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On the Uniqueness and Reconstruction of
Rough and Complex Obstacles from Acoustic

Scattering Data
Mourad Sini

Abstract — We deal with the inverse problem of scattering by an obstacle at a fixed
frequency. The obstacle is characterized by its shape, the type of boundary conditions
on its surface, and the eventual coefficients distributed over this surface. In this paper,
we assume that the surface ∂D of the obstacleD is Lipschitz and the surface impedance,
λ, is given by a complex valued, measurable and bounded function. We prove the
uniqueness of (∂D, λ) from the far field map under these regularity conditions. The
usual proof of the uniqueness for obstacles, based on the use of singular solutions,
is divided into two steps. The first step consists in using a Rellich type lemma to
go from the far fields to the near fields and then the singularities of the singular
solutions, via orthogonality relations, to show the uniqueness of ∂D. The second step
is to use the boundary conditions to prove the uniqueness of λ on ∂D via the unique
continuation property. This last step requires the surface impedance to be continuous.
We propose an approach using the layer potentials to transform the inverse problem
to the invertibility of integral equations of the second kind involving the unknowns ∂D
and λ. This enables us to weaken the required regularity conditions by assuming ∂D
to be Lipschitz and λ to be only bounded. The procedure of the proof is reconstructive
and provides a method to compute the complex valued and bounded surface impedance
λ on ∂D by inverting an invertible integral equation. In addition, assuming ∂D to be
C2 regular and λ to be of the class C0,α, with α > 0, we give a direct formula as
another method to reconstruct the surface impedance on ∂D.
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1. Introduction and statement of the results

Let D be a bounded and Lipschitz domain of Rn, n = 2, 3, ..., such that Rn \D is connected.
The propagation of time-harmonic acoustic fields in a homogeneous media is governed by
the Helmholtz equation

∆u+ κ2u = 0 in Rn \D (1.1)

where κ is the real positive wave number. At the boundary of the scatterers the total field
u satisfies the impedance boundary condition

∂u

∂ν
+ iλu = 0 on ∂D (1.2)
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with some measurable and bounded complex valued function λ on ∂D with a positive real
part where ν is the unit normal directed outside of D. Given an incident field ui which
satisfies ∆ui + κ2ui = 0 we look for solutions u := ui + us of (1.1) and (1.2) where the
scattered field us is assumed to satisfy the Sommerfeld radiation condition

lim
r→∞

r
n−1
2 (

∂us

∂r
− iκus) = 0, (1.3)

r = |x| and the limit is uniform in all directions θ := x
|x| .

The forward scattering problem (1.1)-(1.2)-(1.3) with the mentioned regularity conditions
on (∂D, λ) is well posed. There are two ways to justify it. The first way is to use the
limiting absorption principle as is done in ([25], section 4). The second one is the approach
by Brakhage-Werner-Leis-Panic which consist of a combination of the single layer and double
layer potentials. Indeed, this can be done following the arguments by Leis as explained in
([7], pp. 92-93) and using the layer potential mappings stated on C2−smooth domains (see
[7]) or on Lipschitz domains (see [10] and [22]).

It is well known (see [8], [25]) that this reflected field satisfies the following asymptotic
property:

us(x) =
eiκr

r
n−1
2

u∞(θ) +O(r−
n+1
2 ), r →∞, (1.4)

where the function u∞(·) defined on the unit n-dimensional sphere Sn is called the far field
related to the incident field ui. Taking particular incident fields given by the plane waves,
ui(x, d) := eiκd·x, d ∈ Sn, we define the far-field pattern u∞(θ, d) for (θ, d) ∈ Sn × Sn.
Analogously, for an incident point source Φ(·, z) given by the fundamental solution of ∆+κ2

in Rn

Φ(x, y) :=
iγn

|x− y|n−2
2

H
(1)
n−2
2

(κ|x− y|), x 6= y, x, y ∈ Rn, (1.5)

we denote the scattered field by Φs(·, z). The function H
(1)
n−2
2

is the Hankel function of the

first kind and of order n−2
2

. The constant γn is given by γn := πκ
n−2
2

2(2π)
n
2

(see [18]).

1.1. Uniqueness

The first result of this paper is the following theorem.

Theorem 1.1. (Uniqueness of rough complex obstacles.) Assume that Dj, j =
1, 2, are bounded and Lipschitz domains of Rn such that Rn \Dj is connected and that κ2 is
not a Dirichlet eigenvalue for (−∆) on Dj, j = 1, 2. Consider two bounded complex valued
functions λj, j = 1, 2, defined on ∂Dj, j = 1, 2, respectively, with positive real parts. Let
u∞j (·, ·) on Sn× Sn, j = 1, 2, be the far field patterns for the scattering problem (1.1) - (1.3)
with unknowns (∂Dj, λj). If u∞1 (·, ·) = u∞2 (·, ·) on Sn × Sn, then we have ∂D1 = ∂D2 and
λ1 = λ2.

There are two ways to prove the uniqueness of obstacles from exterior measurements.
The first one is due to Schiffer (see, e.g., [8]. However, it is applicable only for Dirichlet type
obstacles. The second argument is based on the use of singular solutions by Isakov, Kirsch,
and Kress (see [16] and [25]). Regarding the uniqueness question, this last argument does
not depend on the type of boundary conditions we impose on ∂D. Hence it is also applicable
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for the Robin type of boundary conditions. Such arguments are also used for transmission
problems (see [14, 15]). To prove the uniqueness of the boundary coefficient λ, the known
and straight argument (see [7] and [25]), is to use the boundary conditions coupled with the
unique continuation property. However, this last step requires the boundary coefficients to
be continuous.

In this paper, we propose another way to prove uniqueness of (∂D, λ) which requires
Lipschitz regularity of ∂D and only the boundedness of the measurable function λ. This
approach is based on transforming the inverse problem to the invertibility of integral equa-
tions involving the unknowns ∂D and λ. Precisely, we first provide an explicit representation
of the Green function, corresponding to the scattering problem ((1.1)-(1.2)-(1.3)), in terms
of the explicit Helmholtz fundamental solution via an invertible integral operator involving
(∂D, λ). This shows us how the singular behavior of the Green function is similar to that
of the fundamental solution. The uniqueness of ∂D is then easy to prove using this repre-
sentation. We wish to emphasize that this representation is useful to show the weight of
λ and the geometry of ∂D in the singularity of the Green function. This is important for
understanding the power as well as the limits of the known probe and sampling methods (see
[20, 21, 27]) for some related studies in the case of smoother unknowns (∂D, λ). The second
integral equation we derive in this paper is of the second kind having λ as an unknown and
its kernel is related to the Green function of ((1.1)-(1.2)-(1.3)). Its invertibility gives a way
to detect λ.

1.2. The reconstruction issue

The proof procedure based on these two integral equations is then reconstructive. Indeed,
using the Ikehata-Potthast probe method, for instance 1 (see [13, 24]), we can compute the
values of the Green function outside the obstacle using the needle approach proposed by
Ikehata [13]. The unboundedness of the corresponding indicator functions when the needle
approaches the obstacle is justified by the first integral equation we mentioned. Hence, in
principle, we get ∂D and the values of the Green function on ∂D. Then, inverting the second
integral equation we obtain the values of the complex function λ. This method requires the
obstacle to be Lipschitz smooth and the surface impedance to be bounded. Assuming ∂D to
be C2− smooth and λ to be of the class C0,α(∂D), and using then the above representation
of the Green function in terms of the fundamental solution, we show that λ can be computed
by an exact and stable formula.

