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Abstract — Iterative methods for finite-dimensional inclusions which arise in applying
a finite-element or a finite-difference method to approximate state-constrained optimal
control problems have been investigated. Specifically, problems of control on the right-
hand side of linear elliptic boundary value problems and observation in the entire
domain have been considered. The convergence and the rate of convergence for the
iterative algorithms based on the finding of the control function or Lagrange multipliers
are proved.
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Introduction

Large-scale finite dimensional inclusions with so-called saddle matrices and constrained
saddle-point problems arise from the approximation of different applied problems. While the
solution methods for unconstrained saddle-point problems have been thoroughly investigated
(see, e.g., the survey paper [1] containing an exhaustive list of references on this subject),
the development of efficient numerical methods for solving large-scale constrained saddle-
point problems is still far from completed. For instance, the convergence of the Uzawa,
Arrow-Hurwitz, and operator-splitting iterative methods for constrained saddle-point prob-
lems arising from an augmented Lagrangian approach to solving variational inequalities was
investigated in 2] (see also the bibliography therein). Some iterative methods with the esti-
mation of the rate of convergence for constrained saddle-point problems arising from a mixed
hybrid finite element approximation of variational inequalities were proposed in [3].

State-constrained optimal control of systems governed by partial differential equations
give rise to a class of constrained saddle-point problems, which causes problems to the
the optimization methods (see, e.g., [4, 5, 6]). A common way to solve them consists of the
approximation of the indicator function of the set of state constraints with further application
of a gradient-type or Newton-type method [6]- [9].

In this paper, we develop iterative solution methods for constrained saddle-point problems
and pay attention to the obtaining of estimates for the iterative parameters and the rate
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of convergence. As an illustrative example, we consider the finite element approximation
of the state- and control-constrained optimal control problem governed by a linear elliptic
partial differential equation. In this problem, the control is on the right-hand side of the
equation or the Neumann boundary condition, and the observation - in the entire domain.
Regardless of the fact that this problem seems to be very particular specific, it is of practical
importance, especially since it can serve as an auxiliary problem in sequential quadratic
programming (SQP)-methods (see [10]) and other preconditioning procedures to solve more
general problems.

1. Solution of the finite dimensional inclusion

1.1. Existence results

Consider the minimization problem

find - min {J(y,u) = O(y) + Y(w)}, (1.1)
y=Su
where _ -
O:RY™ - Rand T:R"™ - R (R=RU{+o0}) are proper,
convex and lower semicontinuous functions with closed domains (1.2)
dom© = {y : O(y) < +oo}, domY = {u: YT(u) < +o0},
L € RNvNy - G e RNMy*Nu gre matrices and L is regular. (1.3)

Theorem 1.1. Let (1.2), (1.3) be satisfied. Additionally, if
there exists a pair (yo,up) € dom© x dom Y : Lyg = Suy. (1.4)
and one of the following assumptions holds:
dom Y is bounded, (ba)

T s coercive and O is bounded below, (5b)

then problem (1.1) has a solution.
If moreover one of the following assumptions is satisfied:

T is strictly conver, (6a)

© is strictly conver and KerS = {0}, (6b)

then the solution is unique.

Proof. Owing to (1.2) — (1.4) the set K = {(y,u) : y € dom©, u € domY, Ly = Su} is
closed, convex, and nonempty, while the function J is proper, convex, and lower semicontinu-
ous. If domY is bounded, then K is bounded because of the inequality ||y|| < [[L7|[||S]]]v|,
and the function J attains its minimum on K. Let now T be coercive: lim T (u) = 400 as u €
dom?Y, ||u|| — oo, and O be bounded below: ©(y) > 6§y = const for all y. Then J is coercive
on K:

I (G t0n) = +50 101 {(g, un)} € K, gl + [fn]| = o0.

In fact, if ||y, ||+ ||un| — oo, then necessarily ||u,|| — oo, and J(y,, uy) = 0o+ Y (u,) — +00.
The proven properties of K and .J ensure the existence of a solution (y,u) of problem (1.1).
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To ascertain the uniqueness of the solution, we need only to prove the strict convexity of
the function J on K.

Let T be strictly convex (assumption (6a)). If (yi,u;) € K, (y2,u2) € K and (y1,uy) #
(yo,u2), then u; # wus, because otherwise y; — y» = L71S(uy — uz) = 0 and we get a
contradiction. So, J is strictly convex on K as a sum of strictly convex T and convex ©.

Let © be strictly convex and KerS = {0} (assumption (6b)). If (y1,u1) # (y2, uz), then
y1 # y2. Indeed, the equality y; = yo implies S(u; — uz) = L(y1 — y2) = 0, whence u; = uy
since KerS = {0}. Again, J is strictly convex on K as a sum of strictly convex © and
convex Y. [

Now, define the Lagrange function for problem (1.1)
L(y,u, A) = O(y) + T(u) — (A, Ly — Su). (1.7)
The saddle-point of £ is a triple (y,u, \) € RY x RM x R such that

inf sup L(y, u, \) = supinf L(y,u, A).
Yyu ) A Yu

It is known (cf. [11]) that the first two components (y, u) of the saddle-point coincide with
the solution of (1.1) and that (y,u, A) is a saddle-point of Lagrangian (1.7) if and only if it
is a solution of the system

9, L(y,u, \) = 00(y) — L\ 3 0,
0L (y,u, \) = 0T (u) + STA 30, (1.8)
ViaL(y,u,\) = =Ly + Su = 0.

