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QUANTICS-TT COLLOCATION APPROXIMATION

OF PARAMETER-DEPENDENT AND

STOCHASTIC ELLIPTIC PDES

B.N. KHOROMSKIJ 1 AND I. OSELEDETS2

Abstract — We investigate the convergence rate of the quantics-TT (QTT) stochas-
tic collocation tensor approximations to solutions of multiparametric elliptic PDEs and
construct efficient iterative methods for solving arising high-dimensional parameter-
dependent algebraic systems of equations. Such PDEs arise, for example, in the para-
metric, deterministic reformulation of elliptic PDEs with random field inputs, based,
for example, on the M -term truncated Karhunen-Loève expansion. We consider both
the case of additive and log-additive dependence on the multivariate parameter. The
local-global versions of the QTT-rank estimates for the system matrix in terms of the
parameter space dimension is proven. Similar rank bounds are observed in numerics for
the solutions of the discrete linear system. We propose QTT-truncated iteration based
on the construction of solution-adaptive preconditioner that provides robust conver-
gence in both additive and log-additive cases. Various numerical tests indicate that the
numerical complexity scales almost linearly in the dimension of parametric space M .
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1. Introduction

In recent years, tensor-structured numerical methods based on the separation of variables
have proved their value in multidimensional problems of computational chemistry [4, 29, 7,
14, 13], quantum molecular dynamics [21, 19], quantum computation [28], and stochastic
PDEs [27, 26, 5, 10, 20, 16]. In particular, low-rank tensor approximations in canonical
format for stochastic PDEs were recently introduced in [16] (see also [18]).

In the present paper, we investigate the convergence rate of the quantics-TT (QTT)
stochastic collocation tensor approximations for solving deterministic parametric elliptic
equations in a high dimensional parameter space, arising, for example, as a projection of
the stochastic PDE via a truncated M-term Karhunen-Loève expansion. In general, the
model problem has the form

A(y)u = f in D ∈ Rd0 , (1.1)

d0 = 1, 2, 3, where A(y) is an elliptic operator in a domain D, with a coefficient depending
on a certain multidimensional parameter y ∈ RM , where M can vary from several tens
to several hundreds. In the case of stochastic PDEs, we consider a class of model elliptic
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problems characterized by the additive/log-additive dependence of the equation coefficients
on the multivariate parameter y, corresponding to a random field that is linear/exponential
in the random variable. Stochastic Galerkin approximations of equations (1.1) via sparse
finite elements were introduced in [2, 26], and the stochastic-collocation method for elliptic
PDEs was described in detail in [1].

The QTT representation gives log-volume complexity in the number of elements of the
tensor for several important problems [23, 12, 15]. For both the additive and the log-additive
cases, we prove local and global versions of QTT-rank estimates for the system matrix in
terms of the parameter space dimension. We show that in some cases faster numerical
algorithms can be designed using the localised version of QTT and canonical formats (cf.
[13]). In particular, the local-QTT rank of the system matrix is proven to be uniformly
bounded in M , while its global rank is shown by numerical experiments to increase at most
linearly in M . Uniform QTT rank bounds are observed in numerical tests for the solutions
of respective discrete linear systems.

The principal idea of our approach is the iterative solution of a single coupled system of
discrete, multiparametric elliptic equations projected onto the nonlinear manifold of low-rank
tensors represented in QTT format. The numerical cost of the matrix-vector multiplication
in our setting scales linear in M , and in the discrete (physical) problem size N .

To enhance the convergence of the global solver, we propose the preconditioned block
Jacobi-type iteration accomplished with rank optimization at each iterative step. Our basic
rank-1 preconditioner is constructed using the tensor-product approximation to the para-
metric elliptic operator inverse with spatially homogeneous random coefficients. The overall
numerical cost is estimated by O(M3 logN)−O(M4 logN) provided that the QTT rank of
the system matrix is bounded by O(M).

The rest of the paper is organized as follows. In §2, we set up the problem in the case
of additive and log-additive coefficient dependence on the multivariate parameter. In §3, we
first present the definitions of tensor structured vector- and matrix-formats to be utilized in
the paper. We then discuss the tensor-product FEM-collocation scheme and prove the rank
bounds for the resulting system matrix. We describe the basic low tensor rank preconditioner,
prove its spectral equivalence, and introduce the respective iterative solvers with adaptive
rank optimization via the QTT nonlinear approximation. In §4, we give various numerical
examples corresponding to stochastic PDEs with variable stochastic coefficients in the case
of random fields that are linear/exponential in the random variable. We investigate the case
of both polynomial and exponential decay of stochastic coefficients. Numerical examples for
elliptic equations with jumping parameter-dependent coefficients are also presented.

