Computational Methods in Applied Mathematics

Vol. 11 (2011), No. 1, pp. 83-104
© 2011 Institute of Mathematics, National Academy of Sciences

On the Uniqueness and Reconstruction of Rough and Complex Obstacles from Acoustic Scattering Data

Mourad Sini

Abstract

We deal with the inverse problem of scattering by an obstacle at a fixed frequency. The obstacle is characterized by its shape, the type of boundary conditions on its surface, and the eventual coefficients distributed over this surface. In this paper, we assume that the surface ∂D of the obstacle D is Lipschitz and the surface impedance, λ, is given by a complex valued, measurable and bounded function. We prove the uniqueness of $(\partial D, \lambda)$ from the far field map under these regularity conditions. The usual proof of the uniqueness for obstacles, based on the use of singular solutions, is divided into two steps. The first step consists in using a Rellich type lemma to go from the far fields to the near fields and then the singularities of the singular solutions, via orthogonality relations, to show the uniqueness of ∂D. The second step is to use the boundary conditions to prove the uniqueness of λ on ∂D via the unique continuation property. This last step requires the surface impedance to be continuous. We propose an approach using the layer potentials to transform the inverse problem to the invertibility of integral equations of the second kind involving the unknowns ∂D and λ. This enables us to weaken the required regularity conditions by assuming ∂D to be Lipschitz and λ to be only bounded. The procedure of the proof is reconstructive and provides a method to compute the complex valued and bounded surface impedance λ on ∂D by inverting an invertible integral equation. In addition, assuming ∂D to be C^{2} regular and λ to be of the class $C^{0, \alpha}$, with $\alpha>0$, we give a direct formula as another method to reconstruct the surface impedance on ∂D.

2010 Mathematical subject classification: 35P25; 35R30; 45Q05; 78A45.
Keywords: Scattering by obstacles; far field map; Helmholtz.

1. Introduction and statement of the results

Let D be a bounded and Lipschitz domain of $\mathbb{R}^{n}, n=2,3, \ldots$, such that $\mathbb{R}^{n} \backslash \bar{D}$ is connected. The propagation of time-harmonic acoustic fields in a homogeneous media is governed by the Helmholtz equation

$$
\begin{equation*}
\Delta u+\kappa^{2} u=0 \quad \text { in } \quad \mathbb{R}^{n} \backslash \bar{D} \tag{1.1}
\end{equation*}
$$

where κ is the real positive wave number. At the boundary of the scatterers the total field u satisfies the impedance boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}+i \lambda u=0 \text { on } \partial D \tag{1.2}
\end{equation*}
$$

[^0][^1]with some measurable and bounded complex valued function λ on ∂D with a positive real part where ν is the unit normal directed outside of D. Given an incident field u^{i} which satisfies $\Delta u^{i}+\kappa^{2} u^{i}=0$ we look for solutions $u:=u^{i}+u^{s}$ of (1.1) and (1.2) where the scattered field u^{s} is assumed to satisfy the Sommerfeld radiation condition
\[

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{\frac{n-1}{2}}\left(\frac{\partial u^{s}}{\partial r}-i \kappa u^{s}\right)=0 \tag{1.3}
\end{equation*}
$$

\]

$r=|x|$ and the limit is uniform in all directions $\theta:=\frac{x}{|x|}$.
The forward scattering problem (1.1)-(1.2)-(1.3) with the mentioned regularity conditions on $(\partial D, \lambda)$ is well posed. There are two ways to justify it. The first way is to use the limiting absorption principle as is done in ([25], section 4). The second one is the approach by Brakhage-Werner-Leis-Panic which consist of a combination of the single layer and double layer potentials. Indeed, this can be done following the arguments by Leis as explained in ([7], pp. 92-93) and using the layer potential mappings stated on C^{2}-smooth domains (see [7]) or on Lipschitz domains (see [10] and [22]).

It is well known (see [8], [25]) that this reflected field satisfies the following asymptotic property:

$$
\begin{equation*}
u^{s}(x)=\frac{e^{i \kappa r}}{r^{\frac{n-1}{2}}} u^{\infty}(\theta)+O\left(r^{-\frac{n+1}{2}}\right), \quad r \rightarrow \infty \tag{1.4}
\end{equation*}
$$

where the function $u^{\infty}(\cdot)$ defined on the unit n-dimensional sphere \mathbb{S}^{n} is called the far field related to the incident field u^{i}. Taking particular incident fields given by the plane waves, $u^{i}(x, d):=e^{i \kappa d \cdot x}, d \in \mathbb{S}^{n}$, we define the far-field pattern $u^{\infty}(\theta, d)$ for $(\theta, d) \in \mathbb{S}^{n} \times \mathbb{S}^{n}$. Analogously, for an incident point source $\Phi(\cdot, z)$ given by the fundamental solution of $\Delta+\kappa^{2}$ in \mathbb{R}^{n}

