1] , with initial conditions chosen so that the exact
solution is u(x, t) = 1

3
t3 cos

(
1
2
πx
)

. For three different choices of the parameters, we show
the behavior of the terms ‖∂x(u(T ) − y0

M)‖ and ‖∂tu(T ) − y1
M‖ at the final time tM =

T = 1 as functions of the number of time steps. As predicted, for β = 3
10
, γ = 7

10
, we

observe instability (Fig. 3.3), for β = 1, γ = 9
10

first-order convergence (Fig. 3.4) and for
β = 1

4
, γ = 1

2
second-order convergence (Fig. 3.5).

Finally, we consider the homogeneous version of the wave equation (3.12) on the space-
time region (0, 1) × (0, 5] with the exact solution u(x, t) = sin(πx) sin(πt). For this model
the exact total energy is E(t) = 1

2
π2 ≈ 4.9348. The behavior in time of the approximate

energy is shown in Fig. 3.6. Again as predicted, for γ = 1
2
, we observe perfect energy

conservation while for γ < 1
2

energy decay occurs and for β < 1
2
γ the scheme is rendered

unstable.
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F i g. 3.3. Newmark scheme (β = 3
10 , γ = 7

10 ): instability

F i g. 3.4. Newmark scheme (β = 1, γ = 9
10 ): first-order convergence

F i g. 3.5. Newmark trapezoidal scheme (β = 1
4 , γ = 1

2 ): second-order
convergence. For very small time steps, the spatial error on the order

of 10−5 dominates
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F i g. 3.6. Newmark scheme for different values of the parameters γ and β:
energy conservation and stability properties over 6 400 time steps

3.2.3. Relation between the Newmark and the Crank-Nicolson scheme. Our next goal
is to formally establish the algebraic equivalence of the Crank-Nicolson and the trapezoidal
Newmark scheme (3.11) obtained from the general Newmark scheme (3.10) by the particular
choice γ = 2β = 1

2
. In view of a remark given at the end of this section, let us show the

derivation for the slightly more general case γ = 2β. We will later specialize this for γ = 1
2
.

Following this, we will give a brief outline of the opposite derivation, i.e. how to obtain the
Newmark scheme from the Crank-Nicolson method.

For our considerations, let us start with the general Newmark system (3.10) and fixing
γ = 2β. Multiplying the second and third equations by the mass matrix M then yields

My2
m = Fm −Ky0

m,

My0
m = My0

m−1 + kmMy1
m−1 + 1

2
k2
m

{
(1− γ)My2

m−1 + γMy2
m

}
,

My1
m = My1

m−1 + km
(
(1− γ)My2

m−1 + γMy2
m

)
.

We can use the third equation to replace the term in braces in the second equation. We
then use the first equation evaluated at time levels tm and tm−1 to eliminate the remaining
occurrences of y2

m and y2
m−1 . This results in

My0
m = My0

m−1 + kmMy1
m−1 + 1

2
km
(
My1

m −My1
m−1

)
,

My1
m = My1

m−1 + km
(
(1− γ)(Fm−1 −Ky0

m−1) + γ(Fm −Ky0
m)
)
.

From this, we obtain by simple transformations the system

My0
m = My0

m−1 + 1
2
km(My1

m−1 +My1
m),

My1
m = My1

m−1 + km
(
((1− γ)Fm−1 + γFm)− ((1− γ)Ky0

m−1 + γKy0
m)
)
. (3.13)

Here, the first equation already has a trapezoidal rule structure, whereas the second one is
a kind of weighted trapezoidal rule or, more precisely, a convex combination of F and Ky
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between tm−1 and tm. If we now take γ = 1
2

(which implies β = 1
4

and therefore leads to
the “trapezoidal” Newmark scheme), we finally come to the desired result

My0
m − 1

2
kmMy1

m = My0
m−1 + 1

2
kmMy1

m−1,

My1
m + 1

2
kmKy

0
m = My1

m−1 − 1
2
kmKy

0
m−1 + 1

2
km(Fm−1 + Fm). (3.14)

Obviously, this system is equivalent to the Crank-Nicolson scheme (3.9).

Now, we sketch how to obtain the Newmark trapezoidal rule (3.11) from the Crank-
Nicolson equations (3.9). As we have seen before, the Crank-Nicolson scheme can also be
directly deduced from the two-component system (3.6). Therefore it is essential that we
discretize both components using the same basis {ϕk(x)}Nk=1 of the spatial finite element
space Vh ⊂ V . By simple algebraic manipulations of equations (3.9), we obtain the following
system:

My0
m −My0

m−1 − kmMy1
m−1 = 1

2
km(My1

m −My1
m−1),

My1
m −My1

m−1 = 1
2
km(Fm−1 + Fm −Ky0

m−1 −Ky0
m).

Now the only problem is the absence of a variable y2
m . We can introduce such a variable by

setting

My2
m := Fm −Ky0

m, (3.15)

which simply comes from the spatially semi-discrete system (3.3), and replacing occurrences
of Fm − Kym in the Crank-Nicolson scheme by My2

m . Here again it is crucial to use the
same basis {ϕk}Nk=1 of Vh as above, because otherwise the mass matrices in (3.15) and in
the Crank-Nicolson scheme (3.14) would not be the same. Once we have taken into account
equation (3.15), we immediately obtain the trapezoidal Newmark rule (3.11).

Remark 3.4. It can be shown without any difficulty that the equivalence between the
Crank-Nicolson scheme and the Newmark trapezoidal rule still holds true if we add damping
to the underlying PDE system. In particular, the cases of weak damping (corresponding to
a damping term ∂tu(x, t) ) and strong damping (realized by adding ∂tAu(x, t) ) are possible,
where in the latter case the assumptions about the spaces for the data and the solution have
to be properly adjusted.

Remark 3.5. Other choices of the parameters γ and β also lead to variants of the
Newmark scheme that can be re-interpreted as widely used finite difference schemes. For
example, for γ = 2β = 1 the equations for y0 and y1 take the structure of the Crank-
Nicolson and the implicit Euler scheme, respectively. We could arrive at this scheme by
allowing two different values θ0, θ1 in the two equations of system (3.7) and choosing θ0 =
1
2
, θ1 = 1 (in general, every Newmark scheme with γ = 2β can be written as a one-step-θ

scheme with θ0 = 1
2
, θ1 = γ, as is obvious by comparing (3.13) with (3.7)). As we will

see below, the two schemes mentioned are in fact related to continuous and discontinuous
Galerkin schemes. Consequently, the rich error estimation theory available for (Petrov-)
Galerkin methods can also applied to this version of the Newmark scheme.

3.3. Time discretization by the Galerkin finite element method. After dis-
cussing two of the traditional finite difference schemes for time discretization of the spatially
semi-discretized wave equation, let us now turn our attention to Galerkin methods for time
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discretization. These time discretizations are usually based on a variational form of the
mixed formulation (2.6) of the wave equation,

ρ∂tu
0 − ρu1 = 0 in Ω× I,

ρ∂tu
1 + Au0 = f in Ω× I, (3.16)

for the pair {u0, u1} = {u, ∂tu} with the boundary and initial conditions remaining as in
(2.6). In order to set up corresponding variational formulations for the pairs ū := {u0, u1} ∈
V×H we use (non-overlapping) decompositions

I =
M⋃
m=1

Im

of the time interval I = (0, T ] into half-open subintervals Im := (tm−1, tm] of length km :=
tm − tm−1. We set k := maxm=1,...,M km and introduce the space-time scalar products

((ϕ, ψ)) :=
M∑
m=1

∫
Im

(ϕ, ψ) dt, m((ϕ, ψ)) :=
M∑
m=1

∫
Im

m(ϕ, ψ) dt, a((ϕ, ψ)) :=
M∑
m=1

∫
Im

a(ϕ, ψ) dt.

Then, the system (2.6) is equivalent to the following variational problem: Find a pair

{u0, u1} ∈ V̂0 × V̂1 satisfying

m((∂tu
0, ϕ1))−m((u1, ϕ1)) +m(u0(0), ϕ1(0)) = m(u0

0, ϕ
1(0)),

m((∂tu
1, ϕ0)) + a((u0, ϕ0)) +m(u1(0), ϕ0(0)) = m(u1

0, ϕ
0(0)) + ((f, ϕ0)), (3.17)

for all {ϕ1, ϕ0} ∈W×W, where the test space is taken as

W :=
{
v ∈ L2(I;V )

∣∣ v|Im ∈ C(Īm;V ), m = 1, . . . ,M
}
.

Here, the notation v|Im ∈ C(Īm;V ) means that v|Im possesses a continuous continuation
to the closure Īm of Im. In this formulation the initial conditions are imposed in the weak
sense. In the following, we will first discretize in time and only then in space, i.e. we will
follow the Rothe approach to fully discretized systems.

3.3.1. The “continuous-in-time” Galerkin (cG(r)) schemes. Let Pr(In;V ) denote the
space of all polynomial functions of maximum degree r on In with values in V . For
the time discretization of system (3.17), we introduce the following two finite dimensional
subspaces of L2(I;V ), for r ∈ N :

Sr,ck (I;V ) :=
{
p ∈ C(Ī;V )d

∣∣ p|Im ∈ Pr(Im;V )d, m = 1, . . . ,M
}
,

which will be the space of continuous trial functions for the time-discrete variational formu-
lation, and

Sr−1,d
k (I;V ) :=

{
p ∈ L2(I;V )d

∣∣ p|Im ∈ Pr−1(Im;V )d, m = 1, . . . ,M
}
,

which will be the space of discontinuous test functions. Here, the superscripts “c” and “d”
refer to the continuity or discontinuity of trial and test functions at time instants tm , re-
spectively. In the description of the time-discretization schemes, we will use the abbreviated
notation Vk := Sr,ck (I;V ) and Wk := Sr−1,d

k (I;V ) . Clearly, there holds

Vk ⊂ V, Wk ⊂W.
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Remark 3.6. In general, we will assume the test functions to be globally discontinuous
in time, and on each subinterval of one polynomial order lower than the (globally continuous)
trial functions, because one degree of freedom per subinterval of the trial functions is already
fixed by the global continuity condition. By the different polynomial order, we are thus led
to a quadratic system of equations, and by the lacking continuity of the test functions
the system can be decoupled at each full time step. Hence the resulting scheme may be
reinterpreted as a time-stepping method.

With the spaces defined above the time-discrete variational problem seeks a pair {u0
k, u

1
k} ∈

Vk×Vk satisfying

m((∂tu
0
k, ϕ

1))−m((u1
k, ϕ

1)) +m(u0
k(0), ϕ1(0)) = m(u0

0, ϕ
1(0)),

m((∂tu
1
k, ϕ

0)) + a((u0
k, ϕ

0)) +m(u1
k(0), ϕ0(0)) = m(u1

0, ϕ
0(0)) + ((f, ϕ0)), (3.18)

for all test pairs {ϕ1, ϕ0} ∈ Wk×Wk . By adding up the two equations (3.18), we obtain a
compact expression for the semi-discrete equations: Find ûk = {u0

k, u
1
k} ∈ Vk×Vk satisfying

A(ûk, ϕ) = F (ϕ) ∀ϕ = {ϕ1, ϕ0} ∈Wk×Wk, (3.19)

with the bilinear form and force term defined, respectively, as follows:

A(ûk, ϕ) :=m((∂tu
0
k, ϕ

1))−m((u1
k, ϕ

1)) +m(u0
k,0, ϕ

1
0) +m((∂tu

1
k, ϕ

0)) + a((u0
k, ϕ

0)) +m(u1
k,0, ϕ

0
0),

F (ϕ) := m(u0
0, ϕ

1
0) +m(u1

0, ϕ
0
0) + ((f, ϕ0)).