2. Parameter-Dependent Elliptic Problem

2.1. Weak formulations and solvability

We consider parametric, elliptic problems which are posed in the physical domain D :=
(0, 1)d0 of dimension d0 = 1, 2, 3, and which depend on a vector of M parameters which
take values in the hypercube in the M -dimensional parametric domain Γ := (−1, 1)M ≡ IM ,
M ∈ N. We are given f ∈ L2 (D), and a parametric elliptic operator

A(y) := −divx (a(y, x)gradx) , y ∈ Γ,

where the coefficient a(y, x) = aM(y, x) is a smooth function of x ∈ D and the parameter
vector y = (y1, ..., yM) ∈ Γ with a possibly very large number M of parameters. We formulate
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the problems in the tensor-product Hilbert space (cf. [16]),

V := Vy ⊗ Vx with Vy := L2(Γ) =
M⊗
m=1

L2(I), Vx := H1
0 (D) .

Specifically, we are interested in the efficient numerical solution of the parametric elliptic
problem: for every y ∈ Γ, find uM ∈ V , such that

AuM(y, x) = f(x) in D, uM(y, x) = 0 on ∂D. (2.1)

In this problem setting the dimension M of the parametric space corresponds to the trun-
cation parameter in the Karhunen-Loève expansion. In discretization of diffusion problems
with random inputs, the dimension M of the parameter space could become arbitrarily large.

We consider the class of problems, with the additive and log-additive dependence of the
coefficient function on y ∈ Γ.

In the additive case, the coefficient function is defined by

aM(y, x) := a0(x) + ay(y, x), where ay(y, x) =
M∑
m=1

am(x)ym, (2.2)

with am ∈ L∞(D), m = 1, ...,M . Concerning the coefficient function aM(y, x), we assume
(see [16]) that there exists amin > 0, such that

1. amin 6 a0(x) <∞,

2.

∣∣∣∣ M∑
m=1

am(x)ym

∣∣∣∣ < γamin with γ < 1, and for |ym| < 1 (m = 1, ...,M).

Conditions 1) - 2) imply a strong ellipticity of problem (2.1) uniformly in y, i.e.,

aM(y, x) > (1− γ)amin > 0. (2.3)

Hence, for y ∈ Γ, one can introduce the associated parametric bilinear form in the physical
space Vx,

A(u, v) := 〈Au, v〉L2(D) =

∫
D

aM(y, x)∇xu · ∇xvdx ∀u, v ∈ Vx,

so that we can use in accordance with (2.2) additive splitting

A(u, v) = A0(u, v) + Ay(u, v) ∀u, v ∈ Vx,

where A0 does not depend on y ∈ Γ. Under assumptions 1) - 2), we have a unique solvability
for the corresponding weak formulation: for any f ∈ H−1(D) and for any y ∈ Γ, there exists
a unique solution uM(y, ·) ∈ H1

0 (D) of the problem: Find uM ∈ Vx, such that

Find uM ∈ Vx, such that A(uM , v) =

∫
D

f(x)v(x)dx ∀ v ∈ Vx. (2.4)

In elliptic problems, the coefficient a(x, y) should be positive, which is not automati-
cally satisfied by the affine mode (2.2), and it would be more natural to have the operator
coefficient a in the form (the so-called log-additive case),

a(y, x) = eaM (y,x) = ea0(x)

M∏
m=1

eam(x)ym .
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Conditions 1) - 2) imply spectral equivalence relations in the physical variables,

C0〈A0u, u〉 6 〈Au, u〉 6 C1〈A0u, u〉, ∀ u ∈ Vx, (2.5)

with C0, C1 > 0, uniformly for all y ∈ Γ. Here A0 is an elliptic operator corresponding
to the coefficient a0 = ea0(x), and A is an elliptic operator corresponding to the coefficient
a = eaM (y,x). Hence, the weak formulation (2.4) again has a unique solution. Notice that in
the log-additive case the solvability conditions 1) - 2) can be substantially relaxed, but this
issue is beyond the scope of this paper.

2.2. Stochastic-Galerkin and stochastic-collocation discretizations

The parametric weak equation (2.4) can be reformulated as a variational equation in the
tensor-product Hilbert space V . Introducing the corresponding bilinear form

AM(u, v) :=

∫
Γ

∫
D

aM(y, x)∇xu · ∇xvdxdy ∀ u, v ∈ V,

we arrive at the following variational problem : Find uM ∈ V , such that

AM(uM , v) =

∫
Γ

∫
D

f(x)v(y, x)dxdy =: bM(v) ∀ v ∈ V. (2.6)

Lemma 2.1. ([12]) Equation (2.6) is uniquely solvable in V .

The variational formulation (2.6) gives rise to the stochastic-Galerkin approximation of
sPDEs.

The method proposed in this paper also applies to the stochastic-collocation approxima-
tion method. We refer to [1] for detailed description of the stochastic-collocation method for
elliptic sPDEs. We discretize the parametric equation (2.4) by the Galerkin FEM or Finite
Differences (FD) methods in the physical domain D, and by the collocation method in the
parameter domain Γ (see §3.3 for more detail).

3. Collocation discretization in the parameter space

3.1. Formatted Tensor Representation of vectors and matrices

For the numerical solution of multiparameter problems, low-parametric representations of
high-dimensional arrays (tensors) that arise from numerical discretizations of such equations
will be used. It will be shown, that all computations required to solve a multiparametric
problem will be reduced to fast operations with high-dimensional structured matrices and
vectors. These representations (called tensor formats) are crucial to avoid curse of dimen-
sionality.