1.2.1. Reconstruction of the full Green function from the far field map. We
start with the following key identity:

u∞(θ, d) = −γn
∫
∂D

{
∂us(y, d)

∂ν
e−iκθ·y − ∂e−iκθ·y

∂ν
us(y, d)

}
ds(y) (1.6)

given by using the Green formula in Rn \ D for us(·, d) and Φ(·, y) and their asymptotic
behavior at infinity (see [8], Theorem 2.5).

By the principle of superposition we know that (see [8]) the scattered field associated
with the Herglotz incident field vig := vg defined by vg(x) :=

∫
Sn e

iκx·dg(d) ds(d), x ∈ Rn is

1We could also use another sampling method as the linear sampling method [3] to compute the Green
function of the interior problem instead of the exterior one as for the probe method (see [5]). Hence, we can
obtain results similar to those stated in Theorem 1.3, for the linear sampling method.
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given by vsg(x) :=
∫
Sn u

s(x, d)g(d) ds(d), x ∈ Rn \D, and its far field is given by v∞g (θ) :=∫
Sn u

∞(θ, d)g(d) ds(d), θ ∈ Sn.

Let x, z ∈ Rn \D. We consider the point sources Φ(·, x) and Φ(·, z). We set B such that
D ⊂ B and (x, z) ∈ Rn \B and that the Dirichlet interior problem on B is uniquely solvable.
In this case, due to the denseness property of the Herglotz wave operator (see [8] or [24]) we
take (fm)m∈N and (gp)p∈N as sequences in L2(Sn) such that

‖vfm − Φ(·, x)‖L2(∂B) → 0, m→∞, and ‖vgp − Φ(·, z)‖L2(∂B) → 0, p→∞. (1.7)

Since vfm and Φ(·, x) satisfy the same Helmholtz equation in B, by the well posed-ness of
the corresponding interior elliptic problem and the interior estimates we deduce from (1.7){

‖vfm − Φ(·, x)‖H1(D) → 0, m→∞
‖vgp − Φ(·, z)‖H1(D) → 0, p→∞. (1.8)

Multiplying in (1.6) by fm(θ)gp(d) and integrating over Sn, we obtain∫
Sn

∫
Sn
u∞(−θ, d)fm(θ)gp(d) ds(θ)ds(d)

= −γn
∫
∂D

{∫
Sn

∂us(y, d)

∂ν
gp(d) ds(d) ·

∫
Sn
eiκθ·yfm(θ) ds(θ)

−
∫
Sn

∂eiκθ·y

∂ν
fm(θ) ds(θ) ·

∫
Sn
us(y, d)gp(d) ds(d)

}
ds(y)

= −γn
∫
∂D

{
∂vsgp
∂ν

(y)vifm(y)−
∂vifm
∂ν

(y)vsgp(y)

}
ds(y). (1.9)

From (1.8) and (1.9) we get

lim
m→∞

∫
Sn

∫
Sn
u∞(−θ, d) fm(θ) gp(d) ds(θ)ds(d)

− γn
∫
∂D

{
∂vsgp(y)

∂ν
Φ(y, x)− ∂Φ(y, x)

∂ν
vsgp(y)

}
ds(y) = γnv

s
gp(x).

(1.10)

From the well-posedness of the direct scattering problem and (1.8) we deduce via the
interior estimates that

vsgp(x)→ Φs(x, z), when p→∞.
Hence we proved the following result:

Theorem 1.2. For every (x, z) in Rn \D, we have

Φs(x, z) = γ−1
n lim

p→∞
lim
m→∞

∫
Sn

∫
Sn
u∞(−θ, d) fm(θ) gp(d) ds(θ)ds(d), (1.11)

where fm and gp satisfy (1.7).

From Theorem 1.2 we compute G(x, z) for every (x, z) in Rn \ D, where G(·, ·) is the
Green function related to the direct scattering problem, i.e,

(∆ + κ2)G(x, z) = −δ(x, z) in Rn \D,
∂G
∂νx

+ iλ(x)G = 0 if x ∈ ∂D,
G(·, y) satisfies the radiation conditions.

(1.12)
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We call G the Robin function for the Helmholtz scattering problem. In the case of λ = 0,
it is called the Neumann function for the Helmholtz scattering problem and we denote it
by GN .

From now on, we use the notation ∂
∂νx
G(·, ·) (resp. ∂

∂νz
G(·, ·)) for the normal derivative

with respect to the first (resp. to the second) argument. Arguing as for Theorem 1.2, we can
compute the values of ∂G

∂νz
(x, z) for x, z in Rn \D as follows: ∂G

∂νz
(x, z) = ∂Φ

∂νz
(x, z) + ∂Φs

∂νz
(x, z)

where ∂Φs

∂νz
(x, z) is calculated using the formula

∂Φs

∂νz
(x, z) = γ−1

n lim
p→∞

lim
m→∞

∫
Sn

∫
Sn
u∞(−θ, d) fm(θ) gp(d) ds(θ)ds(d), (1.13)

with (fm)m∈N such that ‖vfm − Φ(·, x)‖H1(D) → 0, m → ∞ and (gp)p∈N such that ‖vgp −
∂
∂νz

Φ(·, z)‖H1(D) → 0, p→∞.

1.2.2. Reconstruction of the complex obstacle. The second main theorem of this
paper is the following.

Theorem 1.3. (Reconstruction of complex obstacles.) Assume that D is a bounded
and Lipschitz domain of Rn such that Rn \ D is connected and that κ2 is not a Dirichlet
eigenvalue for (−∆) on D. Consider a bounded complex valued and measurable function λ
defined on ∂D, with a positive real part. Let u∞(·, ·) on Sn × Sn be the far field pattern for
the scattering problem (1.1) - (1.3) with unknowns (∂D, λ). Then

I. The obstacle D can be reconstructed based on the following two properties of the probe
method:

I.1. |I(z)| <∞ if z is away from ∂D and
I.2. limz→∂D |I(z)| =∞ where

I(z) = γ−1
n lim

p→∞
lim
m→∞

∫
Sn

∫
Sn
u∞(−θ, d) fm(θ) fp(d) ds(θ)ds(d), (1.14)

and the sequence (fm)m∈N satisfies (1.7).
II. The complex valued surface impedance λ can be reconstructed using one of the two

methods
II.1 First method. For this method we need the unknown λ to be only a measurable and

bounded function with a positive real part.
The function λ is the solution of the following invertible integral equation:

λ(z)−
∫
∂D

λ(x)
∂G

∂νz
(x, z)ds(x) = F (z) for z ∈ ∂D (1.15)

from L2(∂D) to itself, where F is given by

F (z) := −i
∫
∂D

∂G

∂νz
(x, z)[

∂w

∂ν
(x)]ds(x). (1.16)

The function w is the solution of the following Dirichlet exterior problem: (∆ + κ2)w = 0 in Rn \D,
w = 1 on ∂D,
w satisfies the Sommerfeld radiation conditions.

(1.17)
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II.2 Second method. For this method we assume, in addition, that λ is of the class
C0,α(∂D), with α > 0, and ∂D is of the class C2.