Theorem 1.2. Let (1.2), (1.3) and (5a-5b) be satisfied. Let also one of the following
assumptions hold:

there exists a pair (yo,up) € intdom® x dom Y :  Lyy = Suy, (1.9)

there exists a pair (yo,up) € dom© X intdom Y : Ly = Suy,
and there exists u; € RM :y; = L™1Su; € int dom ©. (1.10)

Then there exists a saddle-point (y,u, \) of Lagrangian (1.7). The components (y,u) are
defined uniquely if (6a-6b) holds. If, moreover, © is differentiable at the point y or if T
is differentiable at the point u and there exists an inverse matriz S~T, then \ is defined
uniquely.

Proof. Due to Theorem 1.1 the minimization problem (1.1) has a solution u, which is
unique if (6a-6b) holds. Problem (1.1) can be written in the form

find min [O(L'Su) + T (u)],

ueRNu

which is equivalent to finding a solution of the inclusion 0 € 9 [©(L~1Su) + Y (u)] . Because
of (1.9) or (1.10) (see the properties of subdifferentials in [11])

0 [O(L7'Su) + Y(u)] =0 [0(L'Su)] + 0T (u)
= (STL" 0000 L7 9)(u) + 0T (u).
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Thus, u is the solution of the inclusion
(S"L7" 0000 L7 S)(u) +9Y(u) 0. (1.11)
In other words,
3 € Y (u), In € 00(y) with y = L~ Su: STLTn+pu=0. (1.12)

Denoting A = L~Tp, we find that the triple (y,u,\) € RY¥ x RN x R satisfies system
(1.8). So, the existence of a saddle-point of Lagrangian (1.7) is proved.

Now, if the triple (y,u, ) is a solution of (1.8), then it satisfies system (1.12). As
a consequence, u is the solution of (1.11) and the pair (u,y), y = L™'Su is a solution to
problem (1.1). So, with assumptions (6a-6b) (u,y) is defined uniquely owing to Theorem 1.1.

[t remains to prove the uniqueness of A\. But if © is differentiable at the point y, then A
is defined uniquely from the first equation of (1.8): A = L~7VO(y). Similarly, if there exist
VY (u) and S7T, then A = —S~TVT(u) from the second equation of (1.8). O

1.2. Iterative solution of the constrained saddle-point problem

Let system (1.8) have a solution (y,u, A\). We will consider the iterative methods for the
inclusions constructed via transformations of system (1.8).

Case of the single-valued operator 00

Let 00 = VO be a single-valued operator, then from system (1.8) we can obtain the
inclusion with respect to the vector u

(STL"oVOo L™ S)(u)+9Y(u) 2 0. (1.13)

To solve it, we apply the stationary one-step iterative method

1 . .
—BW" —u*) + (ST LT oVOo L S) (uh) + 0T (uMh) 2 0, (1.14)
-

where B € RV« B = BT > (0 and 7 > 0. The iterative method (1.14) can be viewed as

a preconditioned gradient-type method for finding the minimum of the function
O(L'Su) + T (u)

with the differentiable function © and nondifferentiable Y. Its implementation consists of
the following steps: for known u*

1) find y* = L~1Su¥;

2) find \* = —L-TVO(y*);

3) solve the inclusion
U ok

BY T L ar ity 5 STAR, (1.15)
T

Note that the choice of the preconditioner B is limited to the possibility to solve efficiently
inclusion (1.15).

In the case 0T = 0vy + M, with a single-valued operator M, and a convex, proper, and
lower semicontinuous function ¢, we can consider the variant of method (1.14)

LB — k) 4 (STLT 0 VO o L7 §) (ub) + M (uF) + 9(u*+) 3 0.

T
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In implementing this iterative method, we need to have an efficient solver for an inclusion
with the operator B + 7).

Case of the single-valued operators (900)~! and (071)"!

Suppose there exist single-valued operators (90)~! and (97)~'. Then from system (1.8)
we get the equation for A

L(0©) M (LTX\) — S (07) " H(=STA) =0 (1.16)

with a single-valued operator P = Lo (90) 1o LT +(—S5) 0 (97) o (=ST). To solve (1.16),
we use the iterative method
)\k+1 _ /\k

B————+1L (00) M (LTXNF) — S (o) H(—=STAF) =0 (1.17)
with a preconditioner B = BT > 0. Method (1.17) can be viewed as a preconditioned Uzawa
method for finding the saddle point of Lagrangian (1.7). Its implementation consists of the
following two steps: for known \*
1) find

y" = (00)"H(LTAF) and u* = (97) 7 (=STAF);

2) solve the equation

pLa Vs
BY—— " + Ly* — Su* =o0.
T

Obviously, method (1.17) is of practical importance if inclusions with the operators 9O and
Y can be solved efficiently (first step of the algorithm). On the other hand, at the second
step of the algorithm we solve the equation with a matrix B, so we can use a variety of
preconditioners B.