In this paper, Tensor Train (TT) and (Quantics Tensor Train) (QTT) representations
will be utilized heavily both for matrices and vectors (for detailed description see [22, 24, 23,
15, 12]), and for fast linear algebra operations in these formats TT-Toolbox3 will be used.

The complexity of basic operations is greatly reduced. For example, to multiply an
nd×nd matrix with TT-ranks rk 6 r, by a vector of length nd with ranks r′k 6 r′, the result
is also a vector in TT-format with ranks bounded by rr′, and the complexity is linear in the
dimension d and polynomial in n and ranks r, r′. The basic facts, notations, and algorithms
for these formats are summarized in the next section.

3TT-Toolbox is publicly available from http://spring.inm.ras.ru/osel
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3.2. Notations and basic facts about the TT and QTT formats

The basic objects used in this paper are multidimensional arrays, called tensors. They will
be denoted by boldface letters, i.e., A. Elements of a n1 × n2 . . .× nd tensor A are denoted
as A(i1, . . . , id), and nk are referred to as mode sizes. Since tensors belong to a linear space,
standard linear operations (addition, multiplication by a number) are naturally defined. The
Frobenius norm of a tensor, ||A||F is defined as

||A||F =

√∑
i1,...,id

A(i1, . . . , id)2.

An important operation is tensor-by-matrix multiplication over the mode-k (also called mode-
product or contracted product). It is defined as

B = A×k U → B(i1, . . . , i
′
k, . . . , id) =

nk∑
ik=1

A(i1, . . . , id)U(ik, i
′
k).

Tensors can be transformed into matrices in various ways. We adopt the following notation.
Given a tensor A = A(i1, i2, . . . , id) by

A(i1i2 . . . ik; ik+1 . . . id)

k-th unfolding matrix is denoted, i.e. first k indices enumerate its rows, and last d− k — its
columns.

A detailed review of tensors and their application can be found in [17, 13].
A multidimensional array (tensor) A = [A(i1, . . . , id)], (1 6 ik 6 nk) is said to be in the

TT (tensor train) format if it is represented as

A(i1, i2, . . . , id) =
∑

α1,...,αd−1

G1(i1, α1)G2(α1, i2, α2) . . . Gd(αd−1, id), (3.1)

where αk varies from 1 to rk, and Gk are called cores of the TT-decompositions, and rk are
called compression ranks, or simply TT-ranks of the decomposition. Two border cores of
the TT-format are matrices. To make the decomposition more symmetric, it is natural to
consider the extended form

A(i1, i2, . . . , id) =
∑

α0,α1,...,αd−1,αd

G1(α0, i1, α1)G2(α1, i2, α2) . . . Gd(αd−1, id, αd), (3.2)

where two dummy indices α0 and αd are equal to one. This form simplifies the description
of algorithms and will be used later on (corresponding ranks r0 = rd = 1).

Also, the k-th rank of the TT-decomposition of A will be denoted by rk(A). The TT-
ranks are bounded from below by the ranks of unfolding matrices Ak,

rank(A) > rk > rankAk, k = 1, ..., d.

The unfolding procedure is also called matrization of a tensor [3]. The inverse statement is
also true: if rk = rankAk, then there exists a TT-decomposition with these ranks [22], and,
moreover, it can be computed by d singular value decompositions (SVD) of auxiliary matrices
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[23]. Moreover, such a procedure is stable: if the unfolding matrices are of approximate low-
rank rk:

Ak = Rk + Ek,

where rankRk = rk and ||Ek||F = εk, then TT-approximate B, computed by a sequence of
SVD decompositions, satisfies

‖A−B‖F 6

√√√√d−1∑
k=1

ε2
k,

which confirms the stability of the approximation procedure (hereinafter called TT-SVD,
since it can be considered as a generalization of SVD algorithm for matrices).

If all ranks are equal to r and all mode dimensions are equal to n, then the TT-format
requires O(dnr2) memory cells. Hence, the storage is linear in d and quadratic in r. The
standard format to represent a d-dimensional array is the canonical format :

A(i1, . . . , id) ≈
r∑

α=1

U1(i1, α) . . . Ud(id, α). (3.3)

It requires O(dnr) memory cells, however it suffers from certain drawbacks. Despite of
the recent progress, there are no robust algorithms to compute a canonical decomposition
numerically, and the approximation by a canonical tensor with a fixed rank can be ill-posed
[6]. In contrast, computation of the best TT-approximation is a well-posed problem, and
quasi-optimal approximation can be computed by means of the TT-SVD algorithm that uses
standard LAPACK procedures, which is why it is preferable in numerical computations.

One of the most important procedures in the structured tensor computation is the re-
compression procedure. Given a tensor A in the TT-format with non-optimal ranks rk, we
want to approximate it with another TT-tensor B with the smallest possible ranks r̂k 6 rk
while maintaining the desired relative accuracy ε:

||A−B||F 6 ε||B||F .

Such a projection will be denoted as

B = Tε(A).

The construction of such an operator in the canonical form is a notoriously difficult task,
with no best solution known.