Let z0 ∈ ∂D and let us denote by V (z0) the open neighborhood of z0 on ∂D. Then λ is
computable on V (z0) by inverting the following system:

K(z)λ(z) = −
∫
∂D

∂

∂νz
G(x, z)

∂

∂ν
uz(x)ds(x), z ∈ V (z0) (1.18)

where the complex valued function K(z) is given by

K(z) := i

∫
∂D

∂

∂νz
G(x, z)G(x, z)ξz0(x)ds(x), for z ∈ V (z0), (1.19)

and for every z ∈ ∂D, the function uz is the solution of the following problem:
(∆ + κ2)uz = 0 in Rn \D,
uz = G(x, z)ξz0(x) on ∂D,
uz satisfies the Sommerfeld radiation conditions

(1.20)

with ξz0 as any C1-smooth function defined on ∂D satisfying ξz0(x) = 0 for x ∈ V (z0) and
positive elsewhere. In addition, writing (1.18) as[

<K −=K
=K <K

] [
<λ
=λ

]
=

[
<L
=L

]
, (1.21)

where L := −
∫
∂D

∂
∂νz
G(x, z) ∂

∂ν
uz(x)ds(x), we get

det

[
<K −=K
=K <K

]
> 0 on ∂D. (1.22)

If =λ = 0 then <K > 0 on ∂D.
For both the methods, we use the following limits:{

G(x, z) = limk,h→0G(xk, zh),
∂G
∂νz

(x, z) = limk,h→0
∂G
∂νz

(xk, zh),
(1.23)

in L1(∂D× ∂D) where xk := x+ kν(x), zh := z+ hν(z) and h, k are positive real numbers.

Remark 1.1. 1. Regarding the first method, if we assume, in addition, that λ is of the
class C0,α(∂D), with α > 0, and ∂D is of the class C2, then the integral equation (1.15) is
invertible from C0,β(∂D) to C0,β(∂D) for every β, 0 < β < α.

2. Regarding the second method, we can write λ(z) = i
limk,h→0

∂
∂ν
G(xk,zh)

limk,h→0G(xk,zh)
for x, z ∈ ∂D

by using (1.23). However, limk,h→0G(xk, zh) = G(x, z) may vanish. To avoid this, we need
to fix every point z and then take the limit for x approaching z. Similar asymptotics was
used in [19] but it seems to be quite instable if ∂D is not known with a good approximation.
This is due to the pointwise behavior with respect to the variable x while the coefficients in
K(z) and the second member of (1.18) are averages with respect to the variable x.

Knowing D, the straight way of computing λ is the direct use of the boundary conditions
for the total waves as was proposed by Akduman and Kress (see [1]). Precisely, for any
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incident wave ui, Akduman and Kress proposed to compute the corresponding total waves
u and ∂u

∂ν
on ∂D and then solve, by regularization, the equation

uλ = i
∂u

∂ν
. (1.24)

Due to the unique continuation property the total wave u never vanishes in open sets of ∂D,
however it may vanish at several points of ∂D. This is why a regularization is needed in
solving (1.24). The interesting use of Ap-weights , in the case of smooth (∂D, λ), enables
Sincich (see [26]) to show that u−1 is in Lp(∂D) for some values of p, which means that (1.24)
is solvable in those Lp-spaces. As we showed in Theorem 1.3, part II.2, using superpositions
of such incident waves, generating the Green function, we could transform (1.24) into (1.18)
which is a stable formula due to (1.22).

We wish to mention the works by Cakoni, Colton, and Monk on the reconstruction of
such rough obstacles (∂D, λ) (see [3]). Based on the use of the linear sampling method, they
reconstruct D and provide an estimate of the L∞-norm of λ. Assuming that (∂D, λ) are
smoother, we showed how we can reconstruct the shape of D and compute the pointwise
values of λ (see [23] and [19]) using the probe method in collaboration with J. Liu and
G. Nakamura and [5] using the linear sampling method in collaboration with F. Cakoni,
G. Nakamura, and N. Zeev (see also [27]). In Theorem 1.3, we improve those results by
considering Lipschitz obstacles and reconstructing the surface impedance requiring only its
bounded-ness.

The condition that κ2 is not a Dirichlet eigenvalue for (−∆) on Dj, j = 1, 2 is due to the
use of layer potentials and it is not a necessary condition for the problem itself.

We also wish to emphasize that the method of the proof proposed here can be used to
consider other useful settings as the transmission problems for scalar elliptic operators as
well as for Maxwell related models.

The rest of the paper is organized as follows. In Section 2, we derive some useful links
between the fundamental solution Φ and the Robing function G. In Section 3, we use
these properties to derive the integral equation we mentioned before having (∂D, λ) as the
unknown. In section 4, we use the results of Section 2 and Section 3 to prove the two stated
theorems. Finally, in Section 5, we recall some properties of the layer potentials defined by
the fundamental solutions and give a justification of (1.23).

2. Some useful links between the Robin function and the funda-
mental solution

We start with the following lemma on the symmetry of the Robin function G(x, z) whose
proof can be obtained, for instance, as in Lemma 1.9 of [2] by minor changes.

Lemma 2.1. The Robin function G is symmetric in its arguments

G(x, z) = G(z, x), for x, z ∈ Rn \D. (2.1)

Let us recall the single and double layer potentials related to the fundamental solution
Φ(x, y), i.e.,

SDf(x) :=

∫
∂D

Φ(x, z)f(z)ds(z), and KDg(x) := p.v.

∫
∂D

∂

∂νz
Φ(x, z)g(z)ds(z). (2.2)
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The operators SD and KD: L2(∂D) → L2(∂D) are bounded (see [22, 10]). In addition,
with respect to the bilinear form (u, v) :=

∫
∂D
u(x)v(x)ds(x), we have S∗D = SD and K∗Dg =

p.v.
∫
∂D

∂
∂νx

Φ(x, z)g(z)ds(z).
We will use the notation Gz(x) := G(x, z). Applying the Green formula to Gz(x) and

Φ(x, z) in Rn \D, we obtain∫
∂D

∂Φ

∂νt
(t, x)Gz(t)ds(t)−

∫
∂D

∂Gz

∂νt
(t)Φ(t, x)ds(t) = G(x, z)−Φ(x, z), x, z in Rn \D. (2.3)

Taking the point x to ∂D, using the jumps of the double layer potential related to Φ and
the impedance boundary condition for Gz, we obtain

1

2
Gz(x) +KDGz(x) + iSD(λGz)(x) = G(x, z)− Φ(x, z), x on ∂D and z in Rn \D.

Using the notation SD · λ(f) := SD(λf),∀f ∈ L2(∂D), we deduce the following result:

Proposition 2.1. We have the following explicit relation between the Robin function
related to the complex obstacle (∂D, λ) and the fundamental solution:

−(−1

2
I + iSD · λ+KD)Gz(x) = Φ(x, z), for x ∈ ∂D, and z ∈ Rn \D. (2.4)

We need the following proposition on the invertibility of the operator (−1
2
I+iSD·λ+KD) :

L2(∂D)→ L2(∂D) and (−1
2
I + iSD · λ+KD) : C0,β(∂D)→ C0,β(∂D), 0 < β 6 α.

Proposition 2.2. Suppose that ∂D is Lipschitz and λ ∈ L∞. Assume also that κ2 is
not an eigenvalue for −∆ in D with Dirichlet boundary conditions. Then

1) the operator

(−1

2
I + iSD · λ+KD) : L2(∂D)→ L2(∂D) (2.5)

is invertible and
2) if, in addition, ∂D is of the class C2 and λ ∈ C0,α(∂D), then the operator

(−1

2
I + iSD · λ+KD) : C0,β(∂D)→ C0,β(∂D) (2.6)

is invertible for every β, 0 < β 6 α.