This time discretization may be viewed as a Petrov-Galerkin method with test space Wk×Wk

different from the trial space Vk×Vk. We note that the discretization (3.19) is strongly
consistent with the continuous problem in mixed formulation (2.6), i.e., the exact solution

û := {u0, u1} = {u, ∂tu} ∈ V̂0×V̂1 automatically satisfies

A(û, ϕ) = F (ϕ), ϕ ∈Wk×Wk, (3.20)

and therefore the following “Galerkin orthogonality” relation holds:

A(û−ûk, ϕ) = 0, ϕ ∈Wk×Wk. (3.21)

To discretize equation (3.19) in space, we replace the continuous space V in the definition
of the above trial and test spaces by the finite element space Vh defined above. Here, for
notational simplicity, we restrict ourselves to the “Method of Lines” approach, i. e., the finite
element space Vh is kept the same over the whole time interval I . Then, using the fully
discrete spaces

Vhk := Sr,ck (I;Vh), Whk := Sr−1,d
k (I;Vh)

the resulting fully discrete problem seeks a pair U = {U0, U1} ∈ Vhk×Vhk satisfying

m((∂tU
0, ϕ1))−m((U1, ϕ1)) +m(U0

0 , ϕ
1
0) = m(u0

0, ϕ
1
0),

m((∂tU
1, ϕ0)) + a((U0, ϕ0)) +m(U1

0 , ϕ
0
0) = m(u1

0, ϕ
0
0) + ((f, ϕ0)), (3.22)

for all test pairs ϕ = {ϕ1, ϕ0} ∈ Whk×Whk. As above these equations can be written in
compact form: Find U ∈ Vhk×Vhk satisfying

A(U,ϕ) = F (ϕ) ∀ϕ ∈Whk×Whk. (3.23)
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It is easy to show that the conservation property carries over to the solution U of the spatially
discretized equations provided that the meshes do not change between time levels.

Fully discrete problems written in the form (3.22) or (3.23) possess unique solutions. We
do not give this argument for general polynomial degree r ∈ N but refer to the relevant
literature (Johnson [24], Bales & Lasiecka [1] and French & Peterson [13]). For the lowest-
order case r = 1 this follows from the equivalence of this particular Galerkin method to the
well-known Crank-Nicolson scheme, which will be established below.

In shorthand notation, the full discretization of the wave equation represented by (3.23) is
denoted as the cG(s)/cG(r) method where “cG” stands for “continuous Galerkin” (i.e. con-
tinuous trial functions) and s, r ∈ N refer to the local polynomial degrees of the trial
functions in space and time, respectively. Below, we will focus on the simplest version of this
method, namely the cG(1)/cG(1) method, which uses continuous piecewise linear/n-linear
trial functions in space as well as in time. This discretization is of total second order and
admits a priori error estimates of the form

sup
t∈I

{
‖(u0 − U0)(t)‖+ ‖(u1 − U1)(t)‖

}
= O(h2 + k2), (3.24)

provided that the continuous solution of problem (2.1) is sufficiently smooth (see French &
Peterson [13]).

Remark 3.7. Below, it will be shown that if the forcing term is zero or constant in time,
the cG(1)/cG(1) method is algebraically equivalent to the Crank-Nicolson scheme. We have
already seen that the latter in turn is equivalent to the trapezoidal Newmark scheme provided
that the same finite element basis is used in the spatial discretization. Hence, any result
known for one of these discretization methods immediately carries over to the other two
schemes. Since here the order of the spatial finite element ansatz does not explicitly occur,
the above arguments also hold for general cG(s)/cG(1) methods with s ∈ N.

Remark 3.8. The Rothe method underlying an adaptive space-time discretization first
discretizes in time and leaves the task of spatial discretization as a second step. This opens
up the possibility of using different finite element meshes for different time steps, for example
to resolve a wave front that moves through the domain. In this context, the use of tensor-
product space-time meshes is advisable in order to facilitate the separate local adaptation
of spatial and temporal mesh sizes. However, this is not without practical difficulties: In
the cG(r) time discretization the trial functions have to be continuous in time. For tensor-
product space-time meshes this limits the flexibility in adapting the spatial meshes (general
“remeshing” or cell shifting is prohibited) and requires the introduction of spurious “hanging
nodes” in the spatial meshes Tm

h (see Fig. 3.2). In these “irregular” nodal points the
unknowns are eliminated by interpolating values at neighboring “regular” nodal points.
Accordingly, in the time slabs Ω̄ × Im the trial functions are defined on spatial meshes
which are combinations of the meshes Tm−1

h and Tm
h at the two end points tm−1 and tm.

In contrast to that, the “test functions”, which are allowed to be discontinuous in time, are
defined in the time slabs Ω̄×Im on the spatial meshes corresponding to Tm

h , i.e. the meshes
at the right end points tm. Furthermore, in this discretization temporal trial functions have
support in both time intervals Im, Im+1 adjacent to time instants tm. On each time interval
Im, the trial functions defined at time instant tm−1 therefore overlap with test functions
defined at time instant tm, which implies that we also have to form space-time integrals
of trial functions from P r(Im, V

m−1
h ) defined on a mesh Tm−1

h times test functions from
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P r−1(Im, V
m
h ) defined on a mesh Tm

h . This integration could be done on a subdivision of Ω
that consists of the “union” of the two triangulations,

Tm−1,m
h :=

{
ω = K ∩K ′

∣∣ K ∈ Tm−1
h , K ′ ∈ Tm

h , K ∩K ′ 6= ∅
}
.

In two dimensions this set is the subdivision of Ω̄ by the union of mesh lines of Tm−1
h

and Tm
h . On the other hand, due to the irregular structure of the elements of Tm−1,m

h ,
computations are only feasible with reasonable effort if the grids Tm−1

h and Tm
h are related

in some way. The only choice of meshes that allows to evaluate such integrals efficiently
involves hierarchically refined grids where Tm−1,m

h is the set of most refined cells from the two
grids. Details on the practical implementation of such approaches can be found in Bangerth
[2], Bangerth & Rannacher [3,5] and Schmich & Vexler [33]; see also Süli & Wilkins [35] and
Bernardi & Süli [8].

3.3.2. Relation between the cG(1)/cG(1) and Crank-Nicolson schemes. Due to the dis-
continuity in time of the test functions, the global space-time problem (3.22) can be written
in the form of a time-stepping scheme. Let us now consider the case r = 1 , i.e. trial functions
are linear in time. Starting from the L2 projections into Vh of the initial values u0

0, u
1
0 , the

local problem on the subinterval Im = (tm−1, tm] reads∫
Im

{
m(∂tU

0, ϕ1)−m(U1, ϕ1)
}

dt = 0 ∀ϕ1 ∈ P0(Im;Vh)
d,∫

Im

{
m(∂tU

1, ϕ0) + a(U0, ϕ0)
}

dt

∫
Im

(f, ϕ0) dt ∀ϕ0 ∈ P0(Im;Vh)
d.

With the nodal basis {ϕ1, . . . , ϕN} of the spatial finite element space Vh, the linear-in-time
trial function U = {U0, U1} on Im can be written as

U j(x, t)|Im =
N∑
k=1

{
yjm−1,k + k−1

m (t− tm−1)(yjm,k − y
j
m−1,k)

}
ϕk(x), j ∈ {0, 1}.

Here, yjm,k and yjm−1,k are the nodal values of U j at the time levels tm−1 and tm, where

yjm−1,k is known from the previous time step. Inserting this trial function into the above
equations and testing successively with the basis functions ϕi, i = 1, . . . , N , we obtain the
following fully discrete equations for the first component,

N∑
k=1

(y0
m,k − y0

m−1,k)m(ϕk, ϕi)−
1

2
km

N∑
k=1

y1
m−1,km(ϕk, ϕi)−

1

2
km

N∑
k=1

y1
m,km(ϕk, ϕi) = 0, i = 1, . . . , N,

and analogously for the second component,

N∑
k=1

(y1
m,k − y1

m−1,k)m(ϕk, ϕi) +
1

2
km

N∑
k=1

y0
m−1,ka(ϕk, ϕi)+

1

2
km

N∑
k=1

y0
m,ka(ϕk, ϕi) =

∫
Im

(f, ϕi) dt, i = 1, . . . , N.



Adaptive Galerkin finite element methods for the wave equation 19

With the above notation for the mass and stiffness matrices, M = (m(ϕk, ϕi))
N
i,k=1 and

K = (a(ϕk, ϕi))
N
i,k=1 respectively, and the force vector F = (f, ϕi)

N
i=1 , this can be written

in a more compact way as

My0
m−1

2
kmMy1

m=My0
m−1+1

2
kmMy1

m−1, My1
m+1

2
kmKy

0
m=My1

m−1−1
2
kmKy

0
m−1+

∫
Im

F (t)dt.

(3.25)
From these equations it is evident that the cG(1)/cG(1) method can be regarded as a time-
stepping scheme, which for zero forcing, i.e. f ≡ 0 , coincides with the Crank-Nicolson scheme
(trapezoidal rule) applied to the spatially semi-discrete variational system (3.6). In the case
of non-zero forcing this equivalence is only modulo the evaluation of the time-integral on the
right-hand side by the trapezoidal rule, i.e. up to a term of higher order O(k3) .

3.3.3. The “discontinuous-in-time” Galerkin (dG(r)) schemes. An alternative to the
choice of continuous-in-time trial functions is the “discontinuous” Galerkin method that uses
trial as well as test functions that may be discontinuous across time points tm. Continuity
of the solution is then enforced in the variational sense for the limit k → 0. We introduce
the notation

v±m = lim
s↘0

v(x, tm ± s), [vm] = v+
m − v−m,

for the one-sided limits of piecewise continuous functions and the corresponding “jumps” at
the discrete time points tm (see Fig. 3.7).

[vm]

v−m

v+
m

tm tm+1tm−1

F i g. 3.7. Left/right limit and jump in the lowest-order dG(0) method

The starting point for formulating the dG(r) time discretization is again the mixed vari-
ational formulation (3.17). We will use the time-discrete spaces

Sr,dk (I;V ) =
{
p ∈ L2(I;V )d

∣∣ p|Im ∈ Pr(Im;V )d, m = 1, . . . ,M
}
,

and in abbreviated notation Vk := Sr,dk (I;V ). Then, the time-discrete variational problem
seeks a pair {u0

k, u
1
k} ∈ Vk × Vk satisfying

m((∂tu
0
k, ϕ

1
k)) +

M−1∑
m=1

m([u0
k,m], ϕ1,+

k,m)−m((u1
k, ϕ

1
k)) +m(u0,+

k,0 , ϕ
1,+
k,0 ) = m(u0

0, ϕ
1,+
k,0 ),

m((∂tu
1
k, ϕ

0
k)) +

M−1∑
m=1

m([u1
k,m], ϕ0,+

k,m) + a((u0
k, ϕ

0
k)) +m(u1,+

k,0 , ϕ
0,+
k,0 ) = m(u1

0, ϕ
0,+
k,0 ) + ((f, ϕ0

k)),

(3.26)
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for all test pairs {ϕ1, ϕ0} ∈Wk ×Wk, where in this particular case we can take Wk := Vk.
Again by adding up the two equations (3.26), we obtain a compact expression for the semi-
discrete equations: Find uk ∈ Vk×Vk satisfying

A(uk, ϕ) = F (ϕ) ∀ϕ = {ϕ1, ϕ0} ∈ Vk×Vk, (3.27)

with the bilinear form and force term defined, respectively, as follows:

A(uk, ϕ) := m((∂tu
0
k, ϕ

1
k)) +

M−1∑
m=1

m([u0
k,m], ϕ1,+

k,m)−m((u1
k, ϕ

1
k)) +m(u0,+

k,0 , ϕ
1,+
k,0 )+

m((∂tu
1
k, ϕ

0
k)) +

M−1∑
m=1

m([u1
k,m], ϕ0,+

k,m) + a((u0
k, ϕ

0
k)) +m(u1,+

k,0 , ϕ
0,+
k,0 ),

F (ϕ) := m(u0
0, ϕ

1,+
k,0 ) +m(u1

0, ϕ
0,+
k,0 ) + ((f, ϕ0

k)).