Case of the single-valued operator 0T and the regular matrix S
Let 0T = VT and the matrix S be regular. Then system (1.8) can be transformed to
the inclusion with respect to y

LT S™TVY (S~ Ly) + 90(y) > 0. (1.18)

The stationary one-step iterative method for (1.18) reads as

yk+1 i yk
=+ LT STTVY (ST LyF) + 00yt 3 0. (1.19)

T

B

The iterative method (1.19) can be viewed as a preconditioned gradient-type method for
finding the minimum of the function

O(y) + T(S™'Ly)

with a differentiable function T and a nondifferentiable function ©. Its implementation
consists of the following steps: for known 7"

1) find u* = S71Ly";

2) find \* = —S=TVY (u");

3) solve the inclusion

yr g k-+1 T,k

f + 6@(y ) > Ly~

B
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If 00 = 00 + M, with a single-valued operator M, and a convex, proper and lower semicon-
tinuous function ¢, then we can consider the following variant of method (1.19):

Yl gk
BF¥——= + LT STTVY(S'Ly*) + A, (v*) + 90(y" 1) > 0.
T
In implementing these iterative methods we need to have an efficient solver for the inclusion
with the operator B + 70 or with the operator B + 76, respectively.

1.3. Iterative methods for the general inclusion

The inclusions constructed in Section 1.2 for the vectors u, A and y are particular cases
of the general inclusion which we will consider in this section.
Consider the problem in R"

P(u)+Q(u) 20 (1.20)
with a (generally) multivalued maximal monotone operator () and a continuous operator

P. Further we suppose that inclusion (1.20) has a solution and apply for its solution the
preconditioned one-step stationary iterative method

%B(uk“ — ")+ P(u") + Q(u**") 30, (1.21)

with the matrix B = BT > 0 and the iterative parameter 7 > 0.
Theorem 1.3. Let Q : R™ — 2% be a mazimal monotone operator and P = CTo Ao C,

where C € R™™ and the operator A : R™ — R™ is uniformly inverse monotone (co-
coercive)!

(A(u) = A(v),u —v) = pol|A(u) — A(v)[*, po > 0. (1.22)
Then for
B=B">__(C"C (1.23)
2po

the iterative method (1.21) converges for any initial guess u® € R™.

Proof. Let u be a solution of (1.20), z¥ = u* — u. Multiplying the inclusion

LBR1 Z by 4 Py — Pu) + Q) — Q(u) 5 0

T

by 2721 and using the monotonicity of Q, we get
1254 = 112815 + (125 = 25| + 27 (A(Cu*) — A(Cu), C2*) <0. (1.24)
Due to (1.22)

(A(Cu™) — A(Cu), C2*) = (A(Cu) — A(Cu), C2Y)
+HA(CU") = A(Cu), C(u™ = u¥)) = pol| A(Cu*) — A(Cu)|? (1.25)

1
—[A(Cu") = ACH)|[C(W = uh)l| Z = (IO = 2H)1%
Do
‘Hereafter we use the same notations (.,.) and ||.| for Euclidian scalar products and norms in vector

spaces of different dimensions.
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Inequalities (1.24) and (1.25) yield

444 = 1241 + (B = 5 -CTOYEH = 25), 241 — 24 <

Since there exists € > 0 such that B — 2LCTC > eB, then
Po

IR, + 225 — K < M for all k. (1.26)
Inequality (1.26) brings about the following statements:

(a) the sequence {||2*||z} monotonically decreases and converges to a finite number, i.e,
the sequence {u*} is bounded;

(b) [JuF — || = [|2F = 2F||p — 0 as k — oc.

Let u* — u* for k; — oo be a convergent subsequence of the bounded sequence {u*}.
As ||Jubitt — uki|| g — 0, then also u* 1 — u* for k; — oo.

Let us prove that u* is a solution of (1.20). Recall that the maximal monotone operator
Q is closed: u* — u* and v* — v*, 4% € Q(u*) imply v* € Q(u*).

Because of this property and the continuity of P, passing to the limit in the inclusion
Q(uF ™) 3 —P(uM ) — %B(ukﬂrl — u*), we obtain Q(u*) > P(u*). It means that u* is a
solution of (1.20).

Now let u = u* in all aforementioned arguments. Since the sequence {|u* — u*| g}
monotonically decreases and its subsequence {||u* —u*||z} tends to zero, {||u* —u*|z} also
tends to zero. O

*

Theorem 1.4. Let B = BT > 0, Q be the mazimal monotone operator while P be a
uniformly monotone and Lipshitz-continuous operator

(P(u) = P(v),u—v) > allu— v, (1.27)
(P(u) = P(v),w) < B2 (P(u) — P(v),u —v)"?|lw]|p. (1.28)
2
Inclusion (1.20) has a unique solution u, for 7 € (0, B) the iterative method (1.21) converges
starting from any initial guess u®, and for the optimal parameter
1
T=T0 = &
B
the following estimate for the rate of convergence is valid:
[~ ulls < pllat —ulls, p= (1= )" (1.29)

8

Proof. Because of the uniform monotonicity and the Lipshitz continuity of the operator
P, the operator P + () is maximally monotone and uniformly monotone. Thus, inclusion
(1.20) has a unique solution w.