For the TT-format, it can be implemented by using a standard algorithm from linear
algebra (SVD and QR decompositions). Such an algorithm is presented in [22]. For com-
pleteness of the presentation, we give it here (in a notation slightly different from [22]).

The MATLAB code for this algorithm is a part of TT-Toolbox. By SVDδ in Algorithm 1
we denote SVD with singular values that are set to zero if smaller than δ, and by QRrows we
denote the QR-decomposition of a matrix, where the Q factor has orthonormal rows. The
SVDδ(A) returns three matrices U , Λ, V of the decomposition A ≈ UΛV > (as a MATLAB
svd function), and QRrows returns two: the Q-factor and the R-factor.

The complexity of the algorithm is O(dnr3). All the basic operations of multilinear al-
gebra (MLA): addition, multiplication by a number, scalar product, norm, matrix-by-vector
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product can be implemented in TT-format. Together with the recompression procedure, this
gives a nice tool for solving high-dimensional problems.

The QTT is a TT-decomposition applied to a special kind of tensors arising from the
discretization of a certain function. It was considered for the tensorization of matrices ([23])
and vectors [12]. The simplest case is one-dimensional. Consider the function f(x) of one
variable, x ∈ [a, b], and discretize it on a uniform grid with 2d points:

vk = f(xk), k = 1, . . . , 2d.

The corresponding vector can be reshaped into a 2 × 2 × . . . × 2, d-dimensional tensor, to
which TT-decomposition can be applied. It appears that for many functions the ranks rk
are very small [12], which leads to a O(log n) storage complexity for a vector of length n.
Such an idea of introducing virtual dimensions can be generalized to higher dimensions. For
example, for bivariate functions and their discretizations on a tensor grid, the corresponding
tensor elements have the form

A(i1, i2, . . . , id, j1, . . . , jd), 0 6 ik, jk 6 1.

Algorithm 1 TT-recompression

Require: d-dimensional tensor A in the TT-format, required accuracy ε
Ensure: B in the TT-format with smallest possibles compression ranks r̂k such that

||A−B||F 6 ε||A||F , i.e. B = Tε(A).

1: Let Gk, k = 1, . . . , d− 1 be cores of A.
2: {Initialization}

Compute truncation parameter δ = ε√
d−1
||A||F .

3: {Right-to-left orthogonalization}
4: for k = d to 2 step −1 do
5: [Gk(βk−1; ikβk), R(αk−1, βk−1)] := QRrows(Gk(αk−1; ikβk)).
6: Gk−1 := Gk ×3 R.
7: end for
8: {Compression of the orthogonalized representation}
9: for k = 1 to d− 1 do

10: {Compute δ-truncated SVD}
[Gk(βk−1ik; γk),Λ, V (βk, γk)] := SVDδ[Gk(βk−1ik; βk)].

11: Gk+1 := Gk+1 ×1 (V Λ)>.
12: end for
13: Return Gk, k = 1, . . . , d as cores of B.

TT-ranks crucially depend on the permutation of indices. For the two-dimensional case,
it was found experimentally [12] (using the TT-SVD algorithm) that permutation of indices
in the fashion

B(i1j1, i2j2, . . . , idjd),

i.e., with indices ik, jk interleaved, is preferable. Some theoretical results on the approxima-
tion in the QTT-format were obtained in [12, 9].
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To summarize, the QTT format for a 2d × 2d × . . . × 2d, f -dimensional arrays leads to
a O(dfr2) storage, and if r is small, it is of logarithmic complexity in the total number of
elements, O(log 2df ), of the array (log-volume complexity).

Both the TT and the QTT formats can be also used for matrices with cores Gk indexed
by four indices Gk(αk−1, ik, jk, αk) instead of three. For such a representation it is easy to
implement a matrix-by-vector product, where both the matrix and the vector are in the TT
(QTT) format.

Now, we will discuss how the QTT representation will be used for the discretization of
parameter-dependent elliptic problems. A special structure of matrices can also be incor-
porated into cores Gk. For example, for sparse matrices in some modes the corresponding
tensors Gk will be sparse, and for diagonal dependence the corresponding cores will also be
diagonal.

3.3. QTT representation of matrices and solution vectors

For each point y ∈ Γ in the parameter space, we have an elliptic boundary value problem

A(y, x)u(y, x) = f(x), x ∈ D ∈ Rd0 ,

which is discretized by a suitable approximation with N degrees of freedom in the physical
variable x. This yields a parametric linear system

A(y)v(y) = f, f ∈ RN , v(y) ∈ RN , y ∈ Γ. (3.4)

The discretization can be performed by any suitable linear scheme (Galerkin, finite differ-
ences, projected collocation, etc.).