We note that the discretization (3.27) again is strongly consistent with the continuous prob-

lem in mixed formulation (2.6), i.e., the exact solution û := {u0, u1} = {u, ∂tu} ∈ V̂0 × V̂1

also automatically satisfies

A(û, ϕ) = F (ϕ), ϕ ∈Wk×Wk, (3.28)

and therefore the following “Galerkin orthogonality” relation holds:

A(û− uk, ϕ) = 0, ϕ ∈Wk×Wk. (3.29)

To discretize equations (3.26) in space, we again replace the continuous space V in the
definition of the above trial and test spaces by the finite element space Vh defined above.
Since the trial as well as the test functions in the dG(r) method may be discontinuous in
time it is natural to allow the spatial finite element spaces to be different on each of the
subintervals Im, which is indicated by V m

h using the additional superscript m. Accordingly,
we introduce the fully discrete function space

Vhk :=
{
ϕ ∈ Sr,dk (I;V )

∣∣ ϕ|Im ∈ Pr(Im;V m
h )d, m = 1, . . . ,M

}
.

Referring to Remark 3.8, in each time slab Ω̄× Im the “trial” as well as the “test” functions
are defined on a common spatial mesh Tm

h , which corresponds to that from the right end
point tm.

Then, the resulting fully discrete problem seeks a pair {U0, U1} ∈ Vhk × Vhk satisfying

m((∂tU
0
k , ϕ

1
k)) +

M−1∑
m=1

m([U0
k,m], ϕ1,+

k,m)−m((U1
k , ϕ

1
k)) +m(U0,+

k,0 , ϕ
1,+
k,0 ) = m(U0

0 , ϕ
1,+
k,0 ),

m((∂tU
1
k , ϕ

0
k)) +

M−1∑
m=1

m([U1
k,m], ϕ0,+

k,m) + a((U0
k , ϕ

0
k)) +m(U1,+

k,0 , ϕ
0,+
k,0 ) = m(U1

0 , ϕ
0,+
k,0 ) + ((f, ϕ0

k)),

(3.30)
for all test pairs {ϕ1, ϕ0} ∈ Whk ×Whk where again we can take Whk := Vhk . As above,
these equations can be written in compact form: Find U = {U0, U1} ∈ Vhk×Vhk satisfying

A(U,ϕ) = F (ϕ) ∀ϕ = {ϕ1, ϕ0} ∈ Vhk×Vhk. (3.31)
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It can be shown that the fully discrete problems written in the form (3.30) or (3.31) possess
unique solutions. For the lowest-order case r = 0 this follows from the equivalence of
this particular Galerkin method to the well-known backward Euler scheme, which will be
established below.

The full discretization of the wave equation represented by (3.31) is denoted as the
cG(s)/dG(r) method where “dG” stands for “discontinuous Galerkin” (i.e. trial and test
functions discontinuous in time) and s, r ∈ N refer to the local polynomial degrees of the
trial functions in space and time, respectively. Below, we will focus on the simplest version of
this method, namely the cG(1)/dG(0) method, which uses trial and test functions which are
continuous piecewise linear/n-linear in space and discontinuous piecewise constant in time.
This discretization is of second order in space but only of first order in time and admits a
priori error estimates of the form

sup
t∈I

{
‖(u0 − U0)(t)‖+ ‖(u1 − U1)(t)‖

}
= O(h2 + k), (3.32)

provided that the continuous solution of problem (2.1) is sufficiently smooth (see Johnson
[24] and Hughes & Hulbert [20]).

Remark 3.9. Following Remark 3.8, one may think that the dG(r) method is better
suited to choosing different meshes in different time steps since both trial and test functions
are now entirely localized to individual time intervals, and functions defined on different
meshes do no longer overlap in time. However, this is not so: System (3.30) calls for the
integration of the jump terms [U i

k,m], i = 0, 1 against test functions ϕi,+k,m. Such terms
also combine functions defined on different meshes if the mesh changes at time instant tm,
resulting in the same difficulties encountered with the cG(r) method.

3.3.4. Relation between the cG(1)/dG(0) and backward Euler schemes. The trial and
test functions in the cG(1)/dG(0) method are piecewise constant in time. Hence setting
U i(tm) = U i

m−1, we have that U i|Im = U i
m, and further U̇ i ≡ 0 for i ∈ {0, 1}. This implies

for m = 1, . . . ,M the identities

U i,−
m = U i

m−1, U i,+
m = U i

m, [U i
m] = U i

m − U i
m−1.

Here, we set U i,−
0 equal to the corresponding initial value ui0. With these identities, (3.30)

takes on the following form for m = 1, . . . ,M :

m(U0
m, ϕ

1)−
∫
Im

m(U1
m, ϕ

1) dt = m(U0
m−1, ϕ

1),

m(U1
m, ϕ

0) +

∫
Im

a(U0
m, ϕ

0) dt =

∫
Im

(f, ϕ0) dt+m(U1
m−1, ϕ

0), (3.33)

for all ϕ ∈ P0(Im;Vh)
d×P0(Im;Vh)

d. Hence with the above notation for the mass and stiffness
matrices, M = (m(ϕk, ϕi))

N
i,k=1 and K = (a(ϕk, ϕi))

N
i,k=1 respectively, and the force vector

F = (f, ϕi)
N
i=1 this can be written more compactly as

MU0
m − kmMU1

m = MU0
m−1, MU1

m + kmKU
0
m = MU1

m−1 +

∫
Im

F (t) dt. (3.34)
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From these equations it is evident that the cG(1)/dG(0) method can be regarded as a time
stepping scheme, which for zero forcing, i.e. f ≡ 0 , coincides with the backward Euler scheme
applied to the spatially semi-discrete variational system (3.6). In the case of non-zero forcing
this equivalence is only modulo the evaluation of the time-integral on the right-hand side by
the box rule, i.e. up to a term of higher order O(k2) .

Remark 3.10. As mentioned in Remark 3.5, the Newmark scheme for γ = 2β = 1
is algebraically equivalent to a combination of the Crank-Nicolson and the backward Euler
scheme applied separately to u0 and u1 . Hence, thanks to the equivalence of the Crank-
Nicolson scheme to the cG(1) scheme and that of the backward Euler scheme to the dG(0)
scheme, for this particular choice of parameters the Newmark scheme turns out to be equiv-
alent to a (Petrov-)Galerkin method in time.

3.4. Comparison of the different discretization methods. Table 3.1 gives an
overview of the theoretical convergence behavior of the different discretization methods
introduced above, measured in terms of the “end-time” error norm ‖(u0 − U0)(T )‖ +
‖(u1 − U1)(T )‖. This is well confirmed by the results shown in Fig. 3.8, using numer-
ical tests for a spatially two-dimensional model problem with exact solution u(x, y, t) =
sin(πt) cos(1

2
πx) cos(1

2
πy) on the space-time region (−1, 1)2 × (0, 1].

T a b l e 3.1. Order of convergence of the different methods with re-
spect to the error norm ‖(u0 − U0)(T )‖+ ‖(u1 − U1)(T )‖

Method cG(1)/dG(0) cG(1)/cG(1) Newmark Newmark
backward Euler Crank-Nicolson γ 6= 0.5 γ = 0.5

Order O(h2 + k) O(h2 + k2) O(h2 + k) O(h2 + k2)

1e-04

0.001

0.01

0.1

1

10 100

Error

Number of time steps

cG(1)/dG(0)
cG(1)/cG(1)

NM(β = 0.25, γ = 0.5)
NM(β = 1, γ = 0.9)

F i g. 3.8. Comparison of orders of convergence of the different time-
stepping schemes on spatial meshes with 4, 096 cells: linear convergence of
cG(1)/dG(0) and Newmark (β = 1, γ = 0.9) schemes, quadratic convergence
of cG(1)/cG(1) and Newmark (β = 0.25, γ = 0.5) scheme. The curves for
the cG(1)/cG(1) and the Newmark (β = 0.25, γ = 0.5) scheme coincide, as
expected. At error level 0.001 the spatial discretization error becomes domi-

nant



Adaptive Galerkin finite element methods for the wave equation 23

4. A posteriori error estimation and mesh adaptation
in space and time

4.1. The general framework. The main subject of this article is the a posteriori error
control and step-size adaptation in the Galerkin discretization of the wave equation. Be-
cause of the superior approximation properties of the cG(1)/cG(1) method for the wave
equation (second-order accuracy, energy conservation, unconditional stability, etc.) com-
pared to the cG(1)/dG(0) method, this method will be discussed further in detail in the
context of adaptivity. The cG(1)/dG(0) method will only briefly be treated in remarks. In
view of the algebraic equivalence of the cG(1)/cG(1) method to the Crank-Nicolson and
the trapezoidal Newmark schemes the results described below directly carry over to these
particular finite difference schemes. Higher-order cG(s)/cG(r) methods can be analyzed by
the same arguments with analogous results.

In practice, one is often not interested in the calculated solution itself but rather in
derived quantities that can be computed from it. We will here assume that a single scalar
is the goal of the numerical simulation. For example, this may be a certain norm of the
solution, e. g. the global L2- or energy norm at the final time T , the energy at a given time
point, the energy flow through a curve Γ within the given domain Ω, or even simply a point
value of the solution. Each of these quantities of interest can be thought to be obtained by
applying a certain “output functional” J(·) to the solution. In the general case of nonlinear
output functionals one has to carry out a linearization, which is described in detail in Becker
& Rannacher [7] within the “Dual Weighted Residual” (DWR) method for a posteriori error
estimation and mesh-size adaptation in the Galerkin finite element approximation of general
nonlinear variational equations. In the following, for notational simplicity, we will only
consider linear output functionals, which are given in the form J(ϕ) := j0(ϕ0)+j1(ϕ1). The
goal is the computation of J(u), but only J(U) is available; due to the assumed linearity,
we can then estimate the error in this quantity by considering J(u)−J(U) = J(u−U).

Note that this general formalism can also be used for certain special cases such as the L2

error at the end-time,
J(u−U) := ‖(u0−U0)(T )‖.

Though the latter functional is nonlinear it can be fitted into the present framework by
assuming that a sufficiently good approximation ê0 to (u0 − U0)(T ) is known (for example
obtained by extrapolation from preceding refinement levels) and then setting

J(ϕ) :=
(
ê0, ϕ0(T )

)
/‖ê0‖.

For the derivation of a posteriori error estimates for the fully discrete solution U := Ukh
we recall the following useful abstract theorem, which is a generalization of a similar result in
Becker & Rannacher [7]; see Schmich & Vexler [33] and Meidner [29]. Though the examples
presented below in Section 5 are linear, i.e., they involve linear operators and linear output
functionals, the abstract theory in this section covers the most general nonlinear situation,
in order to prepare for subsequent work.

Proposition 4.1. Let X be a function space and L : X → R a three times Gâteaux
differentiable functional. We seek a stationary point x̂ of L in a subspace of (“continuous”)
solutions X̂ ⊂ X, i. e., we seek x̂ ∈ X̂ that satisfies

L′(x̂)(ϕ) = 0 ∀ϕ ∈ X̂. (4.1)
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This equation is approximated by a Galerkin method in a finite dimensional (“discrete”)
subspace Xd ⊂ X, where we do not necessarily assume that Xd ⊂ X̂. The approximation
yields a stationary point xd ∈ Xd that satisfies

L′(xd)(ϕ) = 0 ∀ϕ ∈ Xd. (4.2)

If the stationary point x̂ of the continuous problem in addition satisfies

L′(x̂)(xd) = 0, (4.3)

then, we can represent the error in the form

L(x̂)− L(xd) = 1
2
L′(xd)(x̂− ϕ) +R, (4.4)

where ϕ ∈ Xd can be arbitrarily chosen and the cubic remainder R is given in terms of the
error e := x̂− xd as

R =
1

2

1∫
0

L′′′(xd + se)(e, e, e) s(s−1) ds.