Let z¥ = u* — u. Multiplying the inclusion

TR ) 4 P(u) — P(u) + Q™) — Q(u) 30
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by 2721 we get
125 = 1251 + 1125 = 28| + 27 (P(u”) = P(w), 251) <.
Due to (1.27) and (1.28)

27(P(u®) — P(u), 2") = 27(P(uF) — P(u), 2*) + 27(P(u*) — P(u), (u"™ — "))
> (2r — 7°8)(P(u*) — P(u), 2*) — || 2" — 2%|| 3.

Substituting this estimate into the previous inequality we get
1257415 < (1 —ra(2 = 76)) "%,

whence all results about the convergence and the rate of convergence for the optimal param-
eter 7y follow. O

2. Iterative solution of the state-constrained optimal control prob-
lem

2.1. Formulation of the problem and its approximation

Let 2 C R? be a bounded domain with the boundary 092 = I'p U 'y, meas I'p > 0,
and V = {u € H'(Q) : u(x) = 0 on I'p} be Sobolev space with an inner product (u,v) =

1/2

Vu - Vodz and norm |ul| = (u,u) Consider the weak formulation of the mixed

Q
boundary-value problem for the second order elliptic equation:

yeV: /Z a”aa g + apyz)dx = /fzdx+/qzdx Vze V. (2.1)
Q

'y

Suppose that the coefficients a;;(z) and ag(z) are continuous in the closed domain € and

2

Z 5;51/002517 > 0Vz €, ¢y = const > 0.

Then the bilinear form a(y, z) defined by the left-hand side of (2.1) is coercive and bounded
a(y,y) = collyll*, ¥y € Vi aly.z) <allyll 2], ¥y, z € V, 1 = const.

Further, for any f € Ly(€Q2) and any g € Ly(I'y) the right-hand side of (2.1) defines a bounded
linear functional in V. Therefore, owing to the Lax-Milgram theorem, problem (2.1) has a
unique solution y € V', and

[yllv < B fll209) + lallzawea))s k= const. (2:2)

Define the goal functional

1
J(y,f,Q)Z5/(y—yd)2dm+r—21/f2dx+%/quF, r; = const > 0,

Q 951 'y
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with a given function yy(x) € Ly(€2) and a subdomain ©; € €. Let the sets of constraints be
Yaa={yeV:ylx)=20VeeQ}, Fuu=1{f € La(Q): |f(x)| < faVz €N},

Qaa ={q € La(Ty) : |q(x)] < g4 Vx € Ty}, where f3 >0, g4 > 0.

We consider the optimal control problem

find min J(y, f,q),
(.S )€K . /:9) (2.3)

K={(y,f,0): y € Yaa, [ € Fag, ¢ € Qaa, Eq. (2.1) holds}.

Lemma 2.1. Optimal control problem (2.3) has a unique solution.

Proof. The statement results from the following properties of K and J:
the set K is nonempty, closed and convex in V' x Ly(€2) x Ly(I'y), bounded because of the
boundedness of F,; and (g and estimate (2.2);
functional J is continuous and strictly convex in V' x Ly(€2) x Lo(I'y). O

Suppose that the domains 2 and £2; have polygonal boundaries and construct a finite element

approximation of problem (2.3). Let Q = J e be a conforming triangulation of Q ([12]),
e€Ty,

where Tj, is a family of nonoverlapping closed triangles e (finite elements) and h is the
maximal diameter of all e € Tj,. Let T}, generate triangulations 7} on Qy and 0T}, on 'y,
namely, €, consists of an integer number of e € T}, and 'y consists of an integer number of
sides de of elements e € T},. Define the finite element space V;, C V of the continuous and
piecewise linear functions (linear on each e) which vanish on the boundary I'p and the finite
element space Uj, € Ly(T'y) of the piecewise linear functions on I'y (linear on each de € T'y),
which are traces on I'y of the functions from V},.

Let, for simplicity, the functions £, 34 and ¢ be continuous and f(z) = 0 in Q\ Q;. Define
fn € Vi, such that f,(z;) = f(x;) for all nodes x; of triangulation T}, and similar ¢, € U,
and y4, € Vj,. To approximate the integrals of the continuous function g(z) over the finite
element e € T}, or its side de, we use the quadrature formulas

3
1
/g(x)dx ~ Se(g) = 3 meas (e) Zg(xa), z, are the vertices of e,

e a=1

2
1

/g(x)dF ~ Sse(g) = 5 meas (Oe) Z g(xa), xo are the vertices of Je.

