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A FLUX-CORRECTED FINITE ELEMENT

METHOD FOR CHEMOTAXIS PROBLEMS

R. STREHL1 , A. SOKOLOV1, D. KUZMIN1, AND S. TUREK1

Abstract — An implicit flux-corrected transport (FCT) algorithm has been devel-
oped for a class of chemotaxis models. The coefficients of the Galerkin finite element
discretization has been adjusted in such a way as to guarantee mass conservation and
keep the cell density nonnegative. The numerical behaviour of the proposed high-
resolution scheme is tested on the blow-up problem for a minimal chemotaxis model
with singularities. It has also been shown that the results for an Escherichia coli

chemotaxis model are in good agreement with the experimental data reported in the
literature.
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1. Introduction

Chemotaxis, an oriented movement towards or away from regions of higher concentrations of
certain chemicals, plays a vitally important role in the evolution of many living organisms.
The chemotactical response gives numerous creatures, ranging from bacteria and protozoa
to tissue cells, a chance to find more favourable locations in their environments. This fea-
ture improves their ability to search for food, detect the location of mates or escape danger.
Chemotaxis finds many medical and biological applications, including bacteria/cells aggre-
gation and pattern formation processes, tumour growth, etc.

The first mathematical description of chemotactical processes was given by Keller and
Segel [14, 15], who modeled the aggregation of the slime mold amoeba Dictyostelium dis-

coideum. Their work was followed by the development of sophisticated models for various
chemotaxis problems [2, 5, 13, 20, 27]. The numerical treatment of chemotaxis equations has
also been addressed by many authors [7, 9, 10, 16, 23, 28]. However, some implementation
aspects still call for further research. In particular, it is difficult to design a robust, accurate,
and efficient numerical algorithm that does not produce negative densities or concentrations
[7]. In the present paper, positivity constraints for the Galerkin finite element discretization
are enforced using a generalized flux-corrected transport (FCT) algorithm [4, 17, 19, 29].

A representative class of chemotaxis models based on advection-reaction-diffusion equa-
tions is considered in what follows. Following the notation of [13], the nonlinear PDE systems
to be solved in a two-dimensional domain Ω ⊂ R

2 are written in the unified form

ut = ∇ · (D(u)∇u− A(u)B(c)C(∇c)) + q(u) in Ω, (1.1)

ct = d∆c− s(u) c+ g(u) u in Ω, (1.2)
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where u(x, t) denotes the cell density and c(x, t) is the chemoattractant concentration. The
functional dependence of the involved coefficients on u and c defines a particular model. A
variety of complex chemotactical processes can be modelled in this way [2, 5, 16, 20, 27].

The above transport equation for u and the reaction-diffusion equation for c are endowed
with the initial conditions

u|t=0 = u0, c|t=0 = c0 in Ω, (1.3)

and homogeneous Neumann boundary conditions are prescribed on the boundary Γ of Ω

n · (D(u)∇u− A(u)B(c)C(∇c)) = n · ∇c = 0 on Γ. (1.4)

One of the numerical problems to be dealt with is due to the rapid growth of solutions
to system (1.1)–(1.2) in a small neighbourhood of certain points or curves. In particular,
the blow-up phenomenon, or a singular spiky behaviour of exact solutions, may give rise
to nonphysical oscillations if the employed numerical scheme is not guaranteed to satisfy
the discrete maximum principle (DMP). The available numerical techniques include various
positivity-preserving finite volume and finite element schemes [7, 11, 25], operator-splitting,
fractional step algorithms [23, 28], interior penalty discontinuous Galerkin methods [9, 10],
and cell-overcrowding prevention models [6, 8, 22]. The flux-corrected transport paradigm
described in Section 2 represents a promising new approach to the blow-up problem.

Another interesting application of the proposed methodology is the numerical prediction
of bacteria pattern formations. The nonlinear dependence of B(c) on the chemoattractant
concentration c can produce travelling waves [3, 24]. Attracting and repulsing substances
behave in different ways. As shown by the numerical study of Aida et al. [1, 2] and confirmed
experimentally, the pattern for small values of the parameter χ = B(c) = const resembles a
honeycomb, stripe or perforated stripe, while a chaotic spot pattern is observed for large val-
ues of χ. In Section 3, the proposed FEM-FCT algorithm is applied to 2D pattern formation
problems. The results presented are in good agreement with the available experimental data.