Proof of Proposition 2.2
1) It is enough to prove that its adjoint −1

2
I + iλSD + K∗D : L2(∂D) → L2(∂D) is

invertible. Indeed, assume that −1
2
I + iλSD +K∗D is invertible. We set

−1

2
I + iSD · λ+KD =: A+ P

where A := −1
2
I + KD and P := iSD · λ. Since κ2 is not a Dirichlet eigenvalue, the

operator A is invertible from L2(∂D) → L2(∂D) (see Appendix). In addition, the operator
P : L2(∂D)→ L2(∂D) is compact. Hence we can write

−1

2
I + iSD · λ+KD = A(I + A−1P ).
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Now we write

−1

2
I + iλSD +K∗D = A∗ + P ∗ = (I + P ∗(A∗)−1)A∗

since A∗ := −1
2
I +K∗D is also invertible, as is the adjoint of A.

Hence the invertibility of −1
2
I + iλSD + K∗D implies the invertibility of I + P ∗(A∗)−1.

Since the operator P ∗(A∗)−1 is compact, we can apply the Fredholm alternative to deduce
that I + A−1P is also invertible since I + A−1P = (I + P ∗(A∗)−1)∗ (see, e.g., [7]). Then
−1

2
I + iSD · λ+KD is invertible.
To show the invertibility of −1

2
I + iλSD + K∗D, we start by recalling that the operator

SD : L2(∂D) → L2(∂D), and then iλSD, is compact. Hence the sum −1
2
I + iλSD + K∗D

is Fredholm of index zero. The injectivity of −1
2
I + iλSD + K∗D in L2(∂D) is deduced by

standard arguments using the uniqueness character of both the exterior impedance problem
and the interior Dirichlet problem and the jumps of the double layer potential related to the
fundamental solution Φ. Hence the operator (−1

2
I + iλSD + K∗D) : L2(∂D) → L2(∂D) is

invertible.
2) Since ∂D is C2−smooth, the single layer operator SD : C0,α(∂D)→ C1,β(∂D) and the

double layer operator KD : C0,α(∂D)→ C1,β(∂D) are compact for every α, β > 0 such that
β < α, as a combination of bounded operators from C0,α(∂D) to C1,α(∂D) (see [8]), and
the compact operator given by the injection of C1,α(∂D) in C1,β(∂D) for 0 < β < α. Now,
since λ is in C0,α(∂D), the operator −1

2
I + iSD · λ + KD is well defined from C0,β to itself,

0 < β 6 α, and it is a Fredholm operator with index zero. Its injectivity is justified by the
previous point 1). Hence it is invertible.

As a consequence of these last two propositions, we have the following properties of the
layer potentials related to the Robin function G.

Proposition 2.3. Let D be a Lipschitz domain such that Rn \ D is connected and let
λ be a complex valued, measurable and bounded function defined on ∂D with a positive real
part. Assume that κ2 is not a Dirichlet eigenvalue of −∆ in D 2. Let G be the corresponding
Robin function. Then we have the following properties.

1. The single layer potential S̃G defined by

S̃Gf(z) :=

∫
∂D

G(x, z)f(x)ds(x), with f ∈ L2(∂D)

for z ∈ Rn \ D has the trace on ∂D as a bounded operator SG from L2(∂D) to L2(∂D)
given by

SG = −SD(−1

2
I + iλSD +K∗D)−1. (2.7)

In addition, for every f ∈ L2(∂D) we have

lim
h→0

[S̃Gf(z + hν(z))− SGf(z)] = 0 in L2(∂D). (2.8)

If, in addition, ∂D is of the class C2 and λ is in C0,α(∂D), then SG is bounded from
C0,β(∂D) into C1,β(∂D) for every β, 0 < β 6 α and the limit above is understood in the
pointwise sense.

2. The normal derivative of the single layer potential S̃Gf , ∂
∂ν
S̃Gf has the following trace

on ∂D:
−f − iλSGf. (2.9)

2This condition is needed for using the invertibility of the operator − 1
2I + iλSD +K∗D.
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In addition, for every f ∈ L2(∂D) we have

lim
h→0

[
∂

∂ν
S̃Gf(z + hν(z)) + (f(z) + iλ(z)SGf(z))] = 0 in L2(∂D).

The operator K∗G := −iλSG is bounded from L2(∂D) to L2(∂D). If, in addition, ∂D is of
the class C2 and λ is in C0,α(∂D), then (2.9) defines a bounded operator from C0,β(∂D) to
C0,β(∂D) and K∗G is bounded from C0,β(∂D) to C0,β(∂D), for every β, 0 < β 6 α and the
limit above is understood in the pointwise sense.

Proof of Proposition 2.3
1. From Proposition 2.1 we have

S̃G = −S̃D(−1

2
I + iλSD +K∗D)−1, (2.10)

where S̃Df(z) :=
∫
∂D

Φ(x, z)f(x)ds(x), with f ∈ L2(∂D), for z ∈ Rn \D.
We set SG := −SD(−1

2
I + iλSD +K∗D)−1. Hence SG is bounded in the mentioned spaces

since SD and (−1
2
I + iλSD +K∗D)−1) are (see Proposition 2.2) for the latter. Property (2.8)

is a direct consequence of the corresponding property of SD.
2. Let f ∈ L2(∂D) (or in C0,β(∂D) in case when (∂D, λ) are smoother). We start by

taking a derivative in identity (2.10) applied to f

∂

∂ν
S̃Gf(z + hν(z)) = − ∂

∂ν
S̃D(−1

2
I + iλSD +K∗D)−1f(z + hν(z)).

Using the jumps relation of the normal derivative of the single layer potential in the L2(∂D)
sense (accordingly, in the pointwise sense for smoother (∂D, λ)), we obtain

lim
h→0

∂

∂ν
S̃G(z + hν(z)) = −[−1

2
I +K∗D](−1

2
I + iλSD +K∗D)−1f(z)

= −(I − iλSD(−1

2
I + iλSD +K∗D)−1)f(z).

Hence

lim
h→0

∂

∂ν
S̃G(z + hν(z)) = −f(z)− iλSGf(z).

3. Reduction to an integral equation

Let w be the solution of the following Dirichlet scattering problem: (∆ + κ2)w = 0, in Rn \D,
w = 1, on ∂D,
w satisfies the Sommerfeld radiation conditions.

(3.1)

Since κ2 is not a Dirichlet eigenvalue for −∆ in D, the operator SD : L2(∂D)→ H1(∂D)
is invertible (see Appendix). Let f ∈ L2(∂D) such that SDf = 1. The uniqueness character
of the Dirichlet exterior problem implies that w = S̃Df . Hence

∂w

∂ν
|∂D = SDf −

1

2
f ∈ L2(∂D).
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Integrating by parts with the use of the Green function G, we obtain∫
∂D

∂G

∂νx
(x, z)ds(x)−

∫
∂D

∂w

∂νx
(x)G(x, z)ds(x) = w(z), z ∈ Rn \D (3.2)

which we write as∫
∂D

∂G

∂νx
(x, z)ds(x) = w(z) + S̃G(

∂w

∂ν
)(z), for z ∈ Rn \D.

From the impedance boundary condition in (1.12) we deduce that

−S̃G(iλ) = w(z) + S̃G(
∂w

∂ν
)(z), for z ∈ Rn \D. (3.3)

From the trace of the normal derivative of the layer potentials defined by the Robin
functions (see Proposition 2.3) we get the following integral equation involving the unknowns
∂D and λ:

λ(z) + λ(z)

∫
∂D

G(x, z)(iλ(x))ds(x) = −iK∗G(
∂w

∂ν
)(z) for z ∈ ∂D, (3.4)

which we can write in a compact form as

(I −K∗G)λ = −iK∗G(
∂w

∂ν
). (3.5)

From Theorem 5.2, the kernel of K∗G, i.e., −iλ(z)G(x, z), x, z ∈ ∂D is computable as

lim
k,h→0

∂

∂νz
G(xk, zh), in L1(∂D × ∂D)

where xk := x+kν(x) and zh := z+hν(z) and ∂
∂νz
G(xk, zh) is computable from the scattering

data as in Theorem 1.2 replacing Φ(·, x) by ∂
∂xj

Φ(·, x) in (1.7).