Oe a=1

The corresponding composite quadrature formulas are

Sa(g) = Y Se(9), Sau(9) = Sel9), Sr(9)= D Saclg).

e€Ty eGT& 0ecdTy,

Now we can define the discrete optimal control problem, namely, the state equation: find
yn € Vj, such that

2

Oy, 0z
S ( E iy —ai}; _695]: + aoyh2h> = Sa, (fn 2zn) + Sr(qn zn) Yo, € Vi (2.4)
3,j=1
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the goal function

1 T T
Jh(ym fns Qh) = 5 SQ((yh - ydh>2) + 51 Sm(f;f) + 52 SF(Q;%);
the sets of constraints
Ya}fj ={yn € Vi, : yn(x) = 0 for x € Q}, QZd ={qn €Uy : |qn(x)| < q4 Yx € T},

Ely={fn € Vi |fa(@)]| < fu Y2 €0y, fulz) =0Vz € Q\ Ty},
and Ky = {(yn, fn, @) = yn € Yoy, fn € Fly, an € Qhg, Eq. (2.4) holds};

the resulting discrete optimal control problem

find min  Ju(yn, fn, qn)- (2.5)

(Yn>Inan)EKR

The bilinear form ay,(yn, z1), defined by the left-hand side of Eq. (2.4), is uniformly in h
coercive and bounded:

an(Yn, yn) = ollynll®s Yun € Vi an(yn, 2) < éllunll 12alls Yun, zn € V.

Because of this, Eq. (2.4) has a unique solution y;, for any f, € V3, g, € Uy, and the following
stability inequalities hold:

Sel*(lynl?) < b S (IVynl®) < k(S (F7) + St (ai) (2:6)
with constants k; and ky independent of h.

Lemma 2.2. The discrete optimal control problem (2.5) has a unique solution (yp, fr, qn)-

Proof. The proof immediately follows from the fact that the set K}, is nonempty, closed,
convex, and bounded, while the function J, is continuous and strictly convex. O]

Below we formulate problem (2.5) in a "vector-matrix" form. Denoting by y € R" the vector
of the nodal values of the function y, € V}, (N, = dimV},), we get the "onto" correspondence
y < y,. Similarly, we define u € RN, u < wy, u, € Uy, and f € RYs as the vector of the
nodal values for the restriction of the function f,(x) on the subdomain Q;.°

Define the stiffness matrix L, € RM*M  the diagonal mass matrices M, € RNy,
M; € RN#>Ni and M, € RM*Nu and the rectangular matrices S, € RNv>*Nu G, € RNy> Ny
by the following equalities:

(Lyy,2) (Z oy g S y) - (Myy,2) = Solynzn),

wi=1 (2.7)
(Mffag) :th(fhgh)v (Sff,Z) :SQ1(fhzh)>
(Myu,v) = Sr(upvp), (Squ, 2) = Sp(upzp).

Abovey@yhEVh,zﬁzhEVh,uﬁuhEUh,v(:)vhEUh,fﬁfhEFh,gﬁghEFh.

5Since hereafter we consider only finite dimensional problems, we use the same notations for the vectors
as for the functions.
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With these notations the discrete state equation (2.4) can be written as a system of linear
algebraic equations

Lyy = Sff + Sqq

with a regular matrix L,. The constraint sets become

Fu={f eRY . |fil < fa Vi}, Qua={q € R : |g| < qu Vi},
Yog = {y € RM 1 4, > 0 Vi}.

Let further 6(y) = Iyv,,(y), ¥(f) = Ir,,(f), and ©(q) = Ig,,(¢) be the indicator functions of
the sets Y,4, Fuq, and .4, respectively.
The optimal control problem for the vectors of the nodal values of the grid functions is
find i J =0 ) o
nd  omin o .1,0) =0@) +¥(f) + (9},
where (2.8)

O(y) = %(Myy,y) —(9,9) +0(y), 9 = Myya,

(f) = (M) ). ®l0) = 5 (Mg ) + pla).

The Lagrange function for (2.8) has the form

£y, £.0.0) = 5(My,) — (9,9) +000) + OO f, ) + ()

.
+ f(chL q) +¢(q) — (Lyy — Sy f — Sqq, \)

and its saddle point (y, f, ¢, \) satisfies the system

M, 0 0 =L\ [y 06(y) g
o nM; o0 SE||s] L [een] . [0
0 0 nM, ST la] | oe@ ] 7|0 (29)
-L, 5 Sq 0 A 0 0
Lemma 2.3. Let the assumption
3fo € Fag, 30 € Qaa: Yo = L, (Syfo+ Sqq0) >0 (2.10)

hold, where v > 0 means that v; > 0 for all coordinates i of the vector v. Then system (2.9)
has a solution (y, f,q, \) with unique (y, f,q).

Proof. First, we list some properties of the matrices and the functions in problem (2.9):

L, is a positive definite matrix;
M,, My and M, are diagonal matrices with positive diagonals; (2.11)
Sy and S, are rectangular matrices with nonnegative entries;

O, and P are convex, lower semi-continuous functions
with domains dom©® =Y,;, domV = F,;, domV = Q4.

Now, we denote u = (f,q)", L = L,, S = (S;,5,), Y(u) = ¥(f) + ®(¢) and use Theorem
1.2 to prove the solvability of (2.9). Properties (2.11) and (2.12) ensure the validity of
assumptions (1.2), (1.3), (5a), and (6a) of Theorem 1.2. Assumption (2.10) corresponds to
(1.9). Thus, all assumptions of Theorem 1.2 are fulfilled , whence the result. ]

(2.12)
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Below we give couple of examples when assumption (2.10) is fulfilled.