2. Flux-corrected transport

A segregated approach to the numerical solution of the nonlinear model problem (1.1)–(1.2)
was adopted. In each time step, the transport equation for the chemoattractant concentra-
tion c(x, t) is solved prior to that for the cell density u(x, t). Both equations are written
in weak form and discretized in space using (conforming) bilinear finite elements. The dis-
cretization in time is performed by the implicit Euler method; Crank-Nicolson and fractional
step schemes will be considered in a forthcoming paper. The system of linearized algebraic
equations consists of two decoupled subproblems for the unknowns un+1 and cn+1 at time
tn+1:

[M (1) + ∆tL(Dn)−∆tK(cn)] un+1 = M (1)un +∆tqn, (2.1)

[M (1) + ∆tL(d)−∆tM (sn)] cn+1 = M (1)cn +∆tM (gn)un, (2.2)

where M (·) denotes the (consistent) mass matrix, L(·) is a discrete diffusion operator, and
K(c) is a discrete transport operator due to the chemotactical flux A(u)B(c)C(∇c). The
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entries of M (·), L(·), K(c) and qn are defined in (2.3)–(2.6). In (2.1)–(2.2) the setting
Dn = D(un), sn = s(un) and gn = g(un) is used.

Given a set of piecewise-polynomial basis functions {ϕi}, the standard Galerkin dis-
cretization yields the following formulae for the coefficients of the matrices M , L, K and
the vector qn:

mij(ψ) =

∫

Ω

ϕiϕjψ dx, ψ ∈ {1, s(u), g(u)}, (2.3)

lij(ψ) =

∫

Ω

∇ϕi · ∇ϕjψ dx, ψ ∈ {D(u), d}, (2.4)

kij(c) =

∫

Ω

∇ϕi · A(ϕj)B(c)C(∇c) dx, (2.5)

qni =

∫

Ω

ϕiqj(u
n) dx. (2.6)

In formula (2.5), the discontinuous concentration gradient ∇c can be replaced by a super-
convergent approximation constructed using (slope-limited) reconstruction techniques [18].

As was shown by Kuzmin et al. [18, 19, 17], positivity constraints can be readily enforced
at the discrete level using a conservative manipulation of the matricesM andK. The former
is approximated by its diagonal counterpart ML constructed using row-sum mass lumping

ML := diag{mi}, mi =
∑

j

mij(1). (2.7)

Next, all negative off-diagonal entries of K are eliminated by adding an artificial diffusion
operator D. For conservation reasons, this matrix must be symmetric with zero row and
column sums. For any pair of neighbouring nodes i and j, the entry dij is defined as [18, 19]

dij = max{−kij , 0,−kji}, j 6= i. (2.8)

Note that dji = dij , so that the operator D is a symmetric matrix. The diagonal coefficients
dii are defined so that the row and column sums of D are equal to zero

dii = −
∑

j 6=i

dij. (2.9)

The result is a positivity-preserving discretization of low order. By construction, the added
perturbation to the discrete problem admits a conservative decomposition into a sum of
internodal fluxes. The mass lumping error and artificial diffusion received by the node i
satisfy

(M(1)u−MLu)i =
∑

j

mijuj −miui =
∑

j 6=i

mij(uj − ui), (2.10)

(Du)i =
∑

j

dijuj =
∑

j 6=i

dijuj + diiui =
∑

j 6=i

dij(uj − ui). (2.11)
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Let f denote the difference between the residuals of the low-order scheme and that of the
underlying Galerkin approximation. By virtue of the above flux decomposition, we have

fi =
∑

j 6=i

fij, fji = −fij , ∀j 6= i. (2.12)

To achieve a high resolution while keeping the scheme positivity-preserving, each flux is mul-
tiplied by a solution-dependent correction factor αij ∈ [0, 1] and inserted into the right-hand
side of the nonoscillatory low-order scheme. The original Galerkin discretization corresponds
to the setting αij := 1. It may be used in regions where the numerical solution is smooth
and well-resolved. The setting αij := 0 is appropriate in the neighborhood of steep fronts.