4. Proofs of Theorem 1.1 and Theorem 1.3

4.1. Uniqueness (Theorem 1.1)

The proof of Theorem 1.1 is as follows. Firstly, we recall the known arguments by Isakov,
Kirsch, and Kress to prove the uniqueness of ∂D by adapting them for rough complex
obstacles and using identity (2.4). Secondly, knowing D from the first step and G from
Theorem 1.2, then using the jumps of the double layer potential corresponding to G and
again identity (2.4), we show the uniqueness of λ.

4.1.1. Invertibility of (2.4) and uniqueness of obstacles Let (D1, λ1) and (D2, λ2)
be two obstacles having the same far field maps u∞1 (·, ·) = u∞2 (·, ·) on Sn× Sn. Suppose that
D1 6= D2. We can assume without loss of generality that there exists z ∈ ∂D1 ∩ (Rn \D2).
The function ‖Φz(·)‖L2(∂D2) is bounded for z near z, i.e., z is away from ∂D2. We set Gj to be
the Robin function related to (Dj, λj), j = 1, 2 (as defined in (1.12)). From the invertibility
of Eq. (2.4) we deduce that

‖G2(·, z)‖L2(∂D2) is also bounded for z near z. (4.1)
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From the impedance boundary conditions, ‖∂G2

∂ν
(·, z)‖L2(∂D2) is also bounded for z near z.

Since G2(·, z) = Φs
2(·, z)+Φ(·z) then ‖Φs

2(·, z)‖L2(∂D2) and ‖∂Φs2
∂ν

(·, z)‖L2(∂D2) are also bounded
for z near z.

From Theorem 1.2 we know that Φs
1(x, z) = Φs

2(x, z) for x, z in the unbounded connected
component of Rn \ (D1 ∪D2), which we denote by D1,2. Let Γ be a part of ∂D1 containing z
and not intersecting ∂D2. Without loss of generality, we can assume that Γ ⊂ Rn \D2. We

set Γc := ∂D1 \ Γ. Then, (
∂Φs1
∂νx

+ iλ1Φs
1)(·, z) is bounded in L2(Γ) for z near z.

Since (
∂Φs1
∂νx

+ iλ1Φs
1) = −( ∂Φ

∂νx
+ iλ1Φ) on ∂D1, ( ∂Φ

∂νx
+ iλ1Φ)(·, z) is bounded in L2(Γ) and

hence in L2(∂D1) for z near z. The well-posedness of the interior problem implies, in par-
ticular, that ‖Φ(·, z)‖H1(D1) is bounded for z near z, which is impossible. This contradiction
implies that D1 = D2.

4.1.2. Invertibility of (2.4) and uniqueness of the surface impedance. Since
the far fields u∞j (·, ·) on Sn× Sn, j = 1, 2, are equal, from the previous section we know that
D1 = D2. We set then D := D1 = D2. From Theorem 1.2 we have

G1(x, z) = G2(x, z) =: G(x, z), x, z ∈ Rn \D (4.2)

and
∇zG1(x, z) = ∇zG2(x, z), x, z ∈ Rn \D,

hence by the trace theorem

∂G1

∂νz
(x, z) =

∂G2

∂νz
(x, z), a.e x ∈ ∂D and z ∈ Rn \D.

Let now f ∈ L2(∂D), then for z ∈ Rn \D we have∫
∂D

∂G1

∂νz
(x, z)f(x)ds(x) =

∫
∂D

∂G2

∂νz
(x, z)f(x)ds(x).

Using the properties of the layer potentials defined by G, i.e., Theorem 5.2, we obtain

−f(z)− iλ1(z)

∫
∂D

G1(x, z)f(x)ds(x) = −f(z)− iλ2(z)

∫
∂D

G2(x, z)f(x)ds(x).

Combining this with (4.2) gives

(λ1 − λ2)(z)

∫
∂D

G(x, z)f(x)ds(x) = 0, z ∈ ∂D. (4.3)

The relation

SG = −SD(−1

2
I + iλSD +K∗D)−1, (4.4)

the invertibility of (−1
2
I + iλSD +K∗D) and the fact that the single layer operator SD has a

dense range imply that SG has also a dense range.
From (4.3) and the denseness of the range of SG we deduce that∫

∂D

(λ1 − λ2)(z)g(z)ds(z) = 0,∀g ∈ L2(∂D).

This implies that
λ1 = λ2.



Reconstruction of rough and complex obstacles 95

4.2. Reconstruction (Theorem 1.3)

In the first part, we justify the two properties of the probe method. If the obstacles (∂D, λ)
are smooth, then pointwise estimates of |Φ(z, z)| can be obtained (see [23] and [24]). We
justify this method for Lipschitz obstacles D and complex valued, measurable, and bounded
surface impedances λ.

4.2.1. Reconstruction of the obstacle. Let B be a C2 domain containing the unknown
obstacle D. We take a point z0 ∈ ∂B and a curve z := z(t)t∈[0,1] starting from z0 and going
into the inside of B. In Section 2, we showed how we can reconstruct Φs(z, z) from the
scattering data. If the curve is out of D, then ( ∂

∂ν
Φ + iλΦ)(·, z) is bounded in L2(∂D). The

well-posedness of the forward scattering problem coupled with the interior estimate implies
that Φs(z, z) is bounded. Then it is enough to show that when the curve z touches ∂D,
Φs(z, z) blows up. We proceed as follows. The integration by parts in B \D implies that∫

B\D
|∇Φs|2(x, z)− κ2|Φs|2(x, z)dx =

∫
∂(B\D)

∂Φs

∂ν
(x, z)Φs(x, z)ds(x)

= −i
∫
∂D

λ|Φs|2(x, z)ds(x)−
∫
∂D

∂Φ

∂ν
(x, z)Φs(x, z)ds(x)− i

∫
∂D

λΦ(x, z)Φs(x, z)ds(x) +O(1)

for z near ∂D where we used O(1) as an estimate of the integrals on ∂B, since z is far away
from ∂B.

The Green formula applied in B \D implies again that∫
∂D

∂Φ

∂ν
(x, z)Φs(x, z)ds(x) =

∫
∂D

∂Φs

∂ν
(x, z)Φ(x, z)ds(x)− Φs(z, z) +O(1).

Hence∫
∂D

∂Φ

∂ν
(x, z)Φs(x, z)ds(x) = i

∫
∂D

λ(x)Φs(x, z)Φ(x, z)ds(x)−
∫
∂D

∂Φ

∂ν
(x, z)Φs(x, z)ds(z)

+ i

∫
∂D

λ|Φ|2(x, z)ds(x)− Φs(z, z) +O(1).

In addition ∫
∂D

∂Φ

∂ν
(x, z)Φ(x, z)ds(x) =

∫
D

|∇Φ|2(x, z)− κ2|Φ|2(x, z)dx.

Using these two last identities in the first equality gives∫
B\D
|∇Φs|2(x, z)− κ2|Φs|(x, z)dx−

∫
D

|∇Φ|2(x, z)− κ2|Φ|2(x, z)dx = −Φs(z, z)

− i
∫
∂D

λ|Φs|2(x, z)ds(x)− i
∫
∂D

λΦ(x, z)Φs(x, z)ds(x)

− i
∫
∂D

λ(x)Φs(x, z)Φ(x, z)ds(x)i

∫
∂D

λ|Φ|2(x, z)ds(x) +O(1) for z near ∂D.