1) Suppose that the approximated equation has no mixed derivatives (a;; = 0 for ¢ # j)
and the triangulation of the domain is of the acute type: all angles of e € T}, are less than
or equal to m/2. In this case, the matrix L, is irreducible diagonally dominant M-matrix
and all entries of L, are strictly positive (cf. [13]). Thus, yo = L, ' (Syfo + Syq0) > 0 for
all nonnegative vectors fy € F,q and gy € Quq such that at least one coordinate of fy or g
is positive.

2) Let the state problem be a Dirichlet problem and the control is in the entire domain.
Then the discrete state equation becomes L,y = My f, where M; is a diagonal matrix with
positive entries. Take any § > 0 and put f = Mf_lLy;&. Then the pair (yo, fo) with

yo = o, fo = af and a positive o < fy (max | fi|)~! satisfies (2.10).

2.2. Iterative methods based on the finding of control variables

First, we study the convergence and the rate of convergence of method (1.14) for a
particular case of problem (2.9) corresponding to the control on the right-hand side of the
equation. For simplicity, we fix ¢ = 0.

To apply method (1.14), we approximate 6(y) = Iy, ,(y) = {0 if y; > 0 Vi; +oo otherwise} by

1 1
0-(y) = Q—(Myy_, y~) with gradient VO.(y) = ——M,y ", (2.13)
£ £
where y~ is a vector with coordinates y; = 0.5(|y;| — v;) and € > 0 is a small parameter.
With these assumptions problem (2.9) becomes
M, 0  —L}\ [y Vo (y) g
0 rmMy S} fl+lovf)]>(0]. (2.14)
L, S 0 /) \\ 0 0

System (2.14) has a unique solution (y, f, A). Eliminating the vectors y and A from (2.14)
gives the inclusion

Pf+0v(f)> L, g (2.15)
with
Pf=(S;L,"M,L,"Ss+rM;)f+S;L,"VO(L," S¢f). (2.16)
To solve (2.15), we use the iterative method
M karl — fk k k+1 -T
. + P+ 0(f") 3 L,  g. (2.17)

Note that the choice of the diagonal preconditioner M} is very reasonable because the im-
plementation of an inclusion with a diagonal operator M; 4 7 0y reduces to the solution of
a system of one-dimensional problems.

2e
ki1 4e) e

Theorem 2.1. The iterative method (2.17) converges if T € (0 ), where

ks is a constant from inequality (2.6).

Fort=m= the rate of convergence is characterized by the inequality

kH(1+¢e)+re

€
||fk+1_f||Mf ngfk_fH]va p=1

CRB(1+e) e
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Proof. We apply Theorem 1.4 with ) = 0y, B = My and P given by (2.16). It is easy
to check that

(Vee(y) - Vee(z)a Y= Z) > 07

(V6.(y) — Vh.(2), 2) < \if (V6.(y) — V.(2), 5 — )|,

These inequalities imply the following estimates for the operator P:

(P(u) = P(v),u—v) = || L, Ss(w = 0)|[3, + 7 [lu =]y, ++(VO(L,"Ssu)

— VO-(L, ' Spv), L, ' Sy (u—v)) > r|lu— (2.18)

o[l
and
(P(u) = Pv),w) < [, Sy(w =), 12y Srwlly,, + 7o flu= vl fJwll,,
+ %(vee(Lylsfu) — VO(L, Spv), Ly Sy (u = 0)) 2| Ly S,

1
< (P(u) = P(o)ou =) 2 ((L+2) [ £, Spwlly, + 71 [}, )

Let us prove the inequality
(ML, Spf. L' S f) < kp(Myf, f) Vf. (2.19)

Define y as a solution of the equation L,y = S¢f and let y <+ yp € Vi, f <+ fi € F. Then
from (2.6) we get

(Myy,y) = So(lynl?) < k7Sa, (fi) = K3 (M; £, f),

which is essentially (2.19). As a result,
(P(u) — P(v),w) < (14 k2 + 1) *(P(u) = P(v),u— o) 2], - (2.20)

So, the constants in inequalities (1.27), (1.28) of the uniform monotonicity and Lipsitz con-
tinuity of the operator P can be taken equal to

a=ry, B=1+ec"kF+r,
and all statements of the theorem follow from Theorem 1.4. [
As follows from Theorem 2.1, the optimal iterative parameter 79 and the factor p are
70=0(), p=1—-0(rye).