$$
\begin{equation*}
\Phi(x, y):=\frac{i \gamma_{n}}{|x-y|^{\frac{n-2}{2}}} H_{\frac{n-2}{2}}^{(1)}(\kappa|x-y|), x \neq y, x, y \in \mathbb{R}^{n} \tag{1.5}
\end{equation*}
$$

we denote the scattered field by $\Phi^{s}(\cdot, z)$. The function $H_{\frac{n-2}{2}}^{(1)}$ is the Hankel function of the first kind and of order $\frac{n-2}{2}$. The constant γ_{n} is given by $\gamma_{n}:=\frac{\frac{\pi \kappa}{\frac{n-2}{2}}}{2(2 \pi)^{\frac{n}{2}}}$ (see [18]).

1.1. Uniqueness

The first result of this paper is the following theorem.
Theorem 1.1. (Uniqueness of rough complex obstacles.) Assume that $D_{j}, j=$ 1,2 , are bounded and Lipschitz domains of \mathbb{R}^{n} such that $\mathbb{R}^{n} \backslash \overline{D_{j}}$ is connected and that κ^{2} is not a Dirichlet eigenvalue for $(-\Delta)$ on $D_{j}, j=1,2$. Consider two bounded complex valued functions $\lambda_{j}, j=1,2$, defined on $\partial D_{j}, j=1,2$, respectively, with positive real parts. Let $u_{j}^{\infty}(\cdot, \cdot)$ on $\mathbb{S}^{n} \times \mathbb{S}^{n}, j=1,2$, be the far field patterns for the scattering problem (1.1) - (1.3) with unknowns $\left(\partial D_{j}, \lambda_{j}\right)$. If $u_{1}^{\infty}(\cdot, \cdot)=u_{2}^{\infty}(\cdot, \cdot)$ on $\mathbb{S}^{n} \times \mathbb{S}^{n}$, then we have $\partial D_{1}=\partial D_{2}$ and $\lambda_{1}=\lambda_{2}$.

There are two ways to prove the uniqueness of obstacles from exterior measurements. The first one is due to Schiffer (see, e.g., [8]. However, it is applicable only for Dirichlet type obstacles. The second argument is based on the use of singular solutions by Isakov, Kirsch, and Kress (see [16] and [25]). Regarding the uniqueness question, this last argument does not depend on the type of boundary conditions we impose on ∂D. Hence it is also applicable
for the Robin type of boundary conditions. Such arguments are also used for transmission problems (see [14, 15]). To prove the uniqueness of the boundary coefficient λ, the known and straight argument (see [7] and [25]), is to use the boundary conditions coupled with the unique continuation property. However, this last step requires the boundary coefficients to be continuous.

In this paper, we propose another way to prove uniqueness of $(\partial D, \lambda)$ which requires Lipschitz regularity of ∂D and only the boundedness of the measurable function λ. This approach is based on transforming the inverse problem to the invertibility of integral equations involving the unknowns ∂D and λ. Precisely, we first provide an explicit representation of the Green function, corresponding to the scattering problem ((1.1)-(1.2)-(1.3)), in terms of the explicit Helmholtz fundamental solution via an invertible integral operator involving $(\partial D, \lambda)$. This shows us how the singular behavior of the Green function is similar to that of the fundamental solution. The uniqueness of ∂D is then easy to prove using this representation. We wish to emphasize that this representation is useful to show the weight of λ and the geometry of ∂D in the singularity of the Green function. This is important for understanding the power as well as the limits of the known probe and sampling methods (see $[20,21,27])$ for some related studies in the case of smoother unknowns $(\partial D, \lambda)$. The second integral equation we derive in this paper is of the second kind having λ as an unknown and its kernel is related to the Green function of ((1.1)-(1.2)-(1.3)). Its invertibility gives a way to detect λ.