Then for z ∈ Rn \D, but near ∂D we have

‖Φ(·, z)‖2
H1/2(∂D) 6 c‖Φ(·, z)‖2

H1(D) 6 c[|Φs(z, z)|+
∫
∂D

|Φs|2(x, z)ds(x)

+

∫
∂D

|Φ|2(x, z)ds(x) +

∫
B\D
|Φs|2(x, z)dx+

∫
D

|Φ|2(x, z)dx] +O(1).
(4.5)
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However using (2.4) and Proposition 2.2, we obtain∫
∂D

|Φs + Φ|2(x, z)ds(x) = ‖G(·, z)‖2
L2(∂D) 6 c3‖Φ(·, z)‖2

L2(∂D)

hence also∫
∂D

|Φs|2(x, z)ds(x) 6
∫
∂D

|Φs + Φ|2(x, z)ds(x) +

∫
∂D

|Φ|2(x, z)ds(x) 6 C‖Φ(·, z)‖2
L2(∂D)

with C := c3 + 1. From the explicit form of Φ we can estimate
∫
D
|Φ|2(x, z)dx. In principle,

we have the same for Φs, and then we can estimate
∫
B\D |Φ

s|2(x, z)dx, since for the Green

function G we have estimates similar to those for Φ as is shown for a family of scalar equations
(see ([12]) and also ([9])). Since these references do not include impenetrable obstacles and
we are dealing with low regularity for D and the surface impedance λ, we prefer to provide
a justification of a weaker property but sufficient for our purpose. Indeed, we start with the
following identity:

G(x, z)− Φ(x, z) =

∫
∂D

∂Φ

∂νt
(t, x)Gz(t)−

∫
∂D

∂Gz

∂νt
(t)Φ(t, x)ds(t), x, z in Rn \D (4.6)

which we write as

G(x, z)− Φ(x, z) =

∫
∂D

[
∂Φ

∂νt
(t, x)− iλ(t)Φ(t, x)]Gz(t, z)ds(t), x, z in Rn \D (4.7)

using the impedance boundary conditions. Hence

|G(x, z)− Φ(x, z)|2 6
∫
∂D

|∂Φ

∂νt
(t, x)− iλ(t)Φ(t, x)|2ds(t)

∫
∂D

|G(t, z)|2ds(t), x, z in Rn \D

and then

|G(x, z)−Φ(x, z)|2 6 C

∫
∂D

|∂Φ

∂νt
(t, x)− iλ(t)Φ(t, x)|2ds(t)

∫
∂D

|Φ(t, z)|2ds(t), x, z in Rn \D

This implies that∫
B\D
|Φ(x, z)|2dx 6 C[

∫
B\D
|Φs(x, z)|2dx+

∫
B\D

l(x, z)dx],

where l(x, z) :=
∫
∂D
| ∂Φ
∂νt

(t, x)− iλ(t)Φ(t, x)|2ds(t)
∫
∂D
|Φ(t, z)|2ds(t).

Finally, from (4.5) we obtain

1 6 C[
|Φs(z, z)|

‖Φ(·, z)‖2
H1/2(∂D)

+
‖Φ(·, z)‖2

L2(∂D)

‖Φ(·, z)‖2
H1/2(∂D)

+

∫
B\D |Φ

s(x, z)|2dx+
∫
B\D l(x, z)dx

‖Φ(·, z)‖2
H1/2(∂D)

].

Due to the type of singularity of Φ, the second and the third terms of the right hand side
of this last inequality are o(1) for z near ∂D. Hence, we deduce that there exists a positive
constant c such that

c‖Φ(·, z)‖2
H1/2(∂D) 6 |Φ

s(z, z)|, for z near ∂D,

which implies that |Φs(z, z)| blows up for z near ∂D.
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4.2.2. Reconstruction of the surface impedance.

I) First method. The unknown surface impedance is a solution of the integral equation
(3.4) (or (3.5)). Knowing the surface of the obstacle ∂D, the kernel of the integral operator
is constructible as in Theorem1.2. Hence the next question is to prove the invertibility of
this integral equation.

We start with showing that the operator equation in (3.5) defined from L2(∂D) to L2(∂D)
is Fredholm of index zero. We recall that SG = −SD(−1

2
I+iλSD+K∗D)−1. The operator SG is

compact as a product of the bounded operator (−1
2
I+iλSD+K∗D)−1 by the compact operator

SD. Then λSG is compact too and hence I + iλSG : L2(∂D)→ L2(∂D) is Fredholm of index
zero. Now we consider the unique solvability. Suppose that f + iλ

∫
∂D
G(x, z)f(x)ds(x) = 0,

for some f , f ∈ L2(∂D). We define S̃Gf(z) :=
∫
∂D
G(x, z)f(x)ds(x). Hence it satisfies

(∆ + κ2)S̃Gf = 0, in Rn \ D and the Sommerfeld radiation conditions. In addition, we
have ∂

∂ν
S̃Gf(z) = −f(z) − iλ

∫
∂D
G(x, z)f(x)ds(x) = 0 on ∂D. The uniqueness of the

Neumann type scattering problem implies that S̃Gf(z) = 0, z ∈ Rn \D. Again, by the trace
property of S̃Gf we deduce that SGf = 0 and hence f = 0 using the invertibility of SD and
(−1

2
I + iλSD +K∗D).

II) Second method. Let uf be the solution of the problem (∆ + κ2)uf = 0 in Rn \D,
uf = f on ∂D,
uf satisfies the Sommerfeld radiation conditions

(4.8)

where f ∈ H1/2(∂D). Since ∂D is C2-smooth, for f ∈ C1,β(∂D) we associate uf ∈ C1,β(Rn \
D) (see [8]).

The integration by parts applied for uf and G(·, ·) gives∫
∂D

∂

∂νx
G(x, z)uf (x)ds(x)−

∫
∂D

∂

∂νx
uf (x)G(x, z)ds(x) = uf (z), z ∈ Rn \D

which we write as:

−i
∫
∂D

λ(x)G(x, z)uf (x)ds(x) =

∫
∂D

∂

∂νx
uf (x)G(x, z)ds(x) + uf (z), z ∈ Rn \D. (4.9)

Taking a derivative with respect to z and using the trace of the double layer potential related
to G, we obtain

iλ(z)f(z) + iλ(z)

∫
∂D

G(x, z)(iλ(x))f(x)ds(x) = −iλ(z)

∫
∂D

∂

∂νx
uf (x)G(x, z)ds(x) (4.10)

for z in ∂D.
We set G(x, z) to be the complex conjugate of G(x, z). Let V (z0) be a neighborhood of

z0 in ∂D. For x ∈ ∂D and z ∈ V (z0), we take fz(x) := G(x, z)ξz0(x), where ξz0(x) > 0 in
∂D and ξz0 = 0 for x ∈ V (z0). Since ∂D is C2-smooth and λ is C1,α(∂D), the representation
G(·, z) = −(−1

2
I + iSD · λ+KD)−1Φ(·, z) and the invertibility of (−1

2
I + iSD · λ+KD) from

C1,β(∂D) to C1,β(∂D), for every β, 0 < β 6 α, imply that G(·, z) is C1,α(∂D). In addition,
fz(x) = 0 for x, z ∈ V (z0). Using fz in (4.10), we have for every z in V (z0)

λ(z)

∫
∂D

|G(x, z)|2ξz0(x)λ(x)ds(x) = i

∫
∂D

∂

∂νx
uz(x)λ(z)G(x, z)ds(x), (4.11)
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where we used the notation uz := ufz . We write it as