This means that the number of iterations in method (2.17) for achieving the desired accuracy

1
does not depend on the mesh size h, but depends linearly on —. Since the parameter £ > 0
e

is usually taken as ¢ = (h), then the rate of convergence of method (2.17) can strictly
depend on h.
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Remark 2.1. If there are no state constraints, i. e., # = 0, then the constants in the
inequalities of the uniform monotonicity and Lipsitz continuity of the operator P are equal to

o =Ty, ﬂ:k]%_'_rl?
thus, the optimal iterative parameter 7y and the factor p in method (2.17) are

1 IS
k?"'rl ( )? p k2+7"1

70 = 1—0(7“1)

Now, we will briefly examine the problem with the control function on the right-hand side
of the Neumann boundary condition with fixed f = 0 and 6. given by (2.13). In this case,
problem (2.9) becomes

My, 0 =L\ [y Vo-(y) g
0 roM, S g+ 0elq) | 2(0]. (2.21)
L, S, 0 ) \A 0 0

We transform system (2.21) into the inclusion for finding the vector ¢
Pq+0¢(q) 3 L, g,

Pq=(S] L," M, LS, +r:My)q+ S} L, V0.(L,"Seq),

and solve it by the one-step stationary iterative method with the diagonal preconditioner
Mq

1 —

—My(¢"" = ") + Pg" + 0p(¢"™) 3 L, g (2.22)

2
Theorem 2.2. Method (2.22) converges if 7 € (0, k?(l +€€> i
€

= = O(¢e) the following estimate for the rate of convergence holds:
k2(1+¢e)+mre

), and for T = 19 =

T9 E

k+1 —_ =
k3(1+¢) +roe

1" = qllm, < plld* = qllag,, p=1 1—O(rye).

Proof. Similarly to (2.18) and (2.20) we can prove the estimates
(P(u) = P(0),u=v) > raffu = o]fy,

(P(u) = P(e), w) < (147K +72) *(P(w) = Plo),u =) 2],

i. e., the operator P is uniformly monotone and Lipshitz-continuous with constants a = 7
and f = (1+ 5_1)14,’]20 + ro. To prove the Lipshitz continuity we use the inequality

(M, Ly_ISqq,LJISqq) < k;J%(Mq q,q9) Vg, (2.23)

which is a consequence of estimate (2.6). All formulations follow now from Theorem 1.4. [
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2.3. Iterative methods based on finding Lagrange multipliers

Consider (2.9) with the control function on the right-hand side of the equation (fix ¢ = 0)
without supposition about the differentiability of 0

My, 0 —Ly\ [y 96(y) g
0 mnM; S Fl+10u(f)| =210 (2.24)
-L, S; 0 A 0 0

System (2.24) has a solution (y, f, ) with unique (y, f) and a generally not unique Lagrange
multiplier A. Excluding y and f from this system we obtain the equation for the vector A

P(X) = Ly (M, +90) " (Ly A+ g) — Sy (r1 My + 0¢) "1 (=SfA) = 0. (2.25)
Let us apply for solving it the stationary one-step iterative method

)\k+1 _ )\k

Ly M, L, ——

+ P\ =0 (2.26)

and prove the convergence of this method as well as the rate of convergence in the case where
6 is changed by the regularized function.

Theorem 2.3. Let
0<7< 55—, (2.27)

where k¢ is a constant from inequality (2.6). Then iterations of method (2.26) converge to
the solution of (2.25).

Proof. The operator P can be written in the form
P(N) = L, My Y2 Ay(My *(LEA + g)) — Sy (r1 M)~/ Aa(—(r M)~ /25T )
with
Ay =M% o (M, +00)"" o M)* and Ay = (ry My)'/? o (ry My + 0) " o (ry My)'/2.

To investigate the convergence of the iterative method (2.26), we apply Theorem 1.3 with

Ay 0) < M, LT )
=0, A= , C = Y Y :
Using the notations u; = (M, + 80)_1(My1/2yi) we obtain
(A1(y1) — Ai(y2), v1 — v2) = ((My, + 86)71(My1/2y1)
— (My + ae)il(Myl/Qyz), M;/Zyl — M;/Zyg)
> (My(ur — uz), 1 — ug) = [|Ar(y1) — As () [ (2.28)

Similarly,
(Az(f1) — As(fo), [1 — fo) = [[Aa(f1) — Aa(fo) |- (2.29)
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Owing to (2.28) and (2.29), the assumptions of Theorem 1.3 are satisfied and the convergence
condition (1.23) becomes

Ly My LY > Z(L, M L vt Sy M ST, (2.30)
Let us prove the inequality
(Sp M7 STAN) < KF(Ly My VLA N). (2.31)
We have
My LT
1M, LA = sup Wy LyAv) = su —(A,lL/gy) > sup 8\2’ 5¢/) .
v 1ol v 1Myl s 1My LS

Using inequality (2.19) gives

1 ST, 1
|M2LTA| > — su (572 /)

-1/2 oT
P — = 1My TSE AL
ke o M R
i. e, inequality (2.31). Due to (2.31) the convergence condition (2.30) is fulfilled if
T _
1> 5(1 + k3rih,
which is essentially (2.27). O

Theorem 2.4. Let the function 0 be changed by the regularized function 0.(y) =
5= (Myy~,y~) in problem (2.25). Then this problem has a unique solution, method (2.26)
converges if

27’1
0<7< ,
kf"'TI
and for
™
T0 =
0 ]i']%—f—?"l

the following estimate for the rate of convergence holds:

ET
(L4¢e) (k7 + 1)

N = Al < (1 - ) 2N = Ag, B =L, M; L

Proof. In the case under consideration P(\) = P;(\) + P»()), where
Py(X) = Ly (M, +V0.)" L), Py(X) = =Sy (r1e My + 09) 7 (=S} A).