In the following, we apply the Galerkin collocation method. For each fixed y ∈ Γ, we
discretize the parametric equation (2.4) by the Galerkin FEM via a set of piecewise linear
hat functions {φi}, i = 1, ..., N . The main problem is the dependence on the parameters
y = (y1, . . . , yM). For each m, 1 6 m 6 M , a one-dimensional grid of collocation points

Γm = {y(k)
m } ∈ [−1, 1], k = 1, . . . , n is introduced. This is equivalent to the collocation

method applied to (3.4), and the problem is reduced to nM linear systems

A(j1, . . . , jM)u(j1, . . . , jM) = f, 1 6 jk 6 n,

which can be written as one large linear system

Au = f , (3.5)

where A is an NnM ×NnM matrix, u and f are vectors of length NnM .
In the additive case the parameter-dependent matrix takes the form

A(y) = A0 +
M∑
m=1

Amym, y ∈ ΓM := ΓMm ,

where Am are N ×N matrices and N is the number of degrees of freedom of discretization
in x. In this case, A can be represented in the tensor form

A = A0 × I × . . .× I + A1 ×D1 × I × . . .× I + . . .+ AM × I × . . .×DM , (3.6)
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where Dm, m = 1, . . . ,M , is an n × n diagonal matrix with positions of collocation points
{y(k)

m }, k = 1, . . . , n on the diagonal, and the right-hand side has a tensor rank 1

f = f × e× . . .× e,
where e is a vector of all ones of length n.

The same approach can also be used for the log-additive case. The resulting linear system
also has the form (3.4) - (3.5), but the dependence on y is no longer affine and special
techniques should be used for the matrix approximation in the M -dimensional parameter
space.

In the log-additive case, system (3.5) has a similar form, but there will be no straight-
forward low tensor rank representation to the matrix A like (3.6). However, a still good
low-rank approximations of the form

A ≈
R∑
k=1

M⊗
m=0

Amk,

where matrices Amk ∈ R(M+1)×n, will be precomputed and utilized for fast calculations.
It is natural to consider low-parametric tensor formats for the solution u, which can

be regarded as an (M + 1)-dimensional tensor. Several options are available. A numerical
solution of high-dimensional sPDEs in canonical format was considered [16]. Preliminary
application of the hierarchical Tucker format was addressed in [18].

In this paper, we apply the QTT format to represent high-dimensional tensors in paramet-
ric variables. This representation gives a log-volume complexity in the number of elements
of a tensor for several important problems. It has all basic linear algebra operations imple-
mented in MATLAB, and it can be used effectively for solving equations of the form (3.5)
by structured iterations with QTT-truncations as described in Section 4.

For the additive case, the rank-(M + 1) representation of the matrix A is available at
no cost. For the log-additive case, it is very difficult to obtain canonical approximation to
A. However, QTT approximation to A can be computed by a certain fast procedure with
recompression at each step. This procedure will be described in the next section.

We show that in some cases enhanced numerical algorithms can be designed using the
localized version of the QTT and canonical formats.

3.4. Matrix approximation in the log-additive case

Let us describe how to compute a low-parametric representation for a matrix in the log-
additive case for a model one-dimensional example. Suppose D is [0, 1] and the Galerkin
discretization in x gives

A(i, j, y) =

∫
D

b(y, x)
∂φi
∂x

∂φj
∂x

dx, y ∈ Γ, D = [0, 1]. (3.7)

As basis functions, take the standard piecewise-linear hat functions {φi}, i = 1, ..., N , and
also apply simple quadratures to integrals (3.7). This gives (up to a factor h2) a three-
diagonal matrix A(y) with elements

A(i, i, y) =
1

4
(b(y, xi−1) + 2b(y, xi) + b(y, xi+1)),

A(i, i− 1, y) =
1

2
(b(y, xi−1) + b(y, xi)),

A(i− 1, i, y) = A(i, i− 1, y),
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for i = 1, ..., N , and y ∈ Γ. Recall that

b(y, x) = eaM (y,x) = ea0(x)

M∏
m=1

eam(x)ym .

Hence, it is easy to represent the matrix A(y), y ∈ Γ in the low tensor rank format,

A(y) = D(y) + Z(y) + Z>(y),

where D(y) is a diagonal of A, Z is the first subdiagonal. First, consider D(y). It can be
represented as

D(y) =
N∑
i=1

A(i, i, y)eie
>
i =

1

4
(C1(y) + 2C2(y) + C3(y)),

where C2(y) can be written in the form

C2(y) =
N∑
i=1

eie
>
i e

a0(xi)

M∏
m=1

eam(xi)ym . (3.8)

After taking C2(y) at collocation points y ∈ ΓM a diagonal matrix of size Nnm × Nnm

appears, and it is easy to see that each summand in (3.8) has a tensor rank-1. Moreover, if
the QTT format is considered in variable ym, then the TT-ranks will be equal to 1, since it
is an exponential function [12]. This proves the following result.

Lemma 3.1. For quadrature discretization of a 1d PDE in the log-additive case each
element A(i, j, y) has a canonical decomposition of a rank not larger than 3. The same
QTT-rank bound holds true.

This gives rise to a new format (local low-rank approximation [13]) for representing a tensor.
This format can be used directly to represent the matrix A: each non-zero entry of the
matrix is represented as a low-rank M -dimensional tensor. The full QTT-rank can also be
estimated as in the following Lemma 3.2.