K · λ = L, (4.12)

where

K(z) :=

∫
∂D

|G(x, z)|2ξz0(x)λ(x)ds(x) = i

∫
∂D

[−iλ(x)G(x, z)]G(x, z)ξz0(x)ds(x) (4.13)

and

L(z) := i

∫
∂D

∂

∂νx
uz(x)λ(z)G(x, z)ds(x). (4.14)

From Theorem 5.2 we can compute G(x, z) for x, z ∈ ∂D as the limit of G(xk, zh) and
−iλ(z)G(x, z) as the limit of ∂

∂νz
G(xk, zh), where xk, zh are in Rn \D. In addition, we can

compute ∂
∂ν
uz(x) by solving the exterior problem (4.8). Hence K and L are computable

from the far field data.
Let us now show that (4.12) is invertible pointwisely. We write (4.12) as the following

system: [
<K −=K
=K <K

] [
<λ
=λ

]
=

[
<L
=L

]
. (4.15)

We will show that detK > 0 for every point z ∈ V (z0). Since this determinant is continuous,
there exists a positive constant c such that detK > c in V (z0). We write the determinant
as follows:

detK = [

∫
∂D

|G(x, z)|2ξz0(x)<λ(x)ds(x)]2 + [

∫
∂D

|G(x, z)|2ξz0(x)=λ(x)ds(x)]2.

We assume that detK(z) = 0 for some point z in V (z0). We deduce that G(x, z) = 0 for
x ∈ ∂D \ V (z0) since ξz0 and <λ are positive on ∂D \ V (z0).

If the point z was in Rn \D, then we have also ∂
∂νx
G(x, z) = 0 for x ∈ ∂D \V (z0). By the

unique continuation property satisfied by G(x, z), as a solution of (∆+κ2)G(x, z) = −δ(x, z)
for x ∈ Rn \D, we deduce that G(x, z) = 0 for every x 6= z, which is absurd. However, the
point z is on ∂D and the argument above is not applicable. For this reason, we proceed as
follows. Since SG(−1

2
I + iSD · λ+KD)f = −SDf for every f in L2(∂D), we have

(−1

2
I + iSD · λ+KD)Gz(x) = −Φ(x, z), for x, z ∈ ∂D.

This means that

(iSD · λ+KD)Gz(x) = −Φ(x, z), for x ∈ ∂D \ V (z0) and z = z. (4.16)

We show that this contradicts the singular behavior of the Green function G and the
fundamental solution Φ. Indeed, we use the known estimates |G(x, z)| 6 Cn|x − z|2−n,
|Φ(x, z)| 6 Cn|x − z|2−n for n > 3 and the log type ones for n = 2, see [28]. Using these
estimates, we obtain

|SD · λGz(x)| 6 ‖λ‖∞C2
n

∫
∂D

|x− y|2−n|z − y|2−nds(y) ∼ |x− z|3−n for n > 3

and |SD · λGz(x)| ∼ ln(|x− z|) for n = 3.
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In addition, since ν is of the class C1, we have |∂Φ
∂ν

(x, z)| 6 cn|x − z|2−n for x, z on ∂D
(see, e.g.,[7]. Hence, we have also

|KDGz(x)| 6 C ′n

∫
∂D

|x− y|2−n|z − y|2−nds(y) ∼ |x− z|3−n for n > 3

and |KDGz(x)| ∼ ln(|x− z|) for n = 3.

However we know that
|Φ(x, z)| = Cn|x− z|2−n, for n > 3.

This contradicts equality (4.16) for x near V (z0) taking V (z0) smaller if necessary. A similar
contradiction holds for the case n = 2 using the appropriate singularities. This contradiction
implies that detK > 0 for every point z on V (z0).

5. Appendix

In the following theorem, we recall some properties of the single layer potentials related to
the fundamental solutions Φ.

Theorem 5.1. Let D be a bounded and Lipschitz domain of Rn. Assume that κ2 is not
a Dirichlet eigenvalue of (−∆) in D. The single layer operator

S̃Df(x) :=

∫
∂D

Φ(x, z)f(z)ds(z)

defined in Rn \ ∂D has a trace on ∂D as a bounded operator SD from L2(∂D) to L2(∂D).
This operator has the following properties.

1. SD : L2(∂D)→ H1(∂D) is invertible.
2. SD : L2(∂D)→ L2(∂D) has a dense range.

The operator

KDf := pv

∫
∂D

∂

∂νz
Φ(x, z)f(x)ds(x)

and its L2- adjoint

K∗Df := pv

∫
∂D

∂

∂νx
Φ(x, z)f(x)ds(x)

have the following properties:
3. ∂

∂ν
S̃Df |∂D± = (∓1

2
I +KD)f for every f in L2(∂D), where D± refers to the trace from

the outside or inside of D.
4. The operators −1

2
I +KD and −1

2
I +K∗D are invertible from L2(∂D) to L2(∂D).

Proof of Theorem 5.1
We will show the proofs for points (1) and (4). The proof of point (2) is equivalent to

the proof of the injectivity of the Herglotz wave operator, stated on ∂D, which in turn is a
consequence of the the fact that κ2 is not a Dirichlet eigenvalue of −∆ in D, see [8]. The
proof of (3) can be found in [22].

For κ = 0, the proofs of points (1) and (4) are also given (see, e.g., [10]). The proofs
use harmonic analysis. Here we show that since κ2 is not a Dirichlet eigenvalue of (−∆)
in D, basing on the results for the case where κ = 0, we obtain (1) and (4) by a compact
perturbation argument and the Fredholm alternative. We give the proofs for a dimension
greater than 2. The two dimensional case is similar with appropriate changes due to the
form of the corresponding fundamental solutions.
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Proof of point (1). We set Φ0(x, z) = γn
|x−z|n−2 . Hence3

Φ(x, z)− Φ0(x, z) = γn
eiκ|x−z| − 1

|x− z|n−2
(5.1)

and

∇Φ(x, z)−∇Φ0(x, z) = γn
(x− z)

|x− z|n
[
iκ|x− z|eiκ|x−z| − (n− 2)[eiκ|x−z| − 1]

]
. (5.2)

In particular, we have

∂

∂T
Φ(x, z)− ∂

∂T
Φ0(x, z) = γn

(x− z) · T
|x− z|n

[
iκ|x− z|eiκ|x−z| − (n− 2)[eiκ|x−z| − 1]

]
(5.3)

where ∂
∂T

stands for the tangential derivative.
Let S0

D be a single layer potential corresponding to the case κ2 = 0. From (5.1) and
(5.3) we deduce that SD − S0

D is compact from L2(∂D) to H1(∂D). In particular, SD maps
L2(∂D) to H1(∂D) since S0

D does. In addition, S0
D is invertible from L2(∂D) to H1(∂D) (see

[10]). Then the operator

(S0
D)−1SD = I + (S0

D)−1(SD − S0
D)

is defined from L2(∂D) to L2(∂D) and the operator (S0
D)−1(SD−S0

D) is compact from L2(∂D)
to L2(∂D). Hence we can apply the Fredholm alternative to (S0

D)−1SD. Let f ∈ L2(∂D)
such that (S0

D)−1SDf = 0. Then SDf = 0 and then, since κ2 is not a Dirichlet eigenvalue,
f = 0. Hence (S0

D)−1SD is invertible. Finally, SD : L2(∂D)→ H1(∂D) is also invertible.
Proof of point (4). It is known that −1

2
I + K0

D : L2(∂D)→ L2(∂D) is invertible (see
[10]) when K0

Df := pv
∫
∂D

∂
∂νz

Φ0(x, z)f(x)ds(x) for f ∈ L2(∂D). From (5.2) we deduce that

the integral operator KD −K0
D, having ∂

∂νz
Φ(x, z)− ∂

∂νz
Φ0(x, z) as a kernel is compact from

L2(∂D) to L2(∂D). We write −1
2
I + KD = (−1

2
I + K0

D)[I + (−1
2
I + K0

D)−1(KD − K0
D)],

hence (−1
2
I +K0

D)−1(−1
2
I +KD) = I + (−1

2
I +K0

D)−1(KD −K0
D). Then we can apply the

Fredholm alternative to (−1
2
I + K0

D)−1(−1
2
I + KD). The injectivity of −1

2
I + KD is due to

the fact that κ2 is not a Dirichlet eigenvalue of −∆ in D and the jump relations of the single
layer potential (point (3)). We conclude that −1

2
I +KD is invertible. Its adjoint −1

2
I +K∗D

is also invertible.
In the following theorem, we justify some properties of the Robin function G.