Proof. By the fundamental theorem of calculus, we have

L(x̂)− L(xd) =

1∫
0

L′(xd + se)(e) ds.

Replacing the integral by the trapezoidal rule plus corresponding remainder term and using
the above assumptions yields

L(x̂)− L(xd) =
1

2

(
L′(xd)(e) + L′(x̂)(e)

)
+

1

2

1∫
0

L′′′(xd + se)(e, e, e) s(s−1) ds =

1

2
L′(xd)(x̂− ϕ) +

1

2

1∫
0

L′′′(xd + se)(e, e, e) s(s−1) ds,

for arbitrary ϕ ∈ Xd. �

Remark 4.1. The somewhat complicated setting of Proposition 4.1 is motivated by
situations such as the cG(s)/dG(r) method, in which the variational form on the discrete
level does not fit the well-posed formulation of the continuous problem, i.e., the continuous
solution space X̂ is a strict subspace of the space X underlying the approximation, Xd ⊂ X.
In the standard situation, Xd ⊂ X = X̂ and condition (4.3) is automatically satisfied.
However, here Xd 6⊂ X̂ and condition (4.3) requires that x̂ is not only a stationary point
with respect to all (smooth) test functions in X̂ , but also with respect to the additional
(discrete) “test function” xd . That x̂ satisfies this additional condition depends on its higher
degree of smoothness and the particular structural properties of the variational formulation,
i.e. the functional J(·) used in the Galerkin approximation.

In the next step, we apply the results of Proposition 4.1 to the general Galerkin or
Petrov-Galerkin approximation of variational equations such as occurring in the context of
the Galerkin discretization of the wave equation. Let E,E∗ be two function spaces and
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Ê ⊂ E a proper subspace. Furthermore, let A(·)(·), F (·) be generic semi-linear and linear
forms that we will later identify with those used in the continuous and discontinuous Galerkin
methods (3.23) and (3.31). We consider the task of computing a functional value J(û) from
the solution û ∈ Ê of the variational problem

A(û)(ϕ) = F (ϕ) ∀ϕ ∈ E∗. (4.5)

Here, the functional J : E → R, the semi-linear form A : E×E∗ → R and the linear right-
hand side F : E → R are assumed to be three times Gâteaux differentiable. This problem
is approximated by a Galerkin or Petrov-Galerkin method in subspaces Ed ⊂ E, E∗d ⊂ E∗

resulting in an approximate solution ud ∈ Ed, satisfying

A(ud)(ϕ) = F (ϕ) ∀ϕ ∈ E∗d , (4.6)

and the corresponding approximate functional value J(ud) . The solvability (not necessarily
unique) of problems (4.5) and (4.6) is assumed. We want to estimate the error J(û)−J(ud).
To this end, we introduce the Lagrangian functional

L(u, z) := J(u) + F (z)− A(u)(z),

for arguments {u, z} ∈ E×E∗. A stationary point {û, ẑ} ∈ Ê×E∗ of L(·, ·) on Ê×E∗ is
determined by the equation

L′(û, ẑ)(ψ, ϕ) = 0 ∀{ψ, ϕ} ∈ Ê×E∗, (4.7)

or equivalently by the system of equations

A′(û)(ψ, ẑ) = J ′(û)(ψ) ψ ∈ Ê, (4.8)

A(û)(ϕ) = F (ϕ) ϕ ∈ E∗. (4.9)

The second of these two equations is just the given “state” equation (4.5) and the first one
is the so-called “dual” (or “adjoint”) equation governed by the given goal functional J(·).
Correspondingly, a “discrete” stationary point {ud, zd} ∈ Ed×E∗d of L(·, ·) on Ed×E∗d is
determined by the equation

L′(ud, zd)(ψ, ϕ) = 0 ∀{ψ, ϕ} ∈ Ed × E∗d , (4.10)

or equivalently by the system of equations

A′(ud)(ψ, zd) = J ′(ud)(ψ) ψ ∈ Ed, (4.11)

A(ud)(ϕ) = F (ϕ) ϕ ∈ E∗d . (4.12)

Clearly, for stationary points {û, ẑ} ∈ Ê×E∗ and {ud, zd} ∈ Ed×E∗d , we have that

J(û)− J(ud) = L(û, ẑ)− L(ud, zd). (4.13)

Corollary 4.1. With the above notation let {û, ẑ} ∈ Ê×E∗ and {ud, zd} ∈ Ed×E∗d be
stationary points of L on Ê×E∗ and on Ed×E∗d , respectively. If the condition

J ′(û)(ud)− A′(û)(ud, ẑ) = 0 (4.14)

is satisfied, then we have the error representation

J(û)−J(ud) = 1
2
L′(ud, zd)(û− ψ, ẑ − ϕ) +R, (4.15)

for arbitrary ψ ∈ Ed, ϕ ∈ E∗d and a remainder R which is cubic in the errors e := û− ud
and ε := ẑ − zd .
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Proof. We embed the current situation into the framework of Proposition 4.1. To this end,
we set X := E×E∗, X̂ := Ê×E∗, Xd := Ed×E∗d and L(x̂) := L(û, ẑ), x̂ = {û, ẑ} ∈ Ê×E∗.
Since zd ∈ E∗d ⊂ E∗ and observing (4.14), we find that

L′(x̂)(xd) =

{
J ′(û)(ud)− A′(û)(ud, ẑ)

F (zd)− A(û)(zd)

}
= 0,

i.e., condition (4.3) is satisfied. Hence, Proposition 4.1 yields the error representation

L(x̂)−L(xd) = 1
2
L′(xd)(x̂− ϕ) +R

for arbitrary ϕ ∈ Xd and a remainder R which is cubic in the error x̂ − xd. In view of
(4.15) this implies the asserted representation. �

For the particular form of the Lagrangian functional L(x) = L(u, z) = J(u) + F (z) −
A(u)(z), x = {u, z} ∈ E × E∗ the error representation (4.15) takes the concrete form

J(û)−J(ud) = 1
2
ρ(ud)(ẑ − ϕ) + 1

2
ρ∗(zd)(û− ψ) +R, (4.16)

for arbitrary ψ ∈ Ed, ϕ ∈ E∗d , with the primal and dual residuals

ρ(ud)(·) := F (·)− A(ud)(·), ρ∗(zd)(·) := J(·)− A′(ud)(·, zd).

Next, we specialize the discussion to linear problems such as those that are mainly con-
sidered in this paper.

Corollary 4.2. Suppose the notation and assumptions as in Corollary 4.1, particularly
(4.14), hold. In the case of a linear variational problem with bilinear form A(·, ·) and linear
goal functional J(·) , we have the a posteriori error representation

J(û−ud) = F (ẑ−ϕ)− A(ud, ẑ−ϕ), (4.17)

with arbitrary ϕ ∈ E∗d, where ẑ ∈ E∗ is the solution of the dual problem

A(ψ, ẑ) = J(ψ) ∀ψ ∈ Ê. (4.18)

Proof. In the case of linear problems the remainder R in the error representation (4.16)
vanishes. Further, in view of (4.14), for ϕ ∈ E∗d , ψ ∈ Ed, we have that

ρ(ud)(ẑ − ϕ) = F (ẑ − ϕ)− A(ud, ẑ − ϕ) = F (ẑ − zd)− A(ud, ẑ − zd) =

A(û, ẑ − zd)− A(ud, ẑ − zd) = A(û− ud, ẑ − zd) = A(û− ud, z)− A(û− ud, zd) =

J(û− ud)− A(û− ud, zd) = J(û− ψ)− A(û− ψ, zd) = ρ∗(zd)(û− ψ).

Consequently (4.16) reduces to the form J(û − ud) = ρ(ud)(ẑ − ϕ), for arbitrary ϕ ∈ E∗d ,
which does not contain the unknown solution û. This implies (4.17). �

Remark 4.2. The practical evaluation of the general nonlinear error representation
(4.16) or its linear special case (4.17) requires the generation of approximations to the gen-
erally unknown (exact) “primal” and “dual” solutions u ∈ E and z ∈ E∗. Strategies for
this crucial process will be described below in the context of the different time and space
discretizations.
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4.2. A posteriori error estimation for the Galerkin methods.

4.2.1. The cG(1)/cG(1) method. We begin with the cG(1)/cG(1) method written in its
compact form (3.23) for discretizing the linear problem (2.6). In order to apply the results
of the preceding section, we identify the spaces

E := V×H, E∗ := W×W, Ê := V̂0×V̂1, Ed := Vhk×Vhk, E∗d := Whk×Whk.

Further, we suppose that the linear goal functional is given in the form J(ϕ) := j0(ϕ0) +
j1(ϕ1) with certain linear functionals j0, j1, such as described above. Then, from Corollary
4.2, we have the following error representation for the fully discrete approximation U =
Ukh ∈ Vkh×Vkh:

J(u−U) = ρ(U)(z−ϕ) = F (z−ϕ)− A(U, z−ϕ), (4.19)

with arbitrary ϕ ∈Wkh×Wkh, where z = {z1, z0} ∈ H×V is the solution of the associated
dual problem

A(ψ, z) = J(ψ) ∀ψ = {ψ0, ψ1} ∈ V̂0×V̂1, (4.20)

the existence of which is assumed. However, in the present linear situation the solvability of
the dual problem will become obvious. Indeed in Section 4, we will see that for many goal
functionals considered in the numerical examples below, the dual problem has the structure
of a wave equation such as (2.1) but running backward in time. Thus, using the same setting

as used for the forward problem, ẑ ∈ V̂ if J(·) is regular enough. In this case the crucial
condition (4.14) is satisfied.

Corollary 4.3. For the approximation of problem (3.17) by the cG(1)/cG(1) method
(3.23), we have the following a posteriori error representation:

J(u−U) = ηω(U) :=
∑
K∈T0

h

{(
ρ(u0

0−U0
0 ), z1

0−ϕ1
0

)
K

+
(
ρ(u1

0−U1
0 ), z0

0−ϕ0
0

)
K

}
+

M∑
m=1

∑
K∈Tm

h

{
(R0(U), z1−ϕ1)K×Im + (R1(U), z0−ϕ0)K×Im + (r1(U), z0−ϕ0)∂K×Im

}
, (4.21)

for arbitrary {ϕ0, ϕ1} ∈Wkh×Wkh. Here, ẑ = {z1, z0} ∈ H×V is the solution of the dual
problem (4.20) and the residuals are defined by

R0(U) := ρU1−ρ∂tU0, R1(U) := f−ρ∂tU1−AU0, r1(U) := −1
2
[∂A
n U

0],

with [∂A
n U

0] denoting the jump of ∂A
n U

0 across the cell interfaces.

Proof. First, we note that, in view of the discussion in Section 4 below, condition (4.14)
is satisfied in the present situation and now reads A(U, ẑ) = J(U). Therefore, Corollary 4.2
is applicable. Recalling the definition of the bilinear form A(·, ·) and the functional F (·),
the abstract a posteriori error representation (4.19) takes the following concrete form:

J(u−U) = m(u0
0, z

1
0−ϕ1

0)+m(u1
0, z

0
0−ϕ0

0)+((f, z0−ϕ0))−m((∂tU
0, z1−ϕ1))+m((U1, z1−ϕ1))−

m(U0
0 , z

1
0−ϕ1

0)−m((∂tU
1, z0−ϕ0))− a((U0, z0−ϕ0))−m(U1

0 , z
0
0−ϕ0

0),
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with arbitrary pairs {ϕ0, ϕ1} ∈Wkh×Wkh. Reordering terms results in

J(u−U) = m(u0
0−U0

0 , z
1
0−ϕ1

0) +m(u1
0−U1

0 , z
0
0−ϕ0

0) + ((f, z0−ϕ0))+

m((U1−∂tU0, z1−ϕ1))−m((∂tU
1, z0−ϕ0))− a((U0, z0−ϕ0)).