As a consequence of Lemma 3.1, we conclude that C2(y) has rank N at most. The
ranks of matrices C1, C3 are also bounded by N . For Z(y) = 1

2
(C1(y) + C2(y)), we have

two quadrature points, so the rank bound is 2N , the same holds for Z>(y), and the total
rank estimate is (1 + 1 + 1 + 2 + 2)N = 7N . This estimate uses the fact that any fixed
matrix element f(y) = A(i, j, y) considered as an M -dimensional tensor has a canonical rank
bounded by a small constant, and there are only O(N) nonzero elements. This leads to the
following result.

Lemma 3.2. For quadrature discretization of a 1d PDE in the log-additive case their
exists a rank-R canonical approximation to the assembled matrix A with the rank estimate

R 6 7N, (3.9)

uniformly in n and M .

The arguments of Lemmas 3.1 and 3.2 also apply to an arbitrary space dimension in the
physical variable x ∈ Rd0 .
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Remark 3.1. Similar arguments prove that

rank(A(i, j, y)) 6 C3d0 and rank(A) 6 C3d0N,

with constant C independent of N , n and M . Consequently, the QTT ranks of the corre-
sponding local matrices scale as O(3d0).

For a one-dimensional problem with small grids (of the order of hundreds) it already
gives a nice representation. However, for a two-dimensional physical problem, N grows
quadratically in the one-dimensional grid size and estimate (3.9) gives very large values of
ranks.

In practice the ranks are usually much smaller, normally in the range O(M), and the
canonical representation with an overestimated rank R can be compressed by the canonical-
to-QTT compression algorithm [23] to the QTT-format. The algorithm is just the addition
of rank-one terms comprising the decomposition one-by-one and compressing the result af-
terwards to avoid an excessive rank increase. This simple scheme allows fast computation of
the low-rank optimized TT-approximation to the matrix A. It is summarized in Algorithm 2.

Recently in [5] it was shown that under some mild assumptions in the additive case the
mapping u(y, x) for each fixed x is an analytic function of y and there exists a small-degree
polynomial approximation to it. As a consequence, here comes a canonical rank estimate
C| log ε|M−1, which is nice for small M , but still grows exponentially in M . However, as
our numerical experiments demonstrate, this estimate is too pessimistic. Actually, the rank
bound for the solution appeares to be almost uniform in M .

4. Preconditioned QTT-truncated iteration

The QTT format can be used effectively for solving equations of form (3.5) by structured
iterations with QTT-truncations of the form

ũ(m+1) := u(m) − ωBm
(
Au(m) − f

)
, u(m+1) = Tε(ũ

(m+1))→ u, (4.1)

where Tε is the rank truncation operator preserving accuracy ε.
At each step, the TT-ranks increase and have to be reduced by the recompression proce-

dure from [22]. The procedure will work if the solution can indeed be approximated in the
TT format, and we will verify this numerically for several examples later on.

In the additive case of stochastic PDEs, a good choice of a preconditioner is the rank-1
tensor

B0 = A−1
0 × I × . . .× I,

(see [16]), which is easy to incorporate into the TT-framework. The spectral equivalence for
this preconditioner is proved in [16].

However, in a more general setting, the efficient preconditioner has to be chosen adap-
tively to the current iterand living in the parametric space without any prior knowledge. At
each iteration the correction equation has to be solved approximately

Ac ≈ f − Au,

or in terms of the (nonlinear) preconditioner B,

c = B(f − Au).
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Algorithm 2 Matrix approximation in the log-additive case

Require: Subroutine that computes any element of the matrix A(i, j, y), 1 6 i, j 6 N in the
QTT-format in the stochastic variable y = (y1, . . . , yM), with 2p points in each stochastic
mode, truncation parameter ε.

Ensure: QTT-approximation to the matrix A
1: Let S be a sparsity pattern of A.
2: A := 0,M := 0
3: for (i, j) ∈ S do
4: B := A(i, j, y) in the QTT-format with cores B2, . . . , BMp+1

5: {Concatenate tensors A and B }
6: rk = rk(A), r̂k = rk(B), A(1 : M, :) = A, A(M + 1, :) = B by concatenating cores:

7: A1 :=

(
A1 0M×r̂1

01×r1 11×r̂1

)
.

8: for k = 2 to Mp+ 1 do
9: Ck := 0(rk−1+r̂k−1)×mk×(rk+r̂k).

10: Ck(1 : rk−1, :, 1 : rk) := Ak
11: Ck(rk−1 + 1 : r̂k−1, :, rk + 1 : r̂k) := Bk.
12: Ak := Ck.
13: end for
14: A := Tε(A).
15: end for
16: {How to treat the result}

A is an nnz× 2× . . .× 2 dimensional tensor with (Mp+ 1) dimensions
— “sparse” representation of A
The first core of A, A1 is now an nnz×r1 matrix, where nnz is the number of nonzeros in
the sparsity pattern of A. Each column of A1 corresponds to the N ×N sparse matrix,
and this is the sparse representation of the first core of A. The other cores of A are
diagonal matrices formed from the cores of A (for each core of size rk−1×2×rk, a tensor
of size rk−1 × 2× 2× rk is formed).

17: {Complexity}
The complexity of the algorithm is O(NMpr3).

To implement B, we propose to use a one-point preconditioner scheme, i.e., precondition by
the parameter-independent N × N matrix A(y∗) for some special choice of the multipara-
meter y∗:

c = A(y∗)−1(f − Au).