In essence, the off-diagonal entries of the sparse matrices M and K are replaced by

m∗
ij := αijmij, k∗ij := kij + (1− αij)dij,

while the diagonal coefficients of the flux-corrected Galerkin operators are given by

m∗
ii := mi −

∑

j 6=i

αijmij, k∗ii := kii −
∑

j 6=i

(1− αij)dij.

In implicit FEM-FCT schemes [17, 18, 19], the optimal values of αij are determined using
Zalesak’s algorithm [29]. The limiting process begins with cancelling all fluxes that are
diffusive in nature and tend to flatten the solution profiles. The required modification is

fij := 0 if fij(uj − ui) > 0,

where u is a positivity-preserving solution of low order [17, 18, 19]. The remaining fluxes are
truly antidiffusive, and the computation of αij involves the following algorithmic steps:

1. Compute the sums of positive/negative antidiffusive fluxes into node i

P+
i =

∑

j 6=i

max{0, fij}, P−
i =

∑

j 6=i

min{0, fij}.

2. Compute the distance to a local extremum of the auxiliary solution u

Q+
i = max{0,max

j 6=i
(uj − ui)}, Q−

i = min{0,min
j 6=i

(uj − ui)}.

3. Compute the nodal correction factors for the net increment to node i

R+
i = min

{

1,
miQ

+
i

∆tP+
i

}

, R−
i = min

{

1,
miQ

−
i

∆tP−
i

}

.

4. Check the sign of the antidiffusive flux and apply the correction factor

αij =

{

min{R+
i , R

−
j }, if fij > 0,

min{R−
i , R

+
j }, otherwise.
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In the context of chemotaxis problems, the above limiting strategy ensures that the cell
density u(x, t) and the concentration c(x, t) remain nonnegative. However, the resultant
algebraic systems are strongly nonlinear and must be solved iteratively. As a remedy, the
antidiffusive fluxes fij for an implicit FCT algorithm can be linearized about a low-order
predictor, as proposed by Kuzmin [17]. This linearized version of FEM-FCT is the method
that we use to solve our system (1.1)–(1.2) in the present paper. In contrast to nonlinear
FCT algorithms, antidiffusive flux correction is done explicitly after calculation of the low-
order solution. Therefore, it is readily applicable to linear and nonlinear problems alike.
For a detailed presentation of the FEM-FCT methodology, including theoretical analysis
(stability, positivity, convergence) and technical implementation details (data structures,
matrix assembly), we refer the interested reader to [17, 18, 19] and other publications by
Kuzmin et al.

3. Numerical results

In this section, the developed FEM-FCT algorithm is applied to chemotaxis models that call
for the use of positivity-preserving discretization techniques.

3.1. Blow-up in the center of the domain

The minimal Keller-Segel chemotaxis model

ut = ∆u−∇ · (u∇c), (3.1)

ct = ∆c− c+ u, (3.2)

can be written in the form (1.1)–(1.2). The corresponding parameter settings are as follows:

A(u) = u, B(c) = 1, C(∇c) = ∇c, D(u) = 1,

d = 1, s(u) = 1, g(u) = 1, q(u) = 0.

The following bell-shaped initial conditions [7] are prescribed in Ω = (0, 1)2 at t = 0

u0(x, y) = 1000 e−100((x−0.5)2+(y−0.5)2),

c0(x, y) = 500 e−50((x−0.5)2+(y−0.5)2).
(3.3)

The radially symmetric solution to the initial boundary value problem (3.1)–(3.3) has a peak
in the center of the domain Ω, where the blow-up of u and c occurs in finite time [12, 26]. The
numerical solutions to the blow-up problem are computed on a uniform grid of bilinear finite
elements. The mesh size and time step are given by h = 1/128 and ∆t = 10−6, respectively.
Snapshots of the results obtained with the standard Galerkin discretization of system (3.1)–
(3.2) are displayed in Fig. 3.1. The two diagrams in Fig. 3.2 show the distribution of the
cell density u along the horizontal line y = 0.5 at two time instants. Note that u becomes
negative at a certain intermediate time. The nonphysical negative values grow rapidly as
time evolves, which leads to an abnormal termination of the simulation run.
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(a) t = 10−5 (b) t = 4 · 10−5

(c) t = 6 · 10−5 (d) t = 1.2 · 10−4

F i g. 3.1. Blow-up in the center, standard Galerkin scheme, h = 1

128
, ∆t = 10−6.