1.2. The reconstruction issue

The proof procedure based on these two integral equations is then reconstructive. Indeed, using the Ikehata-Potthast probe method, for instance ${ }^{1}$ (see [13, 24]), we can compute the values of the Green function outside the obstacle using the needle approach proposed by Ikehata [13]. The unboundedness of the corresponding indicator functions when the needle approaches the obstacle is justified by the first integral equation we mentioned. Hence, in principle, we get ∂D and the values of the Green function on ∂D. Then, inverting the second integral equation we obtain the values of the complex function λ. This method requires the obstacle to be Lipschitz smooth and the surface impedance to be bounded. Assuming ∂D to be $C^{2}-$ smooth and λ to be of the class $C^{0, \alpha}(\partial D)$, and using then the above representation of the Green function in terms of the fundamental solution, we show that λ can be computed by an exact and stable formula.
1.2.1. Reconstruction of the full Green function from the far field map. We start with the following key identity:

$$
\begin{equation*}
u^{\infty}(\theta, d)=-\gamma_{n} \int_{\partial D}\left\{\frac{\partial u^{s}(y, d)}{\partial \nu} e^{-i \kappa \theta \cdot y}-\frac{\partial e^{-i \kappa \theta \cdot y}}{\partial \nu} u^{s}(y, d)\right\} d s(y) \tag{1.6}
\end{equation*}
$$

given by using the Green formula in $\mathbb{R}^{n} \backslash \bar{D}$ for $u^{s}(\cdot, d)$ and $\Phi(\cdot, y)$ and their asymptotic behavior at infinity (see [8], Theorem 2.5).

By the principle of superposition we know that (see [8]) the scattered field associated with the Herglotz incident field $v_{g}^{i}:=v_{g}$ defined by $v_{g}(x):=\int_{\mathbb{S}^{n}} e^{i \kappa x \cdot d} g(d) d s(d), \quad x \in \mathbb{R}^{n}$ is

[^2]given by $v_{g}^{s}(x):=\int_{\mathbb{S}^{n}} u^{s}(x, d) g(d) d s(d), \quad x \in \mathbb{R}^{n} \backslash D$, and its far field is given by $v_{g}^{\infty}(\theta):=$ $\int_{\mathbb{S}^{n}} u^{\infty}(\theta, d) g(d) d s(d), \quad \theta \in \mathbb{S}^{n}$.

Let $x, z \in \mathbb{R}^{n} \backslash \bar{D}$. We consider the point sources $\Phi(\cdot, x)$ and $\Phi(\cdot, z)$. We set B such that $\bar{D} \subset B$ and $(x, z) \in \mathbb{R}^{n} \backslash \bar{B}$ and that the Dirichlet interior problem on B is uniquely solvable. In this case, due to the denseness property of the Herglotz wave operator (see [8] or [24]) we take $\left(f_{m}\right)_{m \in \mathbb{N}}$ and $\left(g_{p}\right)_{p \in \mathbb{N}}$ as sequences in $L^{2}\left(\mathbb{S}^{n}\right)$ such that

$$
\begin{equation*}
\left\|v_{f_{m}}-\Phi(\cdot, x)\right\|_{L^{2}(\partial B)} \rightarrow 0, \quad m \rightarrow \infty, \text { and }\left\|v_{g_{p}}-\Phi(\cdot, z)\right\|_{L^{2}(\partial B)} \rightarrow 0, \quad p \rightarrow \infty . \tag{1.7}
\end{equation*}
$$

Since $v_{f_{m}}$ and $\Phi(\cdot, x)$ satisfy the same Helmholtz equation in B, by the well posed-ness of the corresponding interior elliptic problem and the interior estimates we deduce from (1.7)

$$
\left\{\begin{array}{l}
\left\|v_{f_{m}}-\Phi(\cdot, x)\right\|_{H^{1}(D)} \rightarrow 0, \quad m \rightarrow \infty \tag{1.8}\\
\left\|v_{g_{p}}-\Phi(\cdot, z)\right\|_{H^{1}(D)} \rightarrow 0, \quad p \rightarrow \infty .
\end{array}\right.
$$

Multiplying in (1.6) by $f_{m}(\theta) g_{p}(d)$ and integrating over \mathbb{S}^{n}, we obtain

$$
\begin{align*}
& \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} u^{\infty}(-\theta, d) f_{m}(\theta) g_{p}(d) d s(\theta) d s(d) \\
= & -\gamma_{n} \int_{\partial D}\left\{\int_{\mathbb{S}^{n}} \frac{\partial u^{s}(y, d)}{\partial \nu} g_{p}(d) d s(d) \cdot \int_{\mathbb{S}^{n}} e^{i \kappa \theta \cdot y} f_{m}(\theta) d s(\theta)\right. \\
& \left.-\int_{\mathbb{S}^{n}} \frac{\partial e^{i \kappa \theta \cdot y}}{\partial \nu} f_{m}(\theta) d s(\theta) \cdot \int_{\mathbb{S}^{n}} u^{s}(y, d) g_{p}(d) d s(d)\right\} d s(y) \\
= & -\gamma_{n} \int_{\partial D}\left\{\frac{\partial v_{g_{p}}^{s}}{\partial \nu}(y) v_{f_{m}}^{i}(y)-\frac{\partial v_{f_{m}}^{i}}{\partial \nu}(y) v_{g_{p}}^{s}(y)\right\} d s(y) . \tag{1.9}
\end{align*}
$$