Cellwise integration by parts yields

a((U0, z0−ϕ0)) =

T∫
0

a(U0, z0−ϕ0) dt =

T∫
0

∑
K∈Th

{
(AU0, z0−ϕ0)K − (∂A

n U
0, z0−ϕ0)∂K

}
dt =

T∫
0

∑
K∈Th

{
(AU0, z0−ϕ0)K − 1

2
([∂A

n U
0], z0−ϕ0)∂K

}
dt.

Combining these identities and splitting up the contributions from the different time intervals
Im and spatial cells K ∈ Tm

h , we obtain

J(u−U)=
∑
K∈T0

h

(ρ(u0
0−U0

0 ), z1
0−ϕ1

0)K+
∑
K∈T0

h

(ρ(u1
0−U1

0 ), z0
0−ϕ0

0)K+
M∑
m=1

∑
K∈Tm

h

(ρ(U1−∂tU0), z1−ϕ1)K×Im+

M∑
m=1

∑
K∈Tm

h

{
(f−ρ∂tU1−AU0, z0−ϕ0)K×Im − 1

2
([∂A

n U
0], z0−ϕ0)∂K×Im

}
.

From this, we conclude the asserted error representation (4.21). �
In the error representation (4.21), the error contributions by the spatial and the temporal

discretization do not appear in separated form. Hence it cannot be taken as the basis for
independent adaptation of the time step and spatial mesh. However, in order to separate
these error components, we can utilize the “free” functions ϕi, i = 0, 1 by choosing them as
the cellwise defined natural nodal interpolation Ihkz

i ∈Whk , i.e., piecewise bi- or trilinear in
space and constant in time. First, we introduce the local temporal L2 projection v ∈ P0(Im)
of a general function v ∈ L2(Im) into P0(Im) defined by∫

Im

v dt =

∫
Im

v dt. (4.22)

With this notation, we define the cellwise interpolation Ihkz
i ∈Whk of zi by prescribing

Ihkz
i(a) = z̄i(a), for all nodal points a of Tm

h , (4.23)

where Tm
h is the spatial mesh used in the time slab Ω̄×Im . Then, with the corresponding

spatial nodal interpolation Imh on Tm
h , there holds Ihkz

i|Ω̄×Im = Imh z̄
i. Notice that by

construction these interpolations Ihkz
i are continuous in space but usually discontinuous

in time. Using this construction in the error representation (4.21), we obtain the following
result.
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Corollary 4.4. For the approximation of problem (3.17) by the cG(1)/cG(1) method
(3.23) there holds the a posteriori error estimate

|ηω(U)| 6
∑
K∈T0

h

{
ρ0,0
K,hω

1,0
K,h + ρ1,0

K,hω
0,0
K,h

}
+

M∑
m=1

∑
K∈Tm

h

{
ρ0,m
K,h ω

1,m
K,h + ρ1,m

K,h ω
0,m
K,h + ρ1,m

∂K,h ω
0,m
∂K,h

}
+

M∑
m=1

∑
K∈Tm

h

{
ρ0,m
K,k ω

1,m
K,k + ρ1,m

K,k ω
0,m
K,k + ρ1,m

∂K,k ω
0,m
∂K,k

}
. (4.24)

With the notation of Corollary 4.3 the residual terms and weights are defined by:
1) spatial terms

ρ0,0
K,h := ‖ρ(u0

0−U0
0 )‖K , ω1,0

K,h := ‖z1
0−(I1

hz
1)0‖K ,

ρ1,0
K,h := ‖ρ(u1

0−U1
0 )‖K , ω0,0

K,h := ‖z0
0−(I1

hz
0)0‖K ,

ρ0,m
K,h := ‖R0(U)‖K×Im , ω1,m

K,h := ‖z̄1−Imh z̄1‖K×Im ,

ρ1,m
K,h := ‖R1(U)‖K×Im , ω0,m

K,h := ‖z̄0−Imh z̄0‖K×Im ,

ρ1,m
∂K,h := h

−1/2
K ‖r1(U)‖∂K×Im , ω0,m

∂K,h := h
1/2
K ‖z̄

0−Imh z̄0‖∂K×Im ,

2) temporal terms

ρ0,m
K,k := ‖R0(U)−R0(U)‖K×Im , ω1,m

K,k := ‖z1−z̄1‖K×Im ,

ρ1,m
K,k := ‖R1(U)−R1(U)‖K×Im , ω0,m

K,k := ‖z0−z̄0‖K×Im ,

ρ1,m
∂K,k := h

−1/2
K ‖r1(U)−r1(U)‖∂K×Im , ω0,m

∂K,k := h
1/2
K ‖z

0−z̄0‖∂K×Im .
Proof. Taking ϕi := Ihkz

i, i = 0, 1 , in the error representation (4.21), yields

ηω(U) :=
∑
K∈T0

h

{(
ρ(u0

0−U0
0 ), z1

0−(Ihkz
1)0

)
K

+
(
ρ(u1

0−U1
0 ), z0

0−(Ihkz
0)0

)
K

}
+

M∑
m=1

∑
K∈Tm

h

{
(R0(U), z1−Ihkz1)K×Im + (R1(U), z0−Ihkz0)K×Im + (r1(U), z0−Ihkz0)∂K×Im

}
.

Now, we additionally introduce the local time-averages z̄i to obtain

ηω(U) :=
∑
K∈T0

h

{(
ρ(u0

0−U0
0 ), z1

0−(Ihkz
1)0

)
K

+
(
ρ(u1

0−U1
0 ), z0

0−(Ihkz
0)0

)
K

}
+

M∑
m=1

∑
K∈Tm

h

{
(R0(U), z1−z̄1)K×Im + (R0(U), z̄1−Ihkz1)K×Im+

(R1(U), z0−z̄0)K×Im+(R1(U), z̄0−Ihkz0)K×Im+(r1(U), z0−z̄0)∂K×Im+(r1(U), z̄0−Ihkz0)∂K×Im

}
.
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Then, using the projection property of zi − z̄i and the relation Ihkz
i|Ω̄×Im = Imh z̄

i stated
above, we arrive at

ηω(U) :=
∑
K∈T0

h

{(
ρ(u0

0−U0
0 ), z1

0−(I1
hz̄

1)0

)
K

+
(
ρ(u1

0−U1
0 ), z0

0−(I1
hz̄

0)0

)
K

}
+

M∑
m=1

∑
K∈Tm

h

{
(R0(U)−R0(U), z1−z̄1)K×Im+(R0(U), z̄1−Imh z̄1)K×Im+(R1(U)−R1(U), z0−z̄0)K×Im+

(R1(U), z̄0−Imh z̄0)K×Im + (r1(U)−r1(U), z0−z̄0)∂K×Im + (r1(U), z̄0−Imh z̄0)∂K×Im

}
.

From this identity, we obtain the asserted error estimate (4.24) by applying cellwise the
Hölder inequality to all the scalar products. �

Remark 4.3. We note that in the error estimate given in Corollary 4.4, the effect of the
space discretization is separated from that of the time discretization, i.e., on each space-time
cell K×Im the respective indicators can be used to control the spatial mesh width hK
and the time step km . The different cell residual terms contain information about different
aspects of the quality of the discretization:

• ρ0,0
K,h and ρ1,0

K,h measure the spatial accuracy in approximating the initial data;

• ρ0,m
K,h and ρ1,m

K,h measure the spatial and ρ0,m
K,k and ρ1,m

K,k the temporal accuracy in
representing the equations ∂tu

0 = u1 and ∂tu
1+Au0 = f , respectively;

• ρ0,m
∂K,h and ρ0,m

∂K,k measure the spatial “smoothness” of the discrete solution Uhk de-
pending on the spatial and time discretization, respectively.

Remark 4.4. In controlling the discretization by the cG(1)/cG(1) method, we follow
two different goals. First, we need to accurately estimate the actual errors (in terms of the
goal functional) on the generated meshes for getting a stopping criterion of the adaptation
process. Second, we need effective (non-negative) “error indicators” on each of the space-
time mesh cells K×Īm for steering the adaptation process. The first goal is achieved by the
error estimator ηω(U) defined in Corollary 4.3, which is to be evaluated directly without
further estimation using the strategies described in Section 4, below. In fact, the subtraction
of the arbitrary function ϕ ∈ Whk ×Whk may be suppressed since it has no effect on the
value of the estimator ηω(U), due to Galerkin orthogonality (3.21). The second goal is
achieved by the error estimate (4.24) of Corollary 4.4. We emphasize that the use of this
error “estimate” for deriving a stopping criterion may result in strong overestimation of
the true error, since possible global cancellation effects of the residuals are not captured.
Therefore, in the numerical examples discussed in Section 5 below, the mesh refinement is
controlled by an estimate such as (4.24) while the effectivity index Ieff , which measures the
accuracy of the error estimation, is determined using the error representation (4.21).

Sometimes, the target functional one is interested in is sufficiently global such that its
domain of influence (which is given by the support of the dual solution) is more or less the
whole domain. Then one does not gain much from the effort of numerically approximating
the dual solution and one can get cheaper error indicators than the one above by using
analytical a priori estimates for it. This kind of analysis is well known in the derivation
of error estimates in global norms for the Laplace equation. We refer to Johnson [24] for
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corresponding analysis of the discretization of the wave equation by the discontinuous-in-
time Galerkin finite element method.

In our numerical examples below, we will explore this issue by comparing the grids
obtained by the weighted error estimator ηω(U) derived above with those resulting from the
use of one of these “traditional” error indicators. Without further justification, we select as
a “baseline” a rather simple estimator proposed by Kelly & al. [28] in an entirely different
context, namely the Laplace equation:

ηred
E (U) :=

( M∑
m=1

∑
K∈Tm

h

hK(ρ0,m
∂K,h)

2
)1/2

. (4.25)

It only measures the spatial smoothness of the computed solution U and neglects contribu-
tions by the time discretization. A more complete estimator that still avoids the evaluation
of a dual solution is given by

ηE(U)2 :=
∑
K∈T0

h

h2
K

{
(ρ0,0
K,h)

2 + (ρ1,0
K,h)

2
}

+
M∑
m=1

∑
K∈Tm

h

h2
K

{
(ρ0,m
K,h)

2 + (ρ1,m
K,h)

2 + (ρ0,m
∂K,h)

2
}

+

M∑
m=1

∑
K∈Tm

h

(k2
m + h2

K)
{

(ρ0,m
K,k)

2 + (ρ1,m
K,k)

2 + (ρ0,m
∂K,k)

2
}
. (4.26)

It involves all residuals also occurring in the estimate (4.24). Such estimators are typically
referred to as “energy error indicators” since they were originally derived as indicators for
the energy norm of the error. Clearly such heuristic error indicators may be useful for mesh
adaptation but will hardly yield good quantitative estimates of the error, particularly in
cases with heterogeneous data.

4.2.2. The cG(1)/dG(0) method. The derivation of error representation formulas such
as those shown in the previous section is trivially extended to the case of the cG(1)/dG(0)
method. Let us here state without proof such an extension, analogous to that given for the
cG(1)/cG(1) method in Corollary 4.3, and a resulting a posteriori error estimate analogous
to that in Corollary 4.4. Starting from the abstract equations (4.19) and (4.20) and observing
that in this case Wkh = Vkh , we obtain the following result.