(a) t = 6 · 10−5 (b) t = 1.2 · 10−4

F i g. 3.2. Blow-up in the center, Galerkin solution at y = 0.5, h = 1

128
, ∆t = 10−6.

Next, we apply the FCT correction to the discretized form of the minimal chemotaxis sys-
tem (3.1)–(3.2) and perform simulations with the same parameter settings as before. The
numerical solutions presented in Figs. 3.3 and 3.4 are seen to be positive and nonoscillatory.



A flux-corrected finite element method for chemotaxis problems 225

(a) t = 10−5 (b) t = 4 · 10−5

(c) t = 6 · 10−5 (d) t = 1.2 · 10−4

F i g. 3.3. Blow-up in the center, FEM-FCT scheme, h = 1

128
, ∆t = 10−6.

(a) t = 6 · 10−5 (b) t = 1.2 · 10−4

F i g. 3.4. Blow-up in the center, FEM-FCT solution at y = 0.5, h = 1

128
, ∆t = 10−6.

The accuracy of a finite element approximation can be easily improved by means of local
mesh refinement in underresolved regions. Since the solution of system (3.1)–(3.2) blows up
in the center of the square domain, it is worthwhile to refine the mesh around this point,
so as to achieve a higher resolution of the growing peak. For a fair comparison, the number
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of elements (degrees of freedom) should not exceed that for the uniform grid employed
previously. The FEM-FCT solution presented in Fig. 3.5 (b) was computed on a nonuniform
mesh constructed from that shown in Fig. 3.5 (a) using 5 levels of global refinement. The
total number of elements is 13, 312 < 1282. Due to the higher mesh density around the point
of blow-up, the peak of the cell density is approximately twice as high as that in Fig. 3.3 (d).
The peak heights variation with uniform and adaptive mesh refinement is illustrated by the
diagram in Fig. 3.6.

(a) adaptive mesh, level 3, h 6 1/8 (b) cell density u at t = 1.2 · 10−4

F i g. 3.5. Blow-up in the center, adaptive FEM-FCT scheme, 13, 312 elements, ∆t = 10−6.

F i g. 3.6. Peak heights variation with mesh refinement.
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3.2. Blow-up at the boundary of the domain

In the second example, the system of chemotaxis equations (3.1)–(3.2) is solved subject to
the initial conditions

u0(x, y) = 1000 e−100((x−0.75)2+(y−0.75)2),

c0(x, y) = 0.
(3.4)

Since the initial chemoattractant concentration is zero, the blow-up is expected to occur
much later than in the previous example. Therefore, simulations are performed with a
larger time step ∆t = 10−3. As time evolves, the solution of system (3.1)–(3.2) assumes a
spiky form and moves towards the upper right corner of the domain. The results obtained
with the standard Galerkin discretization are displayed in Fig. 3.7. Again, the cell density
becomes negative, and nonphysical oscillations are observed in the corner. These problems
can be cured using algebraic flux correction of FCT type, as demonstrated by the solutions
in Fig. 3.8.

(a) t = 0.01 (b) t = 0.05

(c) t = 0.07 (d) t = 0.1

F i g. 3.7. Blow-up in the corner, Galerkin scheme, h = 1

128
, ∆t = 10−3.
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(a) t = 0.01 (b) t = 0.05

(c) t = 0.07 (d) t = 0.1

F i g. 3.8. Blow-up in the corner, FEM-FCT scheme, h = 1

128
, ∆t = 10−3.

The point of blow-up may depend on the geometry on the computational domain, as
well as on the imposed boundary conditions [11]. For example, let Ω be a circle of radius
0.5 centered at the point (0.5, 0.5). A typical coarse mesh is depicted in Fig. 3.9 (a). The
purpose of the numerical experiment to be performed is to find out if the blow-up point
tends to any particular location. The peak of the initial profile u0 is placed at the point
(0.6, 0.6)

u0(x, y) = 1000 e−100((x−0.6)2+(y−0.6)2),

c0(x, y) = 0.
(3.5)

All other settings are the same as in the case of the square domain. The FEM-FCT results
in Fig. 3.9 (b,c,d) were obtained with 9216 bilinear elements. The distribution of the cell
density moves in the radial direction and blows up at the boundary of the circle in finite
time.
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(a) coarse mesh (b) t = 0.085

(c) t = 0.14 (d) t = 0.2

F i g. 3.9. Blow-up at a circular boundary, FEM-FCT scheme, ∆t = 10−3.

