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Abstract � Iterative methods for �nite-dimensional inclusions which arise in applying
a �nite-element or a �nite-di�erence method to approximate state-constrained optimal
control problems have been investigated. Speci�cally, problems of control on the right-
hand side of linear elliptic boundary value problems and observation in the entire
domain have been considered. The convergence and the rate of convergence for the
iterative algorithms based on the �nding of the control function or Lagrange multipliers
are proved.
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Introduction

Large-scale �nite dimensional inclusions with so-called saddle matrices and constrained
saddle-point problems arise from the approximation of di�erent applied problems. While the
solution methods for unconstrained saddle-point problems have been thoroughly investigated
(see, e.g., the survey paper [1] containing an exhaustive list of references on this subject),
the development of e�cient numerical methods for solving large-scale constrained saddle-
point problems is still far from completed. For instance, the convergence of the Uzawa,
Arrow-Hurwitz, and operator-splitting iterative methods for constrained saddle-point prob-
lems arising from an augmented Lagrangian approach to solving variational inequalities was
investigated in [2] (see also the bibliography therein). Some iterative methods with the esti-
mation of the rate of convergence for constrained saddle-point problems arising from a mixed
hybrid �nite element approximation of variational inequalities were proposed in [3].

State-constrained optimal control of systems governed by partial di�erential equations
give rise to a class of constrained saddle-point problems, which causes problems to the
the optimization methods (see, e.g., [4, 5, 6]). A common way to solve them consists of the
approximation of the indicator function of the set of state constraints with further application
of a gradient-type or Newton-type method [6]� [9].

In this paper, we develop iterative solution methods for constrained saddle-point problems
and pay attention to the obtaining of estimates for the iterative parameters and the rate
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of convergence. As an illustrative example, we consider the �nite element approximation
of the state- and control-constrained optimal control problem governed by a linear elliptic
partial di�erential equation. In this problem, the control is on the right-hand side of the
equation or the Neumann boundary condition, and the observation - in the entire domain.
Regardless of the fact that this problem seems to be very particular speci�c, it is of practical
importance, especially since it can serve as an auxiliary problem in sequential quadratic
programming (SQP)-methods (see [10]) and other preconditioning procedures to solve more
general problems.

1. Solution of the �nite dimensional inclusion

1.1. Existence results

Consider the minimization problem

�nd min
Ly=Su

{J(y, u) = Θ(y) + Υ(u)} , (1.1)

where
Θ : RNy → R̄ and Υ : RNu → R̄ (R̄ = R ∪ {+∞}) are proper,

convex and lower semicontinuous functions with closed domains
dom Θ = {y : Θ(y) < +∞}, domΥ = {u : Υ(u) < +∞},

(1.2)

L ∈ RNy×Ny , S ∈ RNy×Nu are matrices and L is regular. (1.3)

Theorem 1.1. Let (1.2), (1.3) be satis�ed. Additionally, if

there exists a pair (y0, u0) ∈ dom Θ× dom Υ : Ly0 = Su0. (1.4)

and one of the following assumptions holds:

dom Υ is bounded, (5a)

Υ is coercive and Θ is bounded below, (5b)

then problem (1.1) has a solution.
If moreover one of the following assumptions is satis�ed:

Υ is strictly convex, (6a)

Θ is strictly convex and KerS = {0}, (6b)

then the solution is unique.

Proof. Owing to (1.2) � (1.4) the set K = {(y, u) : y ∈ dom Θ, u ∈ domΥ, Ly = Su} is
closed, convex, and nonempty, while the function J is proper, convex, and lower semicontinu-
ous. If domΥ is bounded, then K is bounded because of the inequality ‖y‖ 6 ‖L−1‖‖S‖‖u‖,
and the function J attains its minimum onK. Let now Υ be coercive: lim Υ(u) = +∞ as u ∈
domΥ, ‖u‖ → ∞, and Θ be bounded below: Θ(y) > θ0 = const for all y. Then J is coercive
on K:

J(yn, un)→ +∞ for {(yn, un)} ∈ K, ‖yn‖+ ‖un‖ → ∞.
In fact, if ‖yn‖+‖un‖ → ∞, then necessarily ‖un‖ → ∞, and J(yn, un) > θ0 +Υ(un)→ +∞.
The proven properties of K and J ensure the existence of a solution (y, u) of problem (1.1).
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To ascertain the uniqueness of the solution, we need only to prove the strict convexity of
the function J on K.

Let Υ be strictly convex (assumption (6a)). If (y1, u1) ∈ K, (y2, u2) ∈ K and (y1, u1) 6=
(y2, u2), then u1 6= u2, because otherwise y1 − y2 = L−1S(u1 − u2) = 0 and we get a
contradiction. So, J is strictly convex on K as a sum of strictly convex Υ and convex Θ.

Let Θ be strictly convex and KerS = {0} (assumption (6b)). If (y1, u1) 6= (y2, u2), then
y1 6= y2. Indeed, the equality y1 = y2 implies S(u1 − u2) = L(y1 − y2) = 0, whence u1 = u2

since KerS = {0}. Again, J is strictly convex on K as a sum of strictly convex Θ and
convex Υ.

Now, de�ne the Lagrange function for problem (1.1)

L(y, u, λ) = Θ(y) + Υ(u)− (λ, Ly − Su). (1.7)

The saddle-point of L is a triple (y, u, λ) ∈ RNy × RNu × RNy such that

inf
y, u

sup
λ
L(y, u, λ) = sup

λ
inf
y, u
L(y, u, λ).

It is known (cf. [11]) that the �rst two components (y, u) of the saddle-point coincide with
the solution of (1.1) and that (y, u, λ) is a saddle-point of Lagrangian (1.7) if and only if it
is a solution of the system

∂yL(y, u, λ) = ∂Θ(y)− LTλ 3 0,

∂uL(y, u, λ) = ∂Υ(u) + STλ 3 0, (1.8)

∇λL(y, u, λ) = −Ly + Su = 0.