Corollary 4.5. For the approximation of problem (3.17) by the cG(1)/dG(0) method
(3.31), we have the following a posteriori error representation:

J(u−U) = ηω(U) :=
∑
K∈T0

h

{(
ρ(u0

0−U
0,+
0 ), z1

0−ϕ
1,+
0

)
K

+
(
ρ(u1

0−U
1,+
0 ), z0

0−ϕ
0,+
0

)
K

}
+

M∑
m=1

∑
K∈Tm

h

{
(R0(U), z1−ϕ1)K + (R1(U), z0−ϕ0)K + (r1(U), z0−ϕ0)∂K

}
−

M−1∑
m=1

∑
K∈Tm

h

{
(ρ[U1

m], z0,+
m −ϕ0,+

m )K + (ρ[U0
m], z1,+

m −ϕ1,+
m )K

}
, (4.27)

with arbitrary {ϕ0, ϕ1} ∈ Wkh ×Wkh . Here, {z1, z0} ∈ H × V is the solution of the dual
problem (4.20). R0(U), R1(U) and r1(U) are defined as before and [U i

m] is the jump of
U i(t) at time instant tm as indicated in Fig. 3.7.
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The proof follows the same line of argument as that of Corollary 4.3 and is therefore
omitted. From this error representation we can then derive an a posteriori error estimate
analogous to the one derived before in Corollary 4.4 for the cG(1)/cG(1) method. We omit
the details since the cG(1)/dG(0) method is not used in the test examples in Section 5,
below.

4.2.3. The dual problem. All error representation formulas derived above contain the
solution {z0, z1} of a dual problem (4.20). This problem can be given an intuitive interpre-
tation which we will outline here for the cG(1)/cG(1) method. Recalling the definition of
the bilinear form A(·, ·) and the functional J(·) the dual problem reads more explicitly as

m((∂tψ
0, z1))+m(ψ0

0, z
1
0)+a((ψ0, z0))+m(ψ1

0, z
0
0)−m((ψ1, z1))+m((∂tψ

1, z0)) = j0(ψ0)+j1(ψ1),
(4.28)

or equivalently as the following system of equations:

m((∂tψ
0, z1)) +m(ψ0

0, z
1
0) + a((ψ0, z0)) = j0(ψ0),

m((∂tψ
1, z0)) +m(ψ1

0, z
0
0)−m((ψ1, z1)) = j1(ψ1), (4.29)

for all {ψ0, ψ1} ∈ V̂0×V̂1. Assuming sufficient regularity of {z0, z1} and integrating by parts
in time, we obtain

−m((ψ0, ∂tz
1)) +m(ψ0, z1)

∣∣∣t=T
t=0

+m(ψ0
0, z

1
0) + a((ψ0, z0)) = j0(ψ0),

−m((ψ1, ∂tz
0)) +m(ψ1, z0)

∣∣∣t=T
t=0

+m(ψ1
0, z

0
0)−m((ψ1, z1)) = j1(ψ1),

and, consequently, the dual system

−m((ψ0, ∂tz
1)) +m(ψ0(T ), z1(T )) + a((ψ0, z0)) = j0(ψ0),

−m((ψ1, ∂tz
0)) +m(ψ1(T ), z0(T ))−m((ψ1, z1)) = j1(ψ1), (4.30)

for all {ψ0, ψ1} ∈ V̂0×V̂1. This variational problem can be expressed as a wave equation
running backward in time with initial conditions (or “terminal conditions”, depending on
the viewpoint, as they are posed at t = T ) and right-hand side depending on the particular
choice of the (sufficiently regular) functionals j0 and j1. In turn, according to the discussion

in Section 2, this wave equation possesses a unique solution z ∈ V̂ or {z0, z1} ∈ V̂0×V̂1 for its
equivalent “mixed” formulation. Following the above argument backwards this solution also
satisfies (4.29) and (4.28) and therefore is “the” dual solution of the problem corresponding
to the chosen goal functional J(·).

Intuitively, the dual solution transports back in time information about how important
a particular space-time point is for the evaluation of the goal functional. This will become
particularly clear in Example 5.3. Let us consider two particular examples to give these
ideas a more concrete form:

Example 4.1. The first example concerns the estimation of the end-time L2-norm error.
As mentioned above, we can approximate J(u−U) = ‖(u−uk)(T )‖ if we choose

j0(ψ0) :=
(ψ0(T ), ê0)

‖ê0‖
, j1(ψ1) := 0,
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in (4.30), where ê0 ≈ (u0 − U0)(T ) . We then obtain the system

−ρ∂tz1 + Az0 = 0, in Ω× [0, T ),

−ρ∂tz0 − ρz1 = 0, in Ω× [0, T ),

with the “initial” conditions

z0(T ) = 0, z1(T ) =
ê0

‖ê0‖
, (4.31)

and the usual boundary conditions z0|∂ΩD
= 0, ∂A

n z
0|∂ΩN

= 0. Clearly, this system is
equivalent to the (backward in time) wave propagation problem

ρ∂2
t z + Az = 0, in Ω× [0, T ),

z|t=T = 0, ∂tz|t=T =
ê0

‖ê0‖
, in Ω,

z|∂ΩD
= 0, ∂A

n z|∂ΩN
= 0, on [0, T ). (4.32)

In this case the data satisfy f ≡ 0 and z0(T ) = 0, z1(T ) ∈ H, so that z ∈ V̂.

Example 4.2. The second example concerns a weighted space-time average over a sub-
domain Ω0 ⊂ Ω ,

J(u) =

T∫
0

∫
Ω0

u(x, t)ω(x, t) dx dt,

where ω is a smooth, non-negative weighting function. With the choice

j0(ψ0) :=

T∫
0

∫
Ω0

ψ0(x, t)ω(x, t) dx dt, j1(ψ1) := 0,

in (4.30) and denoting by χΩ0 the characteristic function of Ω0, we obtain the system

−ρ∂tz1 + Az0 = ωχΩ0 , in Ω× [0, T ),

−ρ∂tz0 − ρz1 = 0, in Ω× [0, T ),

with homogeneous initial and boundary conditions z0(T ) = z1(T ) = 0 and z0|∂ΩD
=

0, ∂A
n z

0|∂ΩN
= 0, respectively. Again, this system is equivalent to a (backward in time)

wave propagation problem analogous to (4.32) with data satisfying f ∈ L2(I;H) and

z0(T ) = z1(T ) = 0, so that again z ∈ V̂. In the related case of a functional of the form

J(ψ) =

T∫
0

∫
Γ

ψ0(s, t)ω(s, t) ds dt,

where Γ is a part of the spatial boundary ∂Ω , we only have f ∈ L2(I;V ∗) , but this still

suffices to guarantee that z ∈ V̂.
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If the goal functional J is less regular for initial values z0(T ) /∈ V, z1(T ) /∈ H, or for a
forcing term f /∈ L2(I;V ∗) , involving, for example, spatial point values such as

J(u) =

t2∫
t1

u(x0, t) t dt, x0 ∈ Ω̄,

(see Example 5.4) the dual solution z lacks smoothness so that the theory developed above
may not be directly applicable. In this case, one may appropriately regularize the functional
by introducing

Jε(u) :=

t2∫
t1

(
1

|Bε(x0)|

∫
Bε(x0)

u(x0, t) dx

)
t dt,

where Bε(x0) is a spatial ball centered at x0 with radius ε ≈ TOL. However, this regu-
larization is usually only necessary formally on the continuous level for making the abstract
theory applicable. On the discrete level, i.e. in the practical realization of the adaptive
scheme, it may frequently be possible to work with the original “singular” form of J ; see
Bangerth & Rannacher [6] for a more detailed discussion of this issue.

4.3. Practical aspects. The a posteriori error estimates for the cG(s)/cG(r) and the
cG(s)/dG(r) methods derived above are not immediately practically applicable: First, they
still contain the continuous solution of a dual problem that is, in general, equally difficult
to obtain as the continuous solution of the forward problem; its numerical approximation is
therefore necessary for every practical method. Second, we need to define how we want to
use the resulting cell-wise error estimators to refine the spatial and temporal meshes. We
will discuss these issues in the following subsections.

4.3.1. Evaluation of the a posteriori error estimates. For the use of the above a poste-
riori error representations and estimates, we have to evaluate the weights ωmK,h and ωmK,k .
This requires the construction of approximations to the dual solution z = {z0, z1} or more
precisely to the local “interpolation” errors (zi−Ihkzi)|K×Im , (zi− z̄i)|K×Im . These approxi-
mations are used in the error representations (4.21) for the cG(1)/cG(1) method and (4.27)
for the cG(1)/dG(0) method resulting in approximate error representations denoted by

J(u−U) ≈ η̃ω(U). (4.33)

A variety of techniques for the evaluation of these weights have been discussed in the litera-
ture. Among those, the solution of the dual problem globally by a higher-order method, say
the cG(2)/cG(2) method, is not feasible in practice as it is clearly too expensive, particularly
in three dimensions. On the other hand, is has often turned out to be sufficient to apply
local high-order post-processing based on the “discrete” dual solution computed by the same
method as used for the primal problem, for instance by the cG(1)/cG(1) method (Crank-
Nicolson scheme). For a detailed discussion of this approach and several of its variants, we
refer to Bangerth & Rannacher [6] and the literature cited therein. The basic idea is to
compute a discrete dual solution Zhk on the current (or a slightly finer) space-time mesh
and construct from that the desired approximations by one of the following strategies.

Approximation by higher-order local interpolation. Let Zhk be an approximation to the
dual solution z computed by the cG(1)/cG(1) method (Crank-Nicolson scheme in time)
or the cG(1)/dG(0) methods (backward Euler scheme in time) on the current space-time



Adaptive Galerkin finite element methods for the wave equation 35

mesh (possibly with smaller time steps 1
2
km). The temporal mesh {Im, m = 1, . . . ,M} and

the spatial meshes Tm
h are grouped into 2-patches and 2×2-patches (in two dimensions),

respectively. From the nodal values of Zhk , we construct locally a higher-order (in the

present case (n+1)-quadratic) interpolation Ĩ
(2)
hk Zhk on each time slab Ω̄×Im (see Figs. 4.1

and 4.2), which is then used in the approximation

(zi−Ihkzi)|K×Im ≈ (Ĩ
(2)
hk Z

i
hk−IhkZi

hk)|K×Im . (4.34)

Since in both methods, cG(1)/cG(1) and cG(1)/dG(0), the test functions are piecewise
constant in time, it may seem sufficient to use only linear interpolation in time of the nodal
values of Zhk in constructing the approximation Ĩ

(2)
hk Zhk. However, practical experience

shows that this simple approximation may lead to strong underestimation of the true error
on coarser meshes.

v

I
(1)
k v

v

I
(2)
2k v

tm−1 tm+1 tm−1 tm+1tm tm

F i g. 4.1. Local post-processing in time by higher-order patchwise interpolation:
“linear” (left) or “quadratic” (right) interpolation of computed “constant” or “line-

ar” nodal values

(2)

2hZ Zh  hI

F i g. 4.2. Local post-processing in space by higher-order patchwise interpo-
lation: “biquadratic” interpolation of computed “bilinear” nodal values

The observed success of this relatively cheap post-processing approach seems to be largely
based on super-approximation effects, which can be expected on essentially uniform or at
least very structured meshes. However, its rigorous theoretical justification is still missing
and it may appear questionable whether the distance of the functions Zi

hk and Z̄i
hk is large

enough (compared to the size of the spatial error) to justify the proposed approximation.

Use of interpolation estimates and approximation of higher-order derivatives. Alterna-
tively, one may use interpolation estimates of the form

‖zi−Ihkzi‖K×Im 6 cI{h2
K‖∇2zi‖K×Im + km‖∂tzi‖K×Im + k2

m‖∂2
t z

i‖K×Im},

‖zi−z̄i‖K×Im 6 cIkm‖∂tzi‖K×Im ,
in order to reduce the estimation of the weights ‖zi−Ihkzi‖K×Im and ‖zi−z̄i‖K×Im to terms
only involving derivatives of zi . These derivatives are then approximated by corresponding
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difference quotients in space and time of the computed discrete dual solution Zhk on the
current space-time meshes.