This solves exactly only one of our systems, and y∗ should be selected adaptively. As a
simple heuristics, the following scheme is proposed. For the residue tensor, v(x, y) = f−Au,
x ∈ RN , y ∈ ΓM , we can find an approximate maximal element, where the residual is
small, using multidimensional generalization of the maxvol algorithm [8]. This procedure
is fast and inexpensive for a low-rank TT-tensor (it has complexity O(Nr2 + pMr3), as
a result, we have the position of the maximum, (x∗, y∗) and use A(y∗). We notice that a
more natural approach is to compute the norms of all residuals in x for each y, and then
compute the maximum. This procedure is more robust but more expensive computationally,
and, surprisingly, in our experiments it usually gave a worse convergence. Notice that the
preconditioner B0 corresponds to the choice y∗ = 0 in terms of the continuous variable y.
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Once y∗ has been found the preconditioner is defined by

B = A(y∗)−1 × I × . . .× I.

This is a nonlinear preconditioner, since y∗ is determined adaptively at each step, so not
every linear solver can be used: the only option beyond the Richardson iteration is the
geometric version of GMRES. To apply B to the TT-vector, one has to solve r independent
N ×N linear systems, where r is the first TT-rank of the vector. For elliptic problems any
suitable fast solver can be used. Our examples are two-dimensional, so a fast direct solver
for sparse matrices can be applied. By Solve(N, r) we denote the complexity to solve a
linear system of the form

A(y∗)V = Fj, j = 1, ..., r.

Finally, the solution algorithm looks as follows (the numerical complexity of respective
steps in Algorithm 3 is specified in the right column).

5. Numerical experiments

5.1. Matrix approximation

We present numerical results for the approximation of the full system matrix in the QTT
format. For the additive case, the ranks grow linearly in M . For the log-additive case, no
results are known, and we present the first numerics for the approximation of the full matrix
corresponding to certain log-additive model examples.

Consider a 2D-dimensional SPDE in stratified media (i.e., with the coefficient depending
on the 1D variable) in the two cases:

1. Polynomial decay: am(x) =
0.5

(m+ 1)2
sinmx, x ∈ [−π, π], m = 1, . . . ,M .

2. Exponential decay: am(x) = e−0.7m sinmx, x ∈ [−π, π], m = 1, . . . ,M .

The parametric space is discretized on a uniform mesh in [−1, 1] with 2p points in each
spatial direction. For the experiments, p = 8 is taken.

The ranks are presented with different truncation parameters. Table 5.1 presents the
results for the log-additive case and polynomial decay of coefficients, and Table 5.2 — for
exponential decay. The dependence on M is linear for polynomial decay, and seems to be
much milder in the case of exponential decay, which is rather natural.

Table 5.3 describes the dependence on the accuracy for a fixed M . This confirms that
the ranks are logarithmic in accuracy ε.

Table 5.1. Rank-dependence of the matrix
in the QTT format, 2D SPDE, log-additive
case, polynomial decay N = 128, p = 8

M QTT-rank(10−7) QTT-rank(10−3)
5 27 10
10 44 17
20 78 27
40 117 49

Table 5.2. Dependence of the matrix QTT
rank on M . 2D SPDE, log-additive case,
exponential decay, N = 128, p = 8

M QTT-rank(10−7) QTT-rank(10−3)
5 33 11
10 43 21
20 51 23
40 50 25
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Algorithm 3 Richardson iteration with a 1-point preconditioner

Require: The right-hand side f in the QTT-format (f can be considered as a N ×
2 × 2 × . . . × 2 (1 + Mp)-dimensional tensor), the block-diagonal matrix A =
A(i, i′, j1, j2, . . . , jMp), i, i

′ = 1, . . . , N, jk = 1, 2, k = 1, . . . ,Mp in the QTT-format, the
truncation parameter ε, the number of iterations nit.

Ensure: Approximate solution x in the QTT-format of the equation Ax = f .
1: {Initialization} x = 0
2: for k = 1 to nit do
3: {Compute residual}

res = Tε(Ax− f) O(N(r1(x)r1(A))2 +
∑Mp

m=2 r
2
m(x)r2

m(A))
res is represented in the QTT format:
res(i, j1, . . . , jMp) =

∑
α1,...,αMp

R1(i, α1)R2(α1, j1, α2) . . . RMp+1(αMp, jMp)

4: {Maximal residue}
[i∗, j∗1 , j

∗
2 , . . . j

∗
Mp] = arg max |res(i, j1, j2, . . . , jMp)| O(Nr2

1(res) +
∑Mp

m=2 r
3
m(res))

5: {1-point preconditioner}
Compute N ×N sparse matrix B as
B = A(i, i′, j∗1 , . . . , j

∗
Mp)

by contracting A over stochastic modes O(Nr1(A) +
∑Mp

m=2 r
2
m(A))

6: {Apply the precondioner}
Solve for BR′ = R1, where R1 is the first core of res using any suitable solver in the
physical space. Solve(N, r1(res))

7: Set the first core of res to R′

8: x := x+ res
9: x := Tε(x) O(Nr2

1(x) +
∑Mp

m=2 r
3
m(x))

10: end for

Table 5.3. Dependence of the matrix QTT-rank on the accuracy. 2D
SPDE, log-additive case, exponential decay, N = 128, M = 40, p = 8

ε QTT-rank(ε)
10−3 25
10−4 31
10−5 38
10−6 44
10−7 50

Tables 5.1 – 5.3 confirm numerically that the matrices for the log-additive case have low
maximal QTT-ranks, and this representation can be used for the solution. In what follows
two-dimensional model examples will be considered (i.e., d0 = 2), for both the additive and
the log-additive cases, as well as two multi-parameter problems will be studied.