Theorem 1.2. Let (1.2), (1.3) and (5a-5b) be satis�ed. Let also one of the following
assumptions hold:

there exists a pair (y0, u0) ∈ int dom Θ× dom Υ : Ly0 = Su0, (1.9)

there exists a pair (y0, u0) ∈ dom Θ× int dom Υ : Ly0 = Su0,

and there exists u1 ∈ RNu : y1 = L−1Su1 ∈ int dom Θ. (1.10)

Then there exists a saddle-point (y, u, λ) of Lagrangian (1.7). The components (y, u) are
de�ned uniquely if (6a-6b) holds. If, moreover, Θ is di�erentiable at the point y or if Υ
is di�erentiable at the point u and there exists an inverse matrix S−T , then λ is de�ned
uniquely.

Proof. Due to Theorem 1.1 the minimization problem (1.1) has a solution u, which is
unique if (6a-6b) holds. Problem (1.1) can be written in the form

�nd min
u∈RNu

[
Θ(L−1Su) + Υ(u)

]
,

which is equivalent to �nding a solution of the inclusion 0 ∈ ∂ [Θ(L−1Su) + Υ(u)] . Because
of (1.9) or (1.10) (see the properties of subdi�erentials in [11])

∂
[
Θ(L−1Su) + Υ(u)

]
= ∂

[
Θ(L−1Su)

]
+ ∂Υ(u)

=
(
ST L−T ◦ ∂Θ ◦ L−1 S

)
(u) + ∂Υ(u).
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Thus, u is the solution of the inclusion(
ST L−T ◦ ∂Θ ◦ L−1 S

)
(u) + ∂Υ(u) 3 0. (1.11)

In other words,

∃µ ∈ ∂Υ(u), ∃η ∈ ∂Θ(y) with y = L−1Su : STL−Tη + µ = 0. (1.12)

Denoting λ = L−Tη, we �nd that the triple (y, u, λ) ∈ RNy × RNu × RNy satis�es system
(1.8). So, the existence of a saddle-point of Lagrangian (1.7) is proved.

Now, if the triple (y, u, λ) is a solution of (1.8), then it satis�es system (1.12). As
a consequence, u is the solution of (1.11) and the pair (u, y), y = L−1Su is a solution to
problem (1.1). So, with assumptions (6a-6b) (u, y) is de�ned uniquely owing to Theorem 1.1.

It remains to prove the uniqueness of λ. But if Θ is di�erentiable at the point y, then λ
is de�ned uniquely from the �rst equation of (1.8): λ = L−T∇Θ(y). Similarly, if there exist
∇Υ(u) and S−T , then λ = −S−T∇Υ(u) from the second equation of (1.8).

1.2. Iterative solution of the constrained saddle-point problem

Let system (1.8) have a solution (y, u, λ). We will consider the iterative methods for the
inclusions constructed via transformations of system (1.8).

Case of the single-valued operator ∂Θ

Let ∂Θ = ∇Θ be a single-valued operator, then from system (1.8) we can obtain the
inclusion with respect to the vector u(

ST L−T ◦ ∇Θ ◦ L−1 S
)
(u) + ∂Υ(u) 3 0. (1.13)

To solve it, we apply the stationary one-step iterative method

1

τ
B(uk+1 − uk) +

(
ST L−T ◦ ∇Θ ◦ L−1 S

)
(uk) + ∂Υ(uk+1) 3 0, (1.14)

where B ∈ RNu×Nu , B = BT > 0 and τ > 0. The iterative method (1.14) can be viewed as
a preconditioned gradient-type method for �nding the minimum of the function

Θ(L−1Su) + Υ(u)

with the di�erentiable function Θ and nondi�erentiable Υ. Its implementation consists of
the following steps: for known uk

1) �nd yk = L−1Suk;
2) �nd λk = −L−T∇Θ(yk);
3) solve the inclusion

B
uk+1 − uk

τ
+ ∂Υ(uk+1) 3 STλk. (1.15)

Note that the choice of the preconditioner B is limited to the possibility to solve e�ciently
inclusion (1.15).

In the case ∂Υ = ∂ψ + Mu with a single-valued operator Mu and a convex, proper, and
lower semicontinuous function ψ, we can consider the variant of method (1.14)

1

τ
B(uk+1 − uk) +

(
ST L−T ◦ ∇Θ ◦ L−1 S

)
(uk) +Mu(u

k) + ∂ψ(uk+1) 3 0.
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In implementing this iterative method, we need to have an e�cient solver for an inclusion
with the operator B + τψ.

Case of the single-valued operators (∂Θ)−1 and (∂Υ)−1

Suppose there exist single-valued operators (∂Θ)−1 and (∂Υ)−1. Then from system (1.8)
we get the equation for λ

L (∂Θ)−1(LTλ)− S (∂Υ)−1(−STλ) = 0 (1.16)

with a single-valued operator P = L◦ (∂Θ)−1 ◦LT + (−S)◦ (∂Υ)−1 ◦ (−ST ). To solve (1.16),
we use the iterative method

B
λk+1 − λk

τ
+ L (∂Θ)−1(LTλk)− S (∂Υ)−1(−STλk) = 0 (1.17)

with a preconditioner B = BT > 0. Method (1.17) can be viewed as a preconditioned Uzawa
method for �nding the saddle point of Lagrangian (1.7). Its implementation consists of the
following two steps: for known λk

1) �nd
yk = (∂Θ)−1(LTλk) and uk = (∂Υ)−1(−STλk);

2) solve the equation

B
λk+1 − λk

τ
+ Lyk − Suk = 0.

Obviously, method (1.17) is of practical importance if inclusions with the operators ∂Θ and
∂Υ can be solved e�ciently (�rst step of the algorithm). On the other hand, at the second
step of the algorithm we solve the equation with a matrix B, so we can use a variety of
preconditioners B.