This method seems computationally cheaper than that using higher-order patchwise in-
terpolation described above. However, it involves generally only approximately known “inter-
polation constants” cI and cannot capture local oscillations of the dual solution. Therefore,
it is not advisable if real error estimation is required, but it is sufficiently accurate for steering
the local mesh adaptation.

Remark 4.5. The two local approximation strategies described above seem questionable
for equations with highly oscillatory solutions – such as the wave equation – if the region of
evaluation of the target functional J(·) extends over more than one wave length in space
or over more than one period in time. For this reason, in the corresponding examples in
Section 5 below, globally higher-order methods or finer meshes have been used for generating
approximations of the weighting terms. However, this is obviously not the way to go if
computational resources are limited. Better alternatives will have to be developed for this
purpose in the future.

4.3.2. Strategies for time-step and mesh-size adaptation. Adaptive finite element methods
based on error estimates have a two-fold goal: They want to guarantee that a computation
satisfies a prescribed error tolerance TOL, and they want to achieve the first goal with the
least amount of work by choosing meshes adaptively in the most efficient way. In practice,
the second goal is admittedly often more important: error estimates may not be accurate
enough for hard guarantees, or computational resources may not be adequate to actually
achieve practically desirable error tolerances and we will consequently have to be content
with the best that is possible under the circumstances. However, in any case it is important
that we have effective ways to let local error estimates guide us in deciding which cells or
time steps to refine and/or which to coarsen.

To do so, let us start from the approximate a posteriori error estimate (4.33):

|J(e)| ≈ |η̃ω(U)| 6
M∑
m=1

∑
K∈Tm

h

{
ρmK,h ω̃

m
K,h + ρmK,k ω̃

m
K,k

}
. (4.35)

From this, we obtain error “indicators” for each cell K and time step m,

ηmK,h := ρmK,h ω̃
m
K,h, ηmK,k := ρmK,k ω̃

m
K,k, ηmk :=

∑
K∈Tm

h

ηmK,k.

Here, ηmK,h and ηmK,k are meant to indicate the local contributions to the global error due
to spatial and temporal discretization, respectively. ηmk is the spatial discretization error of
all cells in time interval Im.

Let M be the number of time steps, Nm the numbers of cells of mesh Tm
h , and N =∑M

m=1Nm be the total number of space-time cells. We base our refinement strategy on
the principle that the most efficient strategy to achieve a certain tolerance TOL is to choose
meshes adaptively in such a way that each of the N cells contributes a roughly equal amount
ηmK,h + ηmK,k ≈ TOL/N to the global error (see Bangerth & Rannacher [6]).

Since the time step can not be chosen individually for different cells but needs to remain
fixed globally, algorithms can only provide approximate solutions to this goal. A strategy
for this is to aim at the following distribution of errors that allots roughly half of the total
error budget to spatial and temporal discretization errors, and splits the spatial error budget
among time steps proportionally to the lengths of time intervals:
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1. Adaptation in time. Choose the time step km so that

α

2

TOL

M
6 ηmk 6

1

2

TOL

M
.

2. Adaptation in space. Choose hK such that

β

2

km
T

TOL

Nm

6 ηmK,h 6
1

2

km
T

TOL

Nm

.

A practical choice of tuning parameters is α = β = 1
4

.
In actual implementations, it is often not feasible to immediately choose km, hK in such

a way that these inequalities are satisfied. Rather, they are iteratively achieved. To this
end, one starts with solving the discrete problem on a coarse space and time mesh. Error
indicators are then evaluated for each cell and time interval. Those time intervals and cells
that do not satisfy the upper error bound are then refined, while those that do not satisfy
the lower bound may be coarsened. Alternatively, a fixed fraction (say 25%) of those time
intervals with the largest error indicator ηmk may be refined, and similarly on each time
interval a fixed fraction of cells with the largest indicators ηmK,h will be refined, while a
separate fraction of time intervals and cells with the lowest indicators may be coarsened. In
either case, the process repeats until these cycles yield time step and mesh sizes that satisfy
the above error bounds. At this point, there holds

η̃ω(U) 6
M∑
m=1

∑
K∈Tm

h

ηmK,h +
M∑
m=1

ηmk 6
M∑
m=1

∑
K∈Tm

h

1

2

km
T

TOL

Nm

+
M∑
m=1

1

2

TOL

M
=

TOL

2

M∑
m=1

km
T

∑
K∈Tm

h

1

Nm

+
TOL

2

M∑
m=1

1

M
= TOL, (4.36)

i.e., the adaptation process has reached the prescribed goal and is stopped.
Alternatively, if no fixed error tolerance TOL but rather a maximum number of cells is

prescribed, the goal of the adaptation process is to reach a maximum of accuracy under this
constraint. This can be achieved by the process described above using a decaying sequence
of tolerances TOLk → 0 (k →∞).

5. Numerical examples

All the test examples presented in this section have been calculated using a program based
on the Open Source finite element library deal.II, see Bangerth & al. [4] and the project
website http://www.dealii.org/.

5.1. Adaptation in time. The first two tests concern the adaptation of the time
discretization by the DWR approach in order to reach a certain error tolerance TOL for a
pre-chosen spatial discretization of sufficiently high accuracy. Hence in all error estimates
the contribution by the spatial discretization is neglected, and we will here only consider
spatially one-dimensional examples. The error measure is the natural “energy norm”

J(ek) = ‖e0
k(T )‖+ ‖e1

k(T )‖, eik := ui − uik, i = 1, 2,
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at the end-time T , which is local in time but global in space. In view of the discussion in
Section 4 the corresponding error functional is taken as

J(ϕ) :=
(ϕ0(T ), ê0

k(T ))

‖ê0
k(T )‖

+
(ϕ1(T ), ê1

k(T ))

‖ê1
k(T )‖

,

which for ϕ := ek = {e0
k, e

1
k} returns the desired error quantity if êik = eik. To this end,

the a priori unknown quantities êik(T ), i = 0, 1 , in this functional J(·) are successively
chosen within the refinement process by extrapolating the discrete solution from preceding
coarser meshes. To start this approximation on coarse meshes, we use the result from the
computation on an auxiliary finer mesh. The quality of the error estimation is measured in
terms of the “effectivity index”

Ieff :=

∣∣∣∣ J(ek)

η̃ω(uk)

∣∣∣∣ ,
where η̃ω(uk) is the approximate error estimator (4.33) (here only applied for the time
discretization) evaluated using the technique of “local high-order interpolation” for approx-
imating the dual solution as outlined in Section 4. If the error estimator yields a good
approximation of the actual error, Ieff should be close to 1.

Example 5.1. The first test problem is the acoustic wave equation with a right-hand
side independent of the spatial variable,

∂2
t u(x, t)− ∂2

xu(x, t) = 10 · e−100(t−9.0)2

,

u(x, 0) = 0, ∂tu(x, 0) = x− x2,

on the space-time region

Ω× I = (0, 1)× (0, 10).

We fix the spatial grid at 256 elements. Furthermore, we start with a uniform time grid of
16 time intervals which are to be both globally and locally refined. The reference solutions
are computed on a highly refined time grid of 219 = 524 288 time intervals.

First, we consider global uniform refinement. Table 5.1 shows the obtained values of the
time-discretization error J(ek), the error estimator η(uk) and the corresponding effectivity
index Ieff. Then, we consider local time-step adaptation based on the a posteriori error
estimate derived in Section 4. The “fixed-fraction” strategy is used for step-size adaptation
with results shown in Table 5.2. This data is also visualized in Figs. 5.1 and 5.2. A closer
look at the distribution of the time steps shows that the local refinement mainly occurs at
the time period around and after t = 9. This reflects the fact that only at t = 9 energy is
fed into the system by the increase in the right-hand side. However, according to the energy
conservation property of both the continuous problem and the cG(1)/cG(1) approximation
(or equivalently the Crank-Nicolson scheme) there is no energy dissipation in the system
afterwards, i.e., significant re-coarsening of the time grid can not be expected.
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T a b l e 5.1. Example 5.1: Time-
discretization error J(ek), error
estimator η̃ω(uk) and effectivity index
Ieff for increasing number of time steps

under uniform refinement

Number of J(ek) η̃ω(uk) Ieff

time steps

32 6.79 · 10−1 3.22 · 10−1 2.11
64 4.39 · 10−1 3.55 · 10−1 1.24
128 2.20 · 10−1 2.19 · 10−1 1.00
256 6.98 · 10−2 7.48 · 10−2 0.93
512 9.03 · 10−3 9.72 · 10−3 0.93
1024 1.18 · 10−3 1.07 · 10−3 1.10
2048 3.12 · 10−4 2.94 · 10−4 1.06
4096 8.84 · 10−5 8.32 · 10−5 1.06

T a b l e 5.2. Example 5.1: Quantities as in
Table 5.1 but for local refinement (only

a few steps shown)

Number of J(ek) η̃ω(uk) Ieff

time steps

31 6.86 · 10−1 6.18 · 10−1 1.11
58 2.15 · 10−1 2.42 · 10−1 0.89
112 4.29 · 10−2 4.40 · 10−2 0.98
218 1.33 · 10−2 1.48 · 10−2 0.90
425 2.87 · 10−3 3.08 · 10−3 0.93
828 7.62 · 10−4 8.41 · 10−4 0.91
1616 2.96 · 10−4 3.30 · 10−4 0.90
3156 4.56 · 10−5 4.74 · 10−5 0.96

F i g. 5.1. Example 5.1: Error for different numbers of time steps with
local and global refinement

F i g. 5.2. Example 5.1: Local time-step size after several steps of local
refinement
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Example 5.2. The second test problem is the acoustic wave equation with a homoge-
neous right-hand side f ≡ 0 and the exact solution u(x, t) = sin(πx) sin(πt). The space-time
domain is the same as in Example 5.1. Compared to the previous example, we replace the
refinement strategy by one where we refine all those time intervals where the local temporal
error is larger than the mean value of the error over all time intervals. The results of global
as well as local refinement in this case are shown in Fig. 5.3. It can be seen that the error
estimator shows the same behavior as global grid refinement. This results from the fact that
the temporal error in this example is equally distributed over all time steps as the solution is
solely driven by the initial conditions; local refinement on the basis of local error indicators
can therefore not be expected to improve the accuracy any more than global refinement.
Indeed, after several refinement cycles, all time intervals are equally long. However, the
effectivity index is close to 1.

T a b l e 5.3. Example 5.2: Discretization
error in time J(ek), error estimator
η̃ω(uk) and effectivity index Ieff for
increasing number of time steps with

global uniform refinement

Number of J(ek) η̃ω(uk) Ieff

time steps

16 0.271 − −
32 3.246 3.607 0.89
64 0.445 0.459 0.96
128 0.117 0.116 1.01
256 0.031 0.031 1.00
512 0.008 0.008 1.00
1024 0.002 0.002 1.00
2048 0.000 0.000 1.00

T a b l e 5.4. Example 5.2: Quantities as in
Table 5.3 but for local refinement (only

a few steps shown)

Number of J(ek) η̃ω(uk) Ieff

time steps

15 1.389 − −
29 4.278 4.612 0.92
53 1.168 1.284 0.91
98 0.259 0.257 1.00
193 0.075 0.074 1.00
384 0.019 0.019 1.00
768 0.005 0.005 1.00
1536 0.001 0.001 0.99

F i g. 5.3. Example 5.2: Error for different numbers of time steps with
local and global refinement

5.2. Adaptation in space. The next three examples illustrate the performance of the
DWR approach for spatial mesh adaptation. To this end in all examples the data of the
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problem (right-hand side and diffusion coefficient) are chosen such that the exact solution
has a complex dynamic spatial behavior. Here, we choose the time step sizes so that they
satisfy a local CFL condition; the temporal errors are therefore small on all but the smallest
cells and their contributions in the error estimates will consequently be neglected.