From (1.8) and (1.9) we get

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} u^{\infty}(-\theta, d) f_{m}(\theta) g_{p}(d) d s(\theta) d s(d) \\
& -\gamma_{n} \int_{\partial D}\left\{\frac{\partial v_{g_{p}}^{s}(y)}{\partial \nu} \Phi(y, x)-\frac{\partial \Phi(y, x)}{\partial \nu} v_{g_{p}}^{s}(y)\right\} d s(y)=\gamma_{n} v_{g_{p}}^{s}(x) . \tag{1.10}
\end{align*}
$$

From the well-posedness of the direct scattering problem and (1.8) we deduce via the interior estimates that

$$
v_{g_{p}}^{s}(x) \rightarrow \Phi^{s}(x, z), \text { when } p \rightarrow \infty .
$$

Hence we proved the following result:
Theorem 1.2. For every (x, z) in $\mathbb{R}^{n} \backslash \bar{D}$, we have

$$
\begin{equation*}
\Phi^{s}(x, z)=\gamma_{n}^{-1} \lim _{p \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} u^{\infty}(-\theta, d) f_{m}(\theta) g_{p}(d) d s(\theta) d s(d), \tag{1.11}
\end{equation*}
$$

where f_{m} and g_{p} satisfy (1.7).
From Theorem 1.2 we compute $G(x, z)$ for every (x, z) in $\mathbb{R}^{n} \backslash \bar{D}$, where $G(\cdot, \cdot)$ is the Green function related to the direct scattering problem, i.e,

$$
\left\{\begin{array}{l}
\left(\Delta+\kappa^{2}\right) G(x, z)=-\delta(x, z) \text { in } \mathbb{R}^{n} \backslash \bar{D} \tag{1.12}\\
\frac{\partial G}{\partial \nu_{x}}+i \lambda(x) G=0 \\
G(\cdot, y) \text { satisfies the radiation conditions. }
\end{array}\right.
$$

We call G the Robin function for the Helmholtz scattering problem. In the case of $\lambda=0$, it is called the Neumann function for the Helmholtz scattering problem and we denote it by G_{N}.

From now on, we use the notation $\frac{\partial}{\partial \nu_{x}} G(\cdot, \cdot)$ (resp. $\frac{\partial}{\partial \nu_{z}} G(\cdot, \cdot)$) for the normal derivative with respect to the first (resp. to the second) argument. Arguing as for Theorem 1.2, we can compute the values of $\frac{\partial G}{\partial \nu_{z}}(x, z)$ for x, z in $\mathbb{R}^{n} \backslash \bar{D}$ as follows: $\frac{\partial G}{\partial \nu_{z}}(x, z)=\frac{\partial \Phi}{\partial \nu_{z}}(x, z)+\frac{\partial \Phi^{s}}{\partial \nu_{z}}(x, z)$ where $\frac{\partial \Phi^{s}}{\partial \nu_{z}}(x, z)$ is calculated using the formula

$$
\begin{equation*}
\frac{\partial \Phi^{s}}{\partial \nu_{z}}(x, z)=\gamma_{n}^{-1} \lim _{p \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} u^{\infty}(-\theta, d) f_{m}(\theta) g_{p}(d) d s(\theta) d s(d), \tag{1.13}
\end{equation*}
$$

with $\left(f_{m}\right)_{m \in \mathbb{N}}$ such that $\left\|v_{f_{m}}-\Phi(\cdot, x)\right\|_{H^{1}(D)} \rightarrow 0, \quad m \rightarrow \infty$ and $\left(g_{p}\right)_{p \in \mathbb{N}}$ such that $\| v_{g_{p}}-$ $\frac{\partial}{\partial \nu_{z}} \Phi(\cdot, z) \|_{H^{1}(D)} \rightarrow 0, \quad p \rightarrow \infty$.
1.2.2. Reconstruction of the complex obstacle. The second main theorem of this paper is the following.

Theorem 1.3. (Reconstruction of complex obstacles.) Assume that D is a bounded and Lipschitz domain of \mathbb{R}^{n} such that $\mathbb{R}^{n} \backslash \bar{D}$ is connected and that κ^{2} is not a Dirichlet eigenvalue for $(-\Delta)$ on D. Consider a bounded complex valued and measurable function λ defined on ∂D, with a positive real part. Let $u^{\infty}(\cdot, \cdot)$ on $\mathbb{S}^{n} \times \mathbb{S}^{n}$ be the far field pattern for the scattering problem (1.1) - (1.3) with unknowns $(\partial D, \lambda)$. Then
I. The