Case of the single-valued operator ∂Υ and the regular matrix S

Let ∂Υ = ∇Υ and the matrix S be regular. Then system (1.8) can be transformed to
the inclusion with respect to y

LT S−T∇Υ
(
S−1Ly

)
+ ∂Θ(y) 3 0. (1.18)

The stationary one-step iterative method for (1.18) reads as

B
yk+1 − yk

τ
+ LT S−T∇Υ

(
S−1Lyk

)
+ ∂Θ(yk+1) 3 0. (1.19)

The iterative method (1.19) can be viewed as a preconditioned gradient-type method for
�nding the minimum of the function

Θ(y) + Υ(S−1Ly)

with a di�erentiable function Υ and a nondi�erentiable function Θ. Its implementation
consists of the following steps: for known yk

1) �nd uk = S−1Lyk;
2) �nd λk = −S−T∇Υ(uk);
3) solve the inclusion

B
yk+1 − yk

τ
+ ∂Θ(yk+1) 3 LTyk.
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If ∂Θ = ∂θ+My with a single-valued operator My and a convex, proper and lower semicon-
tinuous function θ, then we can consider the following variant of method (1.19):

B
yk+1 − yk

τ
+ LT S−T∇Υ

(
S−1Lyk

)
+ Ay(y

k) + ∂θ(yk+1) 3 0.

In implementing these iterative methods we need to have an e�cient solver for the inclusion
with the operator B + τΘ or with the operator B + τθ, respectively.

1.3. Iterative methods for the general inclusion

The inclusions constructed in Section 1.2 for the vectors u, λ and y are particular cases
of the general inclusion which we will consider in this section.

Consider the problem in Rn

P (u) +Q(u) 3 0 (1.20)

with a (generally) multivalued maximal monotone operator Q and a continuous operator
P . Further we suppose that inclusion (1.20) has a solution and apply for its solution the
preconditioned one-step stationary iterative method

1

τ
B(uk+1 − uk) + P (uk) +Q(uk+1) 3 0, (1.21)

with the matrix B = BT > 0 and the iterative parameter τ > 0.

Theorem 1.3. Let Q : Rn → 2Rn

be a maximal monotone operator and P = CT ◦A◦C,
where C ∈ Rm×n and the operator A : Rm → Rm is uniformly inverse monotone (co-
coercive)4

(A(u)− A(v), u− v) > p0‖A(u)− A(v)‖2, p0 > 0. (1.22)

Then for

B = BT >
τ

2p0

CTC (1.23)

the iterative method (1.21) converges for any initial guess u0 ∈ Rn.

Proof. Let u be a solution of (1.20), zk = uk − u. Multiplying the inclusion

1

τ
B(zk+1 − zk) + P (uk)− P (u) +Q(uk+1)−Q(u) 3 0

by 2τzk+1 and using the monotonicity of Q, we get

‖zk+1‖2
B − ‖zk‖2

B + ‖zk+1 − zk‖2
B + 2τ(A(Cuk)− A(Cu), Czk+1) 6 0. (1.24)

Due to (1.22)

(A(Cuk)− A(Cu), Czk+1) = (A(Cuk)− A(Cu), Czk)

+(A(Cuk)− A(Cu), C(uk+1 − uk)) > p0‖A(Cuk)− A(Cu)‖2 (1.25)

−‖A(Cuk)− A(Cu)‖‖C(uk+1 − uk)‖ > − 1

4p0

‖C(zk+1 − zk)‖2.

4Hereafter we use the same notations (., .) and ‖.‖ for Euclidian scalar products and norms in vector
spaces of di�erent dimensions.
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Inequalities (1.24) and (1.25) yield

‖zk+1‖2
B − ‖zk‖2

B + ((B − τ

2p0

CTC)(zk+1 − zk), zk+1 − zk) 6 0.

Since there exists ε > 0 such that B − τ

2p0

CTC > εB, then

‖zk+1‖2
B + ε‖zk+1 − zk‖2

B 6 ‖zk‖2
B for all k. (1.26)

Inequality (1.26) brings about the following statements:

(a) the sequence {‖zk‖B} monotonically decreases and converges to a �nite number, i.e,
the sequence {uk} is bounded;

(b) ‖uk+1 − uk‖B = ‖zk+1 − zk‖B → 0 as k →∞.

Let uki → u∗ for ki → ∞ be a convergent subsequence of the bounded sequence {uk}.
As ‖uki+1 − uki‖B → 0, then also uki+1 → u∗ for ki →∞.

Let us prove that u∗ is a solution of (1.20). Recall that the maximal monotone operator
Q is closed: uk → u∗ and γk → γ∗, γk ∈ Q(uk) imply γ∗ ∈ Q(u∗).

Because of this property and the continuity of P , passing to the limit in the inclusion

Q(uki+1) 3 −P (uki+1) − 1

τ
B(uki+1 − uki), we obtain Q(u∗) 3 P (u∗). It means that u∗ is a

solution of (1.20).
Now let u = u∗ in all aforementioned arguments. Since the sequence {‖uk − u∗‖B}

monotonically decreases and its subsequence {‖uki −u∗‖B} tends to zero, {‖uk−u∗‖B} also
tends to zero.

Theorem 1.4. Let B = BT > 0, Q be the maximal monotone operator while P be a
uniformly monotone and Lipshitz-continuous operator

(P (u)− P (v), u− v) > α‖u− v‖2
B, (1.27)

(P (u)− P (v), w) 6 β1/2 (P (u)− P (v), u− v)1/2‖w‖B. (1.28)

Inclusion (1.20) has a unique solution u, for τ ∈ (0,
2

β
) the iterative method (1.21) converges

starting from any initial guess u0, and for the optimal parameter

τ = τ0 =
1

β

the following estimate for the rate of convergence is valid:

‖uk+1 − u‖B 6 ρ‖uk − u‖B, ρ =
(
1− α

β

)1/2
. (1.29)

Proof. Because of the uniform monotonicity and the Lipshitz continuity of the operator
P , the operator P + Q is maximally monotone and uniformly monotone. Thus, inclusion
(1.20) has a unique solution u.

Let zk = uk − u. Multiplying the inclusion

1

τ
B(zk+1 − zk) + P (uk)− P (u) +Q(uk+1)−Q(u) 3 0
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by 2τzk+1, we get

‖zk+1‖2
B − ‖zk‖2

B + ‖zk+1 − zk‖2
B + 2τ(P (uk)− P (u), zk+1) 6 0.