Theorem 5.2. Let D be a Lipschitz domain such that Rn \D is connected and let λ be
a complex valued, measurable and bounded function defined on ∂D with a positive real part.
Assume that κ2 is not a Dirichlet eigenvalue of −∆ in D 4. Let G be the corresponding
Robin function. Then we have the following properties:{

G(x, z) = limk,h→0G(xk, zh),
∂G
∂νz

(x, z) = limk,h→0
∂G
∂νz

(xk, zh),
(5.4)

in L1(∂D×∂D), where xk := x+kν(x), zh := z+hν(z) and h, k are positive real numbers.

3For κ = 0 and n = 2, we take Φ0(x, z) = 1
2π ln( 1

|x−z| ).
4This condition is needed to use the invertibility of the representation (2.4) of Proposition 2.1.
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Proof of Theorem 5.2
Recall that GN is the Neumann function for the exterior problem. The function (G −

GN)(·, z), z ∈ Rn \D satisfies (∆ + κ2)(G−GN)(x, z) = 0 in Rn \D,
∂
∂ν

(G−GN) = −iλ(x)G on ∂D,
G(·, z) satisfies the Sommerfeld radiation conditions.

(5.5)

Hence the integration by parts gives

(G−GN)(x, z) = −i
∫
∂D

λ(y)G(z, y)GN(x, y)ds(y), for x, z ∈ Rn \D (5.6)

and taking a derivative, we obtain

∇x(G−GN)(x, z) = −i
∫
∂D

λ(y)G(z, y)∇xGN(x, y)ds(y), for x, z ∈ Rn \D.

From the symmetry ofG(x, z) andGN(x, z) we have∇zG(x, z) = ∇xG(z, x), and∇zGN(x, z)
= ∇xGN(z, x), for x, z ∈ Rn \D. Then

∇z(G−GN)(x, z) = ∇x(G−GN)(z, x) = −i
∫
∂D

λ(y)G(x, y)∇xGN(z, y)ds(y). (5.7)

For x and z on ∂D, we set xk := x+ kν(x) and zh = z + hν(z), then (5.7) becomes

∇z(G−GN)(xk, zh) = ∇x(G−GN)(zh, xk) = −i
∫
∂D

λ(y)G(xk, y)∇xGN(zh, y)ds(y). (5.8)

The function x→
∫
∂D
λ(z)G(x, z)ds(z) is in L2(∂D) as is the image by SG of the L2(∂D)-

function λ(z). In addition, the function z → λ(z)
∫
∂D
G(x, z)ds(x) is also in L2(∂D).

Hence the two integrals
∫ x
∂D

∫ z
∂D
λ(z)G(x, z)ds(z)ds(x) and

∫ z
∂D

∫ x
∂D
λ(z)G(x, z)ds(x)ds(z)

make sense and they are equal. Now, we use the following splitting:∫ z

∂D

∫ x

∂D

∫ y

∂D

λ(y)G(x+ kν(x), y)
∂

∂ν(x)
GN(z + hν(z), y)ds(y)ds(x)ds(z)

+

∫ z

∂D

∫ x

∂D

λ(z)G(x, z)ds(x)ds(z) =∫ z

∂D

∫ x

∂D

∫ y

∂D

λ(y)G(x+ kν(x), y)
∂

∂ν(x)
GN(z + hν(z), y)ds(y)ds(x)ds(z)

−
∫ z

∂D

∫ x

∂D

∫ y

∂D

λ(y)G(x, y)
∂

∂ν(x)
GN(z + hν(z), y)ds(y)ds(x)ds(z)

+

∫ z

∂D

∫ x

∂D

∫ y

∂D

λ(y)G(x, y)
∂

∂ν(x)
GN(z + hν(z), y)ds(y)ds(x)ds(z)

+

∫ z

∂D

∫ x

∂D

λ(z)G(x, z)ds(x)ds(z). (5.9)

We write the two first integrals of the right hand side of (5.9) as follows:∫ x

∂D

∫ y

∂D

λ(y)G(x+ kν(x), y)

∫ z

∂D

∂

∂ν(x)
GN(z + hν(z), y)ds(z)ds(y)ds(x)
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−
∫ x

∂D

∫ y

∂D

λ(y)G(x, y)

∫ z

∂D

∂

∂ν(x)
GN(z + hν(z), y)ds(z)ds(y)ds(x).

We set qh(y) :=
∫ z
∂D

∂
∂ν(x)

GN(z + hν(z), y)ds(z), for every h > 0 fixed. Then by the limit of
the single layer potential related to the Robin function G we obtain∫ y

∂D

λ(y)qh(y)G(x+ kν(x), y)ds(y)−
∫ y

∂D

λ(y)qh(y)G(x, y)ds(y)→ 0 as k → 0

in L2(∂D) with respect to x, which implies that the difference of the two first terms in (5.9)
tends to zero with k.

We write now the two last integrals of the right hand side of (5.9) as follows:∫ z

∂D

∫ y

∂D

λ(y)l(y)
∂

∂ν(x)
GN(z + hν(z), y)ds(y)ds(z) +

∫ z

∂D

λ(z)l(z)ds(z) (5.10)

where l(z) :=
∫
∂D
G(x, z)ds(x) ∈ L2(∂D). Using the identity GN = (−1

2
I+K∗D)−1Φ and the

jumps of the double layer potential related to Φ, we deduce that

lim
h→0

∫ y

∂D

∂

∂νx
GN(zh, y)(λl)(y)ds(y) = λ(z)l(z), in L2(∂D). (5.11)

Hence, we deduce that (5.10) goes to zero as h tends to zero.
Summing up, we deduce that the quantity in (5.9) goes to zero with k and h. From (5.8)

and the fact that the normal derivative of GN vanishes on ∂D, we obtain

∂

∂ν(z)
G(xk, zh)→ −iλ(z)G(x, z), as h, k → 0, in L1(∂D × ∂D).

We complete the proof by showing that we can exchange the order of the limits with
respect to k and h. Indeed, from the symmetry of G and GN , (5.6) can be written as

(G−GN)(x, z) = −i
∫
∂D

λ(y)G(x, y)GN(z, y)ds(y), for x, z ∈ Rn \D. (5.12)

Hence (5.8) becomes

∇z(G−GN)(xk, zh) = i

∫
∂D

λ(y)∇xG(zh, y)GN(xk, y)ds(y). (5.13)

Arguing as above, we obtain the same limits but with exchanging the order of the limits of
h and k.

The proof of the limit for G(x, z) is similar.
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