Example 5.3. We begin with an example in one space dimension. Let in (2.2) be d = 1,
a ≡ 1, and Ω = (−1, 1). We choose initial and boundary conditions as shown in Fig. 5.4,
with half-width s = 0.1 and end-time T = 2.7. This choice of initial conditions leads to two
“peaks” traveling to the left and right and being reflected at the boundaries.

u(x, 0) = e−|xs|2(1− |xs|2)Θ(1− |xs|),
∂tu(x, 0) = 0,

∂xu(1) = 0, ∂xu(−1) = 0,

with xs = x/s and the jump function

Θ(y) =

{
0 for y < 0,

1 for y > 0.

paths of
waves

evaluation
line of

t=2.5

t=0
x=+1x=-1

t=1

F i g. 5.4. Example 5.3: Configuration

We are now interested in the evaluation of only one branch of the solution, for example
the one initially traveling to the right. Here, we choose to localize the measurements at
t = 2.5 and around x = −0.5 and use as goal quantity

J(u) =

−0.4∫
−0.6

u0(x, 2.5) dx. (5.1)

Note that the solution’s two peaks are centered around x = ±0.5 at t = 2.5, with diameter
2s = 0.2 as in the initial distribution. The solutions u, z of the primal and dual problems
are shown in Fig. 5.5 on the left. As can easily be seen, the integral kernel of the functional
J(·), i.e., the characteristic function of [−0.6, 0.4]×{2.5}, serves as source term for the dual
solution. The dual solution therefore is discontinuous in time due to the singular integral
kernel.

The resulting space-time grid after three refinement cycles is also shown in Fig. 5.5. As
can be seen, the error estimator does not only track just one branch as would be the obvious
thing to do, but also takes into account errors occurring in the whole space-time domain
as long as the laws of wave propagation allow them to affect the goal functional J(·). It is
therefore clearly more efficient than almost any choice of a priori refining the mesh by hand.
Also note that for t > 2.5 , the dual solution is zero and consequently the mesh is coarsened
in each refinement cycle. Consequently, the solution is hardly resolved at these times, in
accordance with the fact that it then does not matter any more for our goal.
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x

t
t

x

F i g. 5.5. Example 5.3: Primal solution u and dual solution z (left). (Notice that the dual solution is
computed backward in time.) Resulting space-time grid after three cycles of refinement (right)

Example 5.4. Next, let us consider a more realistic example in two space dimensions
that could mimic the propagation of waves in a layered medium such as a simplified model
of Earth. Let Ω = (−1, 1)2 ⊂ R2 and the initial values in (2.1) be

u0
0(x) = e−|xs|2(1− |xs|2) Θ(1− |xs|), u1

0 = 0,

with xs and the jump function Θ(·) as defined in Example 5.3, and s = 0.01. We choose
the elasticity coefficient discontinuous, a = 1 for y < 0.2, and a = 9 for y > 0.2. A typical
wave pattern is shown in Fig. 5.6.

transmitted
wave reflected

wave

wave
Huygensoriginal

wave

F i g. 5.6. Example 5.4: Layout of the wave pattern after some time, a bullet and a cross indicate the positions
of source and receiver, respectively (left). The dotted line indicates the discontinuity in the coefficient,

while the thick dashed line denotes the path of least action. Plot of the solution at t = 0.45 (right)

In geophysics and seismics it is an important task to accurately model the signal arrival
time at a given point. In our case, let us assume that we are interested in the situation
at the point x0 = (0.75, 0). As shown in the layout (see Fig. 5.6) the three first waves
arriving at this point are the Huygens’ wave, the direct wave, and the one reflected from
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the discontinuity. The first one travels into the medium of higher wave velocity, travels
some distance parallel to the discontinuity and then back towards the point of measurement.
Among all waves it is the one which has the least action along its path and is therefore called
Huygens’ wave. From extrapolation of computed data, we estimate its arrival time to be
approximately τH ≈ 0.618, while the arrival times of the other ones are τd ≈ 0.75 for the
direct wave and τr ≈ 0.85 for the reflected wave. A quantity related to the arrival time is

J(u) =

t2∫
t1

u(x0, t) t dt,

with a time interval [t1, t2] suitably chosen around the signal and such that it does not
include other signals. This interval is usually chosen in accordance with experimental data.
We take t1 = 0.55 and t2 = 0.68, to catch the first wave only. Accordingly, we choose
T = t2, to stop the computation at the first possible time – although we could also extend
T with the effect that automatic refinement would coarsen meshes after t2 to a single cell
as in the previous example. In this case the goal functional J(·) is not regular enough to

guarantee that the corresponding dual solution satisfies ẑ ∈ V̂. This complication may be
solved by “regularization” as discussed in Section 4.

In Fig. 5.7, we show the computational grids at times t = 0.15, t = 0.45, and t = T , as
generated by refinement by the heuristic energy error indicator (4.25) and by the weighted
estimator (DWR method). It is readily seen that the latter only tracks that part of the wave
field that travels to the right. A closer look at a more complete sequence of grids than shown
here reveals that the most refined parts of the grids indeed track the path of least action
(the dashed line in Fig. 5.6) which marks the path of the first signal to arrive at the receiver.
The first grid shown is at a time where the wave to arrive first is still traveling upward, while
in the second it is already traveling downward again. These complicated features of wave
propagation are clearly reflected in the grids.

F i g. 5.7. Example 5.4: Grids at times t = 0.15, t = 0.45 and t = T , with refinement
by the simplified energy error indicator (4.25) (rop row). Grids produced by the DWR

method (four cycles of refinement and coarsening) (bottom row)
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In Figure 5.8 the convergence of J(Uhk) towards the inferred value J(u) ≈ 0.618 is
shown. Since the grids only tracked the interesting part of the wave it is not surprising that
it accomplishes the same accuracy with a significantly lower number of space-time cells than
the grids refined with the simplified energy error indicator (4.25). Note that the dip in each
curve is due to the error, J(Uhk)− 0.618 , changing its sign, which happens to bring J(Uhk)
close to the exact value. Leaving aside these two data points, the grids as refined by the
DWR method show a higher order of convergence than the grids as refined by the heuristic
approach. It should be mentioned that refinement by the two methods starts from the same
grid, but that in the first step the DWR methods coarsens more cells than it refines, which
leads to an overall decrease of space-time cells.
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F i g. 5.8. Example 5.4: Convergence of the functional J(U) to the exact
value J(u) ≈ 0.618 (The dips in the curves are due to sign changes of the

error)

Example 5.5. The last example demonstrates the performance of the DWR method for
computing the propagation of an outward traveling wave on Ω = (−1, 1)2 with a strongly
heterogeneous coefficient as is frequently found in many engineering and earth sciences ap-
plications. Layout of the domain and structure of the coefficient are shown in Fig. 5.9.
We choose initial conditions as in the previous example but with s = 0.02 , and boundary
conditions as follows:

n · {a∇u} = 0 on y = 1, u = 0 on ∂Ω\{y = 1}.

The region of origin of the wave field is significantly smaller than shown in Fig. 5.9.

Notice that the lowest frequency in this initial wave field has wavelength λ = 4s; hence
taking the common minimum ten grid points per wavelength would yield 62,500 cells already
for the largest wavelength, rendering uniformly refined grids unable to produce high accuracy
for such cases. If we consider this example as a model of propagation of seismic waves in a
faulted region of rock, then we would be interested in recording seismograms at the surface,
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here chosen as the top line Γ of the domain. A corresponding functional output is

J(u) =

T∫
0

∫
Γ

u(s, t)ω(s, t) ds dt,

with a weight factor ω(s, t) = sin(3πs) sin (5πt/T ), and end-time T = 2. The frequency of
oscillation of this weight is chosen to match the frequencies in the wave field to obtain good
resolution of changes.

origin
of waves

Line of evaluation

F i g. 5.9. Example 5.5: Layout of the domain (left) and structure of the coefficient a(x) (right)

Remark 5.1. The evaluation of the weighted a posteriori error estimate of the DWR
method requires a careful approximation of the adjoint solution z . Therefore, in this exam-
ple, we have used a higher-order method (bi-quadratic elements) for solving the space-time
adjoint problem, though this does not seem feasible for complex higher-dimensional prob-
lems.

T a b l e 5.5. Example 5.5: Results obtained by adaptation
of spatial discretization using the DWR method (reference
value J(u) ≈ −4.515 · 10−6, M = number time steps, N =

average number of mesh cells)

Weighted estimator Heuristic indicator

N×M J(U) N×M J(U)

327 789 −2.085 · 10−6 327 789 −2.085 · 10−6

920 380 −4.630 · 10−6 920 380 −4.630 · 10−6

2 403 759 −4.286 · 10−6 2 403 759 −4.286 · 10−6

1 918 696 −4.177 · 10−6 5 640 223 −4.385 · 10−6

2 975 119 −4.438 · 10−6 10 189 837 −4.463 · 10−6

6 203 497 −4.524 · 10−6 17 912 981 −4.521 · 10−6

41 991 779 −4.517 · 10−6

In Fig. 5.10, we show the grids resulting from refinement by the DWR method compared
with the heuristic energy-error-based method. Both initially resolve the wave field quite well,
including reflections from discontinuities in the coefficient. On the other hand, the DWR
refinement indicator additionally takes into account that the lower parts of the domain lie
outside the domain of influence of the target functional if we truncate the time domain at
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T = 2; this domain of influence constricts to the top as we approach the final time, as is
reflected by the produced grids. The meshes obtained in this way are obviously much more
economical, without degrading the accuracy in approximating the quantity of interest.

F i g. 5.10. Example 5.5: Grids produced by the energy-error indicator (top row) and by the weighted
estimator (bottom row) at times t = 0, 2

3 ,
4
3 , 2

6. Summary

In this paper, we have discussed several discretization methods for the wave equation includ-
ing a posteriori error control and mesh-size adaptation for computing physically meaningful
quantities. Adjustment of spatial and temporal mesh sizes is based on an a posteriori rep-
resentation of the exact error with respect to an arbitrary functional of the solution, which
includes the local residuals of the numerical solution and local weights derived from the so-
lution of a dual problem associated with the quantity of interest. This approach, the “Dual
Weighted Residual (DWR)” method, fundamentally relies on the Galerkin character of the
underlying space-time discretization. Therefore it is important to note that also common fi-
nite difference time-stepping schemes such as certain variants of the Crank-Nicolson and the
(trapezoidal) Newmark scheme fit into this framework as they are algebraically equivalent
to certain lower-order “continuous” or “discontinuous” Galerkin schemes. Consequently,
the error estimation techniques outlined here are also applicable to these established and
well-understood methods.

It has been demonstrated that meshes generated with the aid of refinement criteria de-
rived by the DWR approach are significantly superior to meshes obtained by a simplified
refinement indicator which does not include information on the quantity of interest. The
superiority has been demonstrated by several examples of one and two dimensional wave
propagation, including high-frequency waves and discontinuous coefficients. In particular,
it has been shown that refinement based on the error representation is able to track where
information comes from, thus leading to highly localized mesh refinement if the target func-
tional is localized. In general, the smaller the region of evaluation of the target functional
is, the larger are the savings of the DWR approach compared to global refinement and to
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more traditional approaches of adaptivity. Furthermore, by this approach quantitative error
control is feasible.

Finally, several aspects of the underlying mechanisms have been discussed, particularly
alternative ways of evaluating the a posteriori error representation formula. Good mesh
refinement criteria that include localized information about the target functional can be ob-
tained by solving the dual problem to the same accuracy as the primal one. This may double
the computational cost compared to the pure forward solution, but usually reduces the com-
puting work by at least an order of magnitude compared to simple ad hoc approaches to
adaptivity, due to the more economical meshes produced, and can therefore allow the numer-
ical treatment of problems for which sufficient accuracy would otherwise not be achievable.
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