Due to (1.27) and (1.28)

2τ(P (uk)− P (u), zk+1) = 2τ(P (uk)− P (u), zk) + 2τ(P (uk)− P (u), (uk+1 − uk))
> (2τ − τ 2β)(P (uk)− P (u), zk)− ‖zk+1 − zk‖2

B.

Substituting this estimate into the previous inequality we get

‖zk+1‖2
B 6

(
1− τα(2− τβ)

)
‖zk‖2

B,

whence all results about the convergence and the rate of convergence for the optimal param-
eter τ0 follow.

2. Iterative solution of the state-constrained optimal control prob-

lem

2.1. Formulation of the problem and its approximation

Let Ω ⊂ R2 be a bounded domain with the boundary ∂Ω = ΓD ∪ ΓN , meas ΓD > 0,
and V = {u ∈ H1(Ω) : u(x) = 0 on ΓD} be Sobolev space with an inner product (u, v) =∫
Ω

∇u · ∇v dx and norm ‖u‖ = (u, u)1/2. Consider the weak formulation of the mixed

boundary-value problem for the second order elliptic equation:

y ∈ V :

∫
Ω

2∑
i,j=1

(aij
∂y

∂xj

∂z

∂xi
+ a0yz)dx =

∫
Ω

fzdx+

∫
ΓN

qzdx ∀z ∈ V. (2.1)

Suppose that the coe�cients aij(x) and a0(x) are continuous in the closed domain Ω and

2∑
i,j=1

aij(x)ξjξi > c0

2∑
i=1

ξ2
i , a0(x) > 0 ∀x ∈ Ω, c0 = const > 0.

Then the bilinear form a(y, z) de�ned by the left-hand side of (2.1) is coercive and bounded

a(y, y) > c0‖y‖2, ∀y ∈ V ; a(y, z) 6 c1‖y‖ ‖z‖, ∀y, z ∈ V, c1 = const.

Further, for any f ∈ L2(Ω) and any q ∈ L2(ΓN) the right-hand side of (2.1) de�nes a bounded
linear functional in V . Therefore, owing to the Lax-Milgram theorem, problem (2.1) has a
unique solution y ∈ V , and

‖y‖V 6 k(‖f‖L2(Ω) + ‖q‖L2(ΓN )), k = const. (2.2)

De�ne the goal functional

J(y, f, q) =
1

2

∫
Ω

(y − yd)2dx+
r1

2

∫
Ω1

f 2dx+
r2

2

∫
ΓN

q2dΓ, ri = const > 0,
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with a given function yd(x) ∈ L2(Ω) and a subdomain Ω1 j Ω. Let the sets of constraints be

Yad = {y ∈ V : y(x) > 0 ∀x ∈ Ω}, Fad = {f ∈ L2(Ω) : |f(x)| 6 fd ∀x ∈ Ω1},

Qad = {q ∈ L2(ΓN) : |q(x)| 6 qd ∀x ∈ ΓN}, where fd > 0, qd > 0.

We consider the optimal control problem

�nd min
(y,f,q)∈K

J(y, f, q),

K = {(y, f, q) : y ∈ Yad, f ∈ Fad, q ∈ Qad, Eq. (2.1) holds}.
(2.3)

Lemma 2.1. Optimal control problem (2.3) has a unique solution.

Proof. The statement results from the following properties of K and J :
the set K is nonempty, closed and convex in V × L2(Ω)× L2(ΓN), bounded because of the
boundedness of Fad and Qad and estimate (2.2);
functional J is continuous and strictly convex in V × L2(Ω)× L2(ΓN).

Suppose that the domains Ω and Ω1 have polygonal boundaries and construct a �nite element
approximation of problem (2.3). Let Ω =

⋃
e∈Th

e be a conforming triangulation of Ω ([12]),

where Th is a family of nonoverlapping closed triangles e (�nite elements) and h is the
maximal diameter of all e ∈ Th. Let Th generate triangulations T 1

h on Ω1 and ∂Th on ΓN ,
namely, Ω1 consists of an integer number of e ∈ Th and ΓN consists of an integer number of
sides ∂e of elements e ∈ Th. De�ne the �nite element space Vh ⊂ V of the continuous and
piecewise linear functions (linear on each e) which vanish on the boundary ΓD and the �nite
element space Uh ∈ L2(ΓN) of the piecewise linear functions on ΓN (linear on each ∂e ∈ ΓN),
which are traces on ΓN of the functions from Vh.

Let, for simplicity, the functions f, yd and q be continuous and f(x) = 0 in Ω\Ω1. De�ne
fh ∈ Vh such that fh(xi) = f(xi) for all nodes xi of triangulation Th, and similar qh ∈ Uh
and yd h ∈ Vh. To approximate the integrals of the continuous function g(x) over the �nite
element e ∈ Th or its side ∂e, we use the quadrature formulas∫

e

g(x)dx ≈ Se(g) =
1

3
meas (e)

3∑
α=1

g(xα), xα are the vertices of e,

∫
∂e

g(x)dΓ ≈ S∂e(g) =
1

2
meas (∂e)

2∑
α=1

g(xα), xα are the vertices of ∂e.

The corresponding composite quadrature formulas are

SΩ(g) =
∑
e∈Th

Se(g), SΩ1(g) =
∑
e∈T 1

h

Se(g), SΓ(g) =
∑

∂e∈∂Th

S∂e(g).

Now we can de�ne the discrete optimal control problem, namely, the state equation: �nd
yh ∈ Vh such that

SΩ

(
2∑

i,j=1

aij
∂yh
∂xj

∂zh
∂xi

+ a0yhzh

)
= SΩ1(fh zh) + SΓ(qh zh) ∀zh ∈ Vh; (2.4)
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the goal function

Jh(yh, fh, qh) =
1

2
SΩ((yh − yd h)2) +

r1

2
SΩ1(f

2
h) +

r2

2
SΓ(q2

h);

the sets of constraints

Y h
ad = {yh ∈ Vh : yh(x) > 0 for x ∈ Ω}, Qh

ad = {qh ∈ Uh : |qh(x)| 6 qd ∀x ∈ ΓN},

F h
ad = {fh ∈ Vh : |fh(x)| 6 fd ∀x ∈ Ω1, fh(x) = 0 ∀x ∈ Ω \ Ω1},

and Kh = {(yh, fh, qh) : yh ∈ Y h
ad, fh ∈ F h

ad, qh ∈ Qh
ad, Eq. (2.4) holds};

the resulting discrete optimal control problem

�nd min
(yh,fh,qh)∈Kh

Jh(yh, fh, qh). (2.5)

The bilinear form ah(yh, zh), de�ned by the left-hand side of Eq. (2.4), is uniformly in h
coercive and bounded:

ah(yh, yh) > c̃0‖yh‖2, ∀yh ∈ Vh; ah(yh, zh) 6 c̃1‖yh‖ ‖zh‖, ∀yh, zh ∈ Vh.