We use two different TT rank estimates for tensors: one characterising the overall storage
needs and complexity, r̂TT , and the other one serving for the QTT-rank disctribution, rQTT :

r̂TT (u) =

√∑
niriri+1∑
ni

, rQTT (u) =

√
1

M

∑
riri+1.

5.2. Additive case

As the first example, consider the two-dimensional diffusion in stratified media with the
diffusion coefficient
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a(x1, x2, y2, . . . , yM) = 1 +
1

2

M∑
m=2

λm sin(mx1)ym, (5.1)

where λm = e−0.7m. The results are presented in Fig. 5.1 - 5.3.

F i g. 5.1. Convergence in the stratified 2D additive example with two different truncation pa-
rameters, 1-point preconditioner. Left: Residue with iteration; Right: r̂QTT -ranks with iteration,
M = 40

The time dependence on M is presented in Fig. 5.2. The rank dependence on M in the
solution is presented in Fig. 5.3.

F i g. 5.2. Time for 35 iterations, additive case,
example (5.1)

F i g. 5.3. rQTT -ranks of the solution vs. M ,
additive case, example (5.1)

5.3. Log-additive case

As the second example, we consider the two-dimensional diffusion in stratified media with
the diffusion coefficient

a(x1, x2, y2, . . . , yM) = exp(1 +
M∑
k=2

λk sin(kx1)yk), (5.2)
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where λk = e−0.7k. The results are presented in Fig. 5.4.

F i g. 5.4. Convergence in the stratified 2D log-additive example with two different truncation pa-
rameters, 1-point preconditioner. Left: Residue with iteration; Right: rQTT -Ranks with iteration,
M = 40

The time dependence on M is presented in Fig. 5.5

F i g. 5.5. Time for 35 iterations, log-additive case, example (5.2)

5.4. Multiparameter problems

In this subsection, two “deterministic” problems with several parameters will be considered.
The first one, borrowed from [2], is as follows. Again, we consider the diffusion equation

divx (a(y, x)gradxu) = f ∈ L2 (D) , y ∈ Γ,

in a square D = [0, 1]2, where the diffusion coefficient is represented as

a(x, y) = 1 +
4∑
i=1

γiξi(x)yi,
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with ξi(x) being the indicator function of four disks (see Fig. 5.6), and yi ∈ [−0.99, 0], i =
1, . . . , 4.

F i g. 5.6. 4-circles test problem

F i g. 5.7. Convergence in the 4-circles example with two different truncation parameters, 1-point
preconditioner, Left: Residue with iteration, Right: Ranks with iteration

The average time for one iteration was 0.22 seconds for the truncation parameter ε = 10−6

and 0.64 seconds for ε = 10−9.

The second problem is the stationary heat equation from Oberwolfach benchmarks (see
[25]), considered in [18], whose matrix form is as follows:

A0u+ (A1y1 + A2y2 + A3y3)u = −b,

with Ai, i = 1, . . . , 4 are 4257×4257 matrices, b is a vector of length 4257, and A1, A2, A3, A4

refer to different boundary conditions. This is related to the boundary condition indepen-
dent modelling [25], and such problems appear in compact thermal modelling ([11]). The
parameters yi vary from 108 to 109.

The average time for one iteration was 0.22 seconds for the truncation parameter ε = 10−6

and 0.64 seconds for ε = 10−9.
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F i g. 5.8. Convergence in the Oberwolfach example with two different truncation parameters,
1-point preconditioner, Left: Residue with iteration, Right: Ranks with iteration

6. Conclusions

We have presented the first application of the QTT format to the solution of high-dimensional
equations arising in stochastic PDEs and in parameter-dependent elliptic equations. We have
proved that in both the additive and the log-additive cases the ranks in the QTT matrix
format are bounded by a constant independent of M . However, it depends on N – the
physical problem size. The proof of the rank estimate is constructive and gives rise to an
approximation algorithm that is free of the “curse of dimension”. Using this algorithm, we
have shown by numerical experiments that the estimate is rather pessimistic – actually the
ranks scale linearly in M in the worst case, and linearly in |log ε|, where ε is the accuracy
of approximation. A similar rank behaviour is observed for the solution of the equation. To
solve the equation, we use QTT-truncated iteration with the adaptive block-Jacobi-like pre-
conditioner, which demonstrated the linear convergence rate in our numerical experiments.
To summarize, the proposed method looks promising for the approximation and solution
of parameter-dependent equations in the case of the additive and log-additive coefficient
dependence on parameters.
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