The following inequalities can be proved by direct calculations taking into account that the
matrix M, and the operator V0. are diagonal:

19
1+e¢

((My + vea)_l(?/l) - (My + Vea)_l(?h), Y — ?JQ) = (My_l(yl —2), Y1 — Y2),

((My + V95>71(y1) - (My + V95>71(y2)a Z)
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_ _ 12 4
< (M, + V0™ (1) = (M, + V0 (o) — 1) (M2, 2) V2,
From these inequalities immediately follow

€
1+¢

(PL(A) = Pu(Da), 1) < (Pr(A) = Pi(Aa), A = 2)'2 .
Let us now use the notations f; = —(ry My)™/2STX;, i = 1,2, and Ay = (ry My)"/?0 (ry My+
OY)~Lo (ry My)Y2. Then

(P2(A1) = Pa(A2), At — A2) = (Aa(f1) — A2(fo), fr — f2) 20,
and in virtue of (2.29)
(Po(M1) = Po(Na), 1) < (Aa( 1) — As(fo), fr — f2)2) (11 Mf)’l/zS}FuH.

Using inequality (2.31) gives

(Pr(A1) = Pr(X2), AL — Ag) > A1 — |3,

(Po(M) = Pa(Aa), 1) < (Pa(A1) = Pa(Na), A — Xo) V2 (kG )2 | .

Combining the estimates for the operators P, and P, yields

3

PA) — P(X2), A\ — o) = A — \oll?
(P(A1) = P(X2), A1 — A9) 1+€|| 1 — Al
(P(A\1) = P(A2), 1) < (1477 kD) Y2 (P(A) = P(A2), Ar — A) 2 ||l -
Thus, inequalities (1.27) and (1.28) are true with o = 1_6’_8, B = 1+r'k7, and the
statement of the theorem follows from Theorem 1.4. O]

Remark 2.2. If § = 0, then the optimal iterative parameter 75 and the factor p in
method (2.26) are the same as in method (2.17) (cf. Remark 2.1):

. 1 —1 1
kF 41’ g kF+r

To

Consider now a problem with the control function on the right-hand side of the Neumann
boundary condition with fixed f =0

My 0 =L\ (y 90(y) g
0 roM, S} g +|op@)|210]. (2.32)
L, S, 0 ) \\ 0 0

We transform system (2.32) into the equation for finding the vector A
P(X) = Ly (M, +90) ' (LYX + g) — Sq (r2 My 4 00) 7' (=S¢ ) = 0. (2.33)
Let us apply for solving it the stationary one-step iterative method

>\k+1 o )\k

Ly M LY -

+ P(\F) = 0. (2.34)
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Theorem 2.5. Let
27’2

O<71< ,
kﬁ}%—l—TQ

(2.35)

where ky is a constant from inequality (2.6). Then iterations of method (2.34) converge to
the solution of (2.33).

1
If the function 0 is changed by the regularized function 6.(y) = Q—(Myy’,y’), then
problem (2.33) has a unique solution, method (2.34) converges if T satisfied (2.35), and for

/C]% + 7o

To

the following estimate for the rate of convergence holds:

ETrg
(L4¢e)(k} +12)

INF = Al < (1 — ) 2N = Mg, B =L, M, LT.

Proof. Similarly to the proof of Theorem 2.3 we can check that the assumptions of The-
orem 1.3 are satisfied and the convergence condition (1.23) has the form

_ T _ _ _
Ly M, Ly > 5 (Ly My Ly 41y S M Sg). (2.36)
Further we use the inequality
(Sq M STAN) < kj(Ly M LY N), (2.37)

whose proof is the same as inequality (2.31). After that it is easy to show that (2.36) is true
when .
1> 5(1 + kiry ).

The proof of the statements in the case # = 6. is just the same as in Theorem 2.4.
Namely, we use, among other things, inequality (2.37) to prove the estimates

3

(P(A1) — P(A2), A1 — A\g) > 5z

1A = A,

(P(\) = P(A2), 1) < (1473 K92 (P(A) = P(A2), A = A2)' 2 ||| 5.

After that all formulated statements follow from Theorem 1.4.

Conclusions

On the basis of the proven convergence results for the iterative solution methods for
State-constrained optimal control problem (2.9) we can draw the following conclusions.

In the case of § = 0 (problem without state constraints) or = 6. (regularized indicator
function of the set of state constraints), the theoretical estimates for the rates of convergence
of methods (2.26), (2.34) and methods (2.17), (2.22) are asymptotically the same. The
complexity is also the same — at each iteration in these methods we need to inverse L, and
LZ and solve an inclusion with a diagonal operator. On the other hand, methods (2.26),
(2.34) have the following advantages:
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e they can be applied to problems with a non-differentiable function 6 without its regu-
larization;

e in the case of a regularized function 6 = 6., the bounds for the iterative parameter 7
which ensure the convergence and the optimal parameter 7y do not depend on ¢;

e it is possible to use a preconditioner By = Lo M, " Ly instead of B = L, M, " L, with
a matrix By which is spectrally equivalent to B; for example, Ly may be a matrix
corresponding to inexact inversion of L, by an iterative method.
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