Because of this, Eq. (2.4) has a unique solution yh for any fh ∈ Vh, qh ∈ Uh and the following
stability inequalities hold:

S
1/2
Ω (|yh|2) 6 k1 S

1/2
Ω (|∇yh|2) 6 kf

(
S

1/2
Ω1

(f 2
h) + S

1/2
Γ (q2

h)
)

(2.6)

with constants k1 and kf independent of h.

Lemma 2.2. The discrete optimal control problem (2.5) has a unique solution (yh, fh, qh).

Proof. The proof immediately follows from the fact that the set Kh is nonempty, closed,
convex, and bounded, while the function Jh is continuous and strictly convex.

Below we formulate problem (2.5) in a "vector-matrix" form. Denoting by y ∈ RNy the vector
of the nodal values of the function yh ∈ Vh (Ny = dimVh), we get the "onto" correspondence
y ⇔ yh. Similarly, we de�ne u ∈ RNu , u ⇔ uh, uh ∈ Uh, and f ∈ RNf as the vector of the
nodal values for the restriction of the function fh(x) on the subdomain Ω1.

5

De�ne the sti�ness matrix Ly ∈ RNy×Ny , the diagonal mass matrices My ∈ RNy×Ny ,
Mf ∈ RNf×Nf and Mq ∈ RNu×Nu , and the rectangular matrices Sq ∈ RNy×Nu , Sf ∈ RNy×Nf

by the following equalities:

(Lyy, z) = SΩ

(
2∑

i,j=1

aij
∂yh
∂xj

∂zh
∂xi

+ a0yhzh

)
, (Myy, z) = SΩ(yhzh),

(Mff, g) = SΩ1(fhgh), (Sff, z) = SΩ1(fhzh),

(Mqu, v) = SΓ(uhvh), (Squ, z) = SΓ(uhzh).

(2.7)

Above y ⇔ yh ∈ Vh, z ⇔ zh ∈ Vh, u⇔ uh ∈ Uh, v ⇔ vh ∈ Uh, f ⇔ fh ∈ Fh, g ⇔ gh ∈ Fh.
5Since hereafter we consider only �nite dimensional problems, we use the same notations for the vectors

as for the functions.
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With these notations the discrete state equation (2.4) can be written as a system of linear
algebraic equations

Lyy = Sff + Sqq

with a regular matrix Ly. The constraint sets become

Fad = {f ∈ RNf : |fi| 6 fd ∀i}, Qad = {q ∈ RNu : |qi| 6 qd ∀i},

Yad = {y ∈ RNy : yi > 0 ∀i}.
Let further θ(y) = IYad(y), ψ(f) = IFad

(f), and ϕ(q) = IQad
(q) be the indicator functions of

the sets Yad, Fad, and Qad, respectively.
The optimal control problem for the vectors of the nodal values of the grid functions is

�nd min
Lyy=Sff+Sqq

{J(y, f, q) = Θ(y) + Ψ(f) + Φ(q)} ,

where (2.8)

Θ(y) =
1

2
(Myy, y)− (g, y) + θ(y), g = Myyd,

Ψ(f) =
r1

2
(Mff, f) + ψ(f), Φ(q) =

r2

2
(Mqq, q) + ϕ(q).

The Lagrange function for (2.8) has the form

L(y, f, q, λ) =
1

2
(Myy, y)− (g, y) + θ(y) +

r1

2
(Mff, f) + ψ(f)

+
r2

2
(Mqq, q) + ϕ(q)− (Lyy − Sff − Sqq, λ)

and its saddle point (y, f, q, λ) satis�es the system
My 0 0 −LTy
0 r1Mf 0 STf
0 0 r2Mq STq
−Ly Sf Sq 0



y
f
q
λ

+


∂θ(y)
∂ψ(f)
∂ϕ(q)

0

 3

g
0
0
0

 . (2.9)

Lemma 2.3. Let the assumption

∃f0 ∈ Fad, ∃q0 ∈ Qad : y0 = L−1
y (Sff0 + Sqq0)� 0 (2.10)

hold, where v � 0 means that vi > 0 for all coordinates i of the vector v. Then system (2.9)
has a solution (y, f, q, λ) with unique (y, f, q).

Proof. First, we list some properties of the matrices and the functions in problem (2.9):

Ly is a positive de�nite matrix;
My,Mf and Mq are diagonal matrices with positive diagonals;
Sf and Sq are rectangular matrices with nonnegative entries;

(2.11)

Θ,Ψ and Φ are convex, lower semi-continuous functions
with domains dom Θ = Yad, dom Ψ = Fad, dom Ψ = Qad.

(2.12)

Now, we denote u = (f, q)T , L = Ly, S = (Sf , Sq), Υ(u) = Ψ(f) + Φ(q) and use Theorem
1.2 to prove the solvability of (2.9). Properties (2.11) and (2.12) ensure the validity of
assumptions (1.2), (1.3), (5a), and (6a) of Theorem 1.2. Assumption (2.10) corresponds to
(1.9). Thus, all assumptions of Theorem 1.2 are ful�lled , whence the result.
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Below we give couple of examples when assumption (2.10) is ful�lled.
1) Suppose that the approximated equation has no mixed derivatives (aij = 0 for i 6= j)

and the triangulation of the domain is of the acute type: all angles of e ∈ Th are less than
or equal to π/2. In this case, the matrix Ly is irreducible diagonally dominant M -matrix
and all entries of L−1

y are strictly positive (cf. [13]). Thus, y0 = L−1
y (Sff0 + Sqq0) � 0 for

all nonnegative vectors f0 ∈ Fad and q0 ∈ Qad such that at least one coordinate of f0 or q0

is positive.
2) Let the state problem be a Dirichlet problem and the control is in the entire domain.

Then the discrete state equation becomes Lyy = Mff, where Mf is a diagonal matrix with
positive entries. Take any ỹ � 0 and put f̃ = M−1

f Lyỹ. Then the pair (y0, f0) with

y0 = αỹ, f0 = αf̃ and a positive α 6 fd (max
i
|f̃i|)−1 satis�es (2.10).

2.2. Iterative methods based on the �nding of control variables

First, we study the convergence and the rate of convergence of method (1.14) for a
particular case of problem (2.9) corresponding to the control on the right-hand side of the
equation. For simplicity, we �x q = 0.

To apply method (1.14), we approximate θ(y) = IYad(y) = {0 if yi > 0 ∀i; +∞ otherwise} by

θε(y) =
1

2 ε
(Myy

−, y−) with gradient ∇θε(y) = −1

ε
Myy

−, (2.13)

where y− is a vector with coordinates y−i = 0.5(|yi| − yi) and ε > 0 is a small parameter.
With these assumptions problem (2.9) becomesMy 0 −LTy

0 r1Mf STf
−Ly Sf 0

yf
λ

+

∇θε(y)
∂ψ(f)

0

 3
g0

0

 . (2.14)

System (2.14) has a unique solution (y, f, λ). Eliminating the vectors y and λ from (2.14)
gives the inclusion

Pf + ∂ψ(f) 3 L−Ty g (2.15)

with
Pf =

(
STf L

−T
y My L

−1
y Sf + r1Mf

)
f + STf L

−T
y ∇θε(L−1

y Sff). (2.16)

To solve (2.15), we use the iterative method

Mf
fk+1 − fk

τ
+ Pfk + ∂ψ(fk+1) 3 L−Ty g. (2.17)

Note that the choice of the diagonal preconditioner Mf is very reasonable because the im-
plementation of an inclusion with a diagonal operator Mf + τ ∂ψ reduces to the solution of
a system of one-dimensional problems.

Theorem 2.1. The iterative method (2.17) converges if τ ∈
(
0,

2ε

k2
f (1 + ε) + r1 ε

)
, where

kf is a constant from inequality (2.6).

For τ = τ0 =
ε

k2
f (1 + ε) + r1 ε

the rate of convergence is characterized by the inequality

‖fk+1 − f‖Mf
6 ρ‖fk − f‖Mf

, ρ = 1− r1 ε

k2
f (1 + ε) + r1 ε

.
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Proof. We apply Theorem 1.4 with Q = ∂ψ, B = Mf and P given by (2.16). It is easy
to check that

(∇θε(y)−∇θε(z), y − z) > 0,

(∇θε(y)−∇θε(z), x) 6
1√
ε

(∇θε(y)−∇θε(z), y − z)1/2‖x‖My .

These inequalities imply the following estimates for the operator P :

(P (u)− P (v), u− v) =
∥∥L−1

y Sf (u− v)
∥∥2

My
+ r1

∥∥u− v∥∥2

Mf
+ +

(
∇θε(L−1

y Sfu)

−∇θε(L−1
y Sfv), L−1

y Sf (u− v)
)
> r1

∥∥u− v∥∥2

Mf
, (2.18)

and

(P (u)− P (v), w) 6
∥∥L−1

y Sf (u− v)
∥∥
My

∥∥L−1
y Sfw

∥∥
My

+ r1

∥∥u− v∥∥
Mf

∥∥w∥∥
Mf

+
1√
ε

(
∇θε(L−1

y Sfu)−∇θε(L−1
y Sfv), L−1

y Sf (u− v)
)1/2∥∥L−1

y Sfw
∥∥
My

6 (P (u)− P (v), u− v)1/2
(
(1 +

1

ε
)
∥∥L−1

y Sfw
∥∥2

My
+ r1

∥∥w∥∥2

Mf

)1/2
.

Let us prove the inequality

(MyL
−1
y Sff, L

−1
y Sff) 6 k2

f (Mff, f) ∀f. (2.19)

De�ne y as a solution of the equation Lyy = Sff and let y ↔ yh ∈ Vh, f ↔ fh ∈ Fh. Then
from (2.6) we get

(Myy, y) = SΩ(|yh|2) 6 k2
fSΩ1(f

2
h) = k2

f (Mf f, f),

which is essentially (2.19). As a result,

(P (u)− P (v), w) 6
(
(1 + ε−1)k2

f + r1

)1/2
(P (u)− P (v), u− v)1/2

∥∥w∥∥
Mf
. (2.20)

So, the constants in inequalities (1.27), (1.28) of the uniform monotonicity and Lipsitz con-
tinuity of the operator P can be taken equal to

α = r1, β = (1 + ε−1)k2
f + r1,

and all statements of the theorem follow from Theorem 1.4.

As follows from Theorem 2.1, the optimal iterative parameter τ0 and the factor ρ are

τ0 = O(ε), ρ = 1−O(r1 ε).

This means that the number of iterations in method (2.17) for achieving the desired accuracy

does not depend on the mesh size h, but depends linearly on
1

r1ε
. Since the parameter ε > 0

is usually taken as ε = ε(h), then the rate of convergence of method (2.17) can strictly
depend on h.
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Remark 2.1. If there are no state constraints, i. e., θ = 0, then the constants in the
inequalities of the uniform monotonicity and Lipsitz continuity of the operator P are equal to

α = r1, β = k2
f + r1,

thus, the optimal iterative parameter τ0 and the factor ρ in method (2.17) are

τ0 =
1

k2
f + r1

= O(1), ρ = 1− r1

k2 + r1

= 1−O(r1).

Now, we will brie�y examine the problem with the control function on the right-hand side
of the Neumann boundary condition with �xed f = 0 and θε given by (2.13). In this case,
problem (2.9) becomesMy 0 −LTy

0 r2Mq STq
−Ly Sq 0

yq
λ

+

∇θε(y)
∂ϕ(q)

0

 3
g0

0

 . (2.21)

We transform system (2.21) into the inclusion for �nding the vector q

Pq + ∂ϕ(q) 3 L−Ty g,

Pq =
(
STq L

−T
y My L

−1
y Sq + r2Mq

)
q + STq L

−T
y ∇θε(L−1

y Sqq),

and solve it by the one-step stationary iterative method with the diagonal preconditioner
Mq

1

τ
Mq(q

k+1 − qk) + Pqk + ∂ϕ(qk+1) 3 L−Ty g. (2.22)

Theorem 2.2. Method (2.22) converges if τ ∈ (0,
2ε

k2
f (1 + ε) + r2 ε

), and for τ = τ0 =

ε

k̃2(1 + ε) + r2 ε
= O(ε) the following estimate for the rate of convergence holds:

‖qk+1 − q‖Mq 6 ρ‖qk − q‖Mq , ρ = 1− r2 ε

k2
f (1 + ε) + r2 ε

= 1−O(r2 ε).

Proof. Similarly to (2.18) and (2.20) we can prove the estimates

(P (u)− P (v), u− v) > r2

∥∥u− v∥∥2

Mq
,

(P (u)− P (v), w) 6
(
(1 + ε−1)k2

f + r2

)1/2
(P (u)− P (v), u− v)1/2

∥∥w∥∥
Mq
,

i. e., the operator P is uniformly monotone and Lipshitz-continuous with constants α = r2

and β = (1 + ε−1)k2
f + r2. To prove the Lipshitz continuity we use the inequality

(My L
−1
y Sqq, L

−1
y Sqq) 6 k2

f (Mq q, q) ∀q, (2.23)

which is a consequence of estimate (2.6). All formulations follow now from Theorem 1.4.
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2.3. Iterative methods based on �nding Lagrange multipliers

Consider (2.9) with the control function on the right-hand side of the equation (�x q = 0)
without supposition about the di�erentiability of θMy 0 −LTy

0 r1Mf STf
−Ly Sf 0

yf
λ

+

∂θ(y)
∂ψ(f)

0

 3
g0

0

 . (2.24)

System (2.24) has a solution (y, f, λ) with unique (y, f) and a generally not unique Lagrange
multiplier λ. Excluding y and f from this system we obtain the equation for the vector λ

P (λ) ≡ Ly (My + ∂θ)−1(LTy λ+ g)− Sf (r1Mf + ∂ψ)−1(−STf λ) = 0. (2.25)

Let us apply for solving it the stationary one-step iterative method

LyM
−1
y LTy

λk+1 − λk

τ
+ P (λk) = 0 (2.26)

and prove the convergence of this method as well as the rate of convergence in the case where
θ is changed by the regularized function.

Theorem 2.3. Let

0 < τ <
2r1

k2
f + r1

, (2.27)

where kf is a constant from inequality (2.6). Then iterations of method (2.26) converge to
the solution of (2.25).

Proof. The operator P can be written in the form

P (λ) = LyM
−1/2
y A1(M−1/2

y (LTy λ+ g))− Sf (r1Mf )
−1/2A2(−(r1Mf )

−1/2STf λ)

with

A1 = M1/2
y ◦ (My + ∂θ)−1 ◦M1/2

y and A2 = (r1Mf )
1/2 ◦ (r1Mf + ∂ψ)−1 ◦ (r1Mf )

1/2.

To investigate the convergence of the iterative method (2.26), we apply Theorem 1.3 with

Q = 0, A =

(
A1 0
0 A2

)
, C =

(
M
−1/2
y LTy

−(r1Mf )
−1/2STf

)
.

Using the notations ui = (My + ∂θ)−1(M
1/2
y yi) we obtain

(A1(y1)− A1(y2), y1 − y2) = ((My + ∂θ)−1(M1/2
y y1)

− (My + ∂θ)−1(M1/2
y y2),M1/2

y y1 −M1/2
y y2)

> (My(u1 − u2), u1 − u2) = ‖A1(y1)− A1(y2)‖2. (2.28)

Similarly,

(A2(f1)− A2(f2), f1 − f2) > ‖A2(f1)− A2(f2)‖2. (2.29)
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Owing to (2.28) and (2.29), the assumptions of Theorem 1.3 are satis�ed and the convergence
condition (1.23) becomes

LyM
−1
y LTy >

τ

2

(
LyM

−1
y LTy + r−1

1 Sf M
−1
f STf

)
. (2.30)

Let us prove the inequality

(Sf M
−1
f STf λ, λ) 6 k2

f (LyM
−1
y LTy λ, λ). (2.31)

We have

‖M−1/2
y LTy λ‖ = sup

v

(M
−1/2
y LTy λ, v)

‖v‖
= sup

y

(λ, Lyy)

‖M1/2
y y‖

> sup
f

(λ, Sff)

‖M1/2
y L−1

y Sff‖
.

Using inequality (2.19) gives

‖M−1/2
y LTy λ‖ >

1

kf
sup
f

(STf λ, f)

‖M1/2
f f‖

=
1

kf
‖M−1/2

f STf λ‖,

i. e., inequality (2.31). Due to (2.31) the convergence condition (2.30) is ful�lled if

1 >
τ

2
(1 + k2

fr
−1
1 ),

which is essentially (2.27).

Theorem 2.4. Let the function θ be changed by the regularized function θε(y) =
1

2 ε
(Myy

−, y−) in problem (2.25). Then this problem has a unique solution, method (2.26)
converges if

0 < τ <
2r1

k2
f + r1

,

and for

τ0 =
r1

k2
f + r1

the following estimate for the rate of convergence holds:

‖λk+1 − λ‖B 6
(
1− εr1

(1 + ε)(k2
f + r1)

)1/2‖λk − λ‖B, B = LyM
−1
y LTy .

Proof. In the case under consideration P (λ) = P1(λ) + P2(λ), where

P1(λ) = Ly (My +∇θε)−1 LTy , P2(λ) = −Sf (r1Mf + ∂ψ)−1(−STf λ).

The following inequalities can be proved by direct calculations taking into account that the
matrix My and the operator ∇θε are diagonal:(

(My +∇θε)−1(y1)− (My +∇θε)−1(y2), y1 − y2

)
>

ε

1 + ε
(M−1

y (y1 − y2), y1 − y2),

(
(My +∇θε)−1(y1)− (My +∇θε)−1(y2), z

)
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6
(
(My +∇θε)−1(y1)− (My +∇θε)−1(y2), y1 − y2

)1/2
(M−1

y z, z)1/2.

From these inequalities immediately follow

(P1(λ1)− P1(λ2), λ1 − λ2) >
ε

1 + ε
‖λ1 − λ2‖2

B,

(P1(λ1)− P1(λ2), µ) 6 (P1(λ1)− P1(λ2), λ1 − λ2)1/2 ‖µ‖B.

Let us now use the notations fi = −(r1Mf )
−1/2STf λi, i = 1, 2, and A2 = (r1Mf )

1/2◦(r1Mf +

∂ψ)−1 ◦ (r1Mf )
1/2. Then

(P2(λ1)− P2(λ2), λ1 − λ2) = (A2(f1)− A2(f2), f1 − f2) > 0,

and in virtue of (2.29)

(P2(λ1)− P2(λ2), µ) 6 (A2(f1)− A2(f2), f1 − f2)1/2‖(r1Mf )
−1/2STf µ‖.

Using inequality (2.31) gives

(P2(λ1)− P2(λ2), µ) 6 (P2(λ1)− P2(λ2), λ1 − λ2)1/2(k2
f r
−1
1 )1/2‖µ‖B.

Combining the estimates for the operators P1 and P2 yields

(P (λ1)− P (λ2), λ1 − λ2) >
ε

1 + ε
‖λ1 − λ2‖2

B,

(P (λ1)− P (λ2), µ) 6 (1 + r−1
1 k2

f )
1/2 (P (λ1)− P (λ2), λ1 − λ2)1/2 ‖µ‖B.

Thus, inequalities (1.27) and (1.28) are true with α =
ε

1 + ε
, β = 1 + r−1

1 k2
f , and the

statement of the theorem follows from Theorem 1.4.

Remark 2.2. If θ = 0, then the optimal iterative parameter τ0 and the factor ρ in
method (2.26) are the same as in method (2.17) (cf. Remark 2.1):

τ0 =
1

k2
f + r1

, ρ = 1− r1

k2
f + r1

.

Consider now a problem with the control function on the right-hand side of the Neumann
boundary condition with �xed f = 0My 0 −LTy

0 r2Mq STq
−Ly Sq 0

yq
λ

+

∂θ(y)
∂ϕ(q)

0

 3
g0

0

 . (2.32)

We transform system (2.32) into the equation for �nding the vector λ

P (λ) ≡ Ly (My + ∂θ)−1(LTy λ+ g)− Sq (r2Mq + ∂ϕ)−1(−STq λ) = 0. (2.33)

Let us apply for solving it the stationary one-step iterative method

LyM
−1
y LTy

λk+1 − λk

τ
+ P (λk) = 0. (2.34)
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Theorem 2.5. Let

0 < τ <
2r2

k2
f + r2

, (2.35)

where kf is a constant from inequality (2.6). Then iterations of method (2.34) converge to
the solution of (2.33).

If the function θ is changed by the regularized function θε(y) =
1

2 ε
(Myy

−, y−), then

problem (2.33) has a unique solution, method (2.34) converges if τ satis�ed (2.35), and for

τ0 =
r2

k2
f + r2

the following estimate for the rate of convergence holds:

‖λk+1 − λ‖B 6
(
1− εr2

(1 + ε)(k2
f + r2)

)1/2‖λk − λ‖B, B = LyM
−1
y LTy .

Proof. Similarly to the proof of Theorem 2.3 we can check that the assumptions of The-
orem 1.3 are satis�ed and the convergence condition (1.23) has the form

LyM
−1
y LTy >

τ

2

(
LyM

−1
y LTy + r−1

2 SqM
−1
q STq

)
. (2.36)

Further we use the inequality

(SqM
−1
q STq λ, λ) 6 k2

f (LyM
−1
y LTy λ, λ), (2.37)

whose proof is the same as inequality (2.31). After that it is easy to show that (2.36) is true
when

1 >
τ

2
(1 + k2

fr
−1
2 ).

The proof of the statements in the case θ = θε is just the same as in Theorem 2.4.
Namely, we use, among other things, inequality (2.37) to prove the estimates

(P (λ1)− P (λ2), λ1 − λ2) >
ε

1 + ε
‖λ1 − λ2‖2

B,

(P (λ1)− P (λ2), µ) 6 (1 + r−1
2 k2

f )
1/2 (P (λ1)− P (λ2), λ1 − λ2)1/2 ‖µ‖B.

After that all formulated statements follow from Theorem 1.4.

Conclusions

On the basis of the proven convergence results for the iterative solution methods for
State-constrained optimal control problem (2.9) we can draw the following conclusions.

In the case of θ = 0 (problem without state constraints) or θ = θε (regularized indicator
function of the set of state constraints), the theoretical estimates for the rates of convergence
of methods (2.26), (2.34) and methods (2.17), (2.22) are asymptotically the same. The
complexity is also the same � at each iteration in these methods we need to inverse Ly and
LTy and solve an inclusion with a diagonal operator. On the other hand, methods (2.26),
(2.34) have the following advantages:



On the iterative solution methods for �nite-dimensional inclusions with applications to optimal control problems 301

• they can be applied to problems with a non-di�erentiable function θ without its regu-
larization;

• in the case of a regularized function θ = θε, the bounds for the iterative parameter τ
which ensure the convergence and the optimal parameter τ0 do not depend on ε;

• it is possible to use a preconditioner B0 = L0M
−1
y L0 instead of B = LyM

−1
y Ly with

a matrix B0 which is spectrally equivalent to B; for example, L0 may be a matrix
corresponding to inexact inversion of Ly by an iterative method.
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