3.3. Pattern formation

In the last example, we consider a more complicated and realistic chemotaxis model. It
describes the complex space-time patterns formed by motile cells of Escherichia coli. There
are several different approaches to modeling the distribution of these bacteria. One of them
leads to the following system of differential equations [5]:

ut = D1∆u− α∇ ·

(

u

(1 + c)2
∇c

)

, (3.6)

ct = D2∆c+ β
w u2

σ + u2
. (3.7)

For theoretical analysis, numerical algorithms, and simulation results we refer to [7, 16, 27].
In another model, proposed by Mimura and Tsujikawa [21], only the diffusion, the chemo-

taxis, and the growth of bacteria are taken into account. The corresponding PDE system
reads

ut = D1∆u− χ∇ · (u∇c) + u2(1− u), (3.8)

ct = ∆c− βc+ u. (3.9)
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For a detailed presentation of this approach see, e.g., [1, 2]. Although both systems (3.6)–
(3.7) and (3.8)–(3.9) model the space-time patterns formed by motile cells of Escherichia coli

and fit the structure of (1.1)–(1.2), in this article we consider only the Mimura-Tsujikawa
model (3.8)–(3.9) with D1 = 0.0625, χ = 8.5, and β = 32. These parameter settings are
taken from [1, 2]. The initial conditions are given by

u0(x, y) = 1 + σ(x, y),

c0(x, y) = 1/32,

where σ(x, y) is a small perturbation defined as

σ(x, y) =

{

random, if ‖x− (8, 8)T‖ 6 1.5,

0, otherwise.

Numerical simulations are performed in the square domain Ω = (0, 16)2 discretized using
a uniform mesh of conforming bilinear finite elements. The employed mesh size h = 1/8
corresponds to 16384 cells. The time step is taken to be ∆t = 0.1. The solutions are
very sensitive to the choice of parameters, especially χ, σ, etc. Figure 3.10 illustrates the
temporal evolution of the cell distribution obtained with the implicit FEM-FCT algorithm.
The presented results are in quantitative agreement with those reported in [1, 2]. The same
formation patterns have been observed experimentally [5].

(a) t = 0.01 (b) t = 0.05

(c) t = 0.07 (d) t = 0.1

F i g. 3.10. Pattern formation simulated with the FEM-FCT algorithm, ∆t = 0.1, h = 1

8
.
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4. Conclusions

An implicit flux-corrected transport algorithm has been developed for the unified form (1.1)–
(1.2) of chemotaxis models. Positivity constraints were enforced using a nonlinear blend of
high- and low-order approximations. The employed limiting strategy is fully multidimen-
sional and applicable to (multi-)linear finite element discretizations on unstructured meshes.
The resultant scheme satisfies the discrete maximum principle and resolves steep gradients
without excessive smearing. The local order of accuracy varies between first (low-order
solution) and second (high-order solution), depending on the amount of artificial diffusion
retained at the flux correction step. The robustness and efficiency of the linearized FEM-
FCT algorithm make it an attractive alternative to other stabilization techniques for the
chemotaxis problems proposed in the literature [7, 9, 10, 16, 23, 28].

A preliminary numerical study of the implicit FEM-FCT scheme has been performed
for the minimal Keller-Segel model. The flux-corrected Galerkin approximation has been
shown to be sufficiently accurate and positivity-preserving, even in the case of solutions with
sharp peaks that blow-up in the center or at the boundary of the domain. An example
that illustrates the benefits of local mesh refinement was included. Furthermore, realistic
simulation results were obtained for a representative model of chemotactical pattern forma-
tion. The proposed methodology is suitable for a 3D implementation and seems to be a
promising approach to the numerical treatment of real-life chemotaxis problems in medicine
and biology. Further research will concentrate on the design of FCT algorithms for (1.1)–
(1.2) with stronger coupling. The implications of the time-stepping method also call for a
detailed investigation. Last but not least, a detailed quantitative comparison with exist-
ing numerical results [7, 9, 10, 25] is required to illustrate the pros and cons of different
discretization/stabilization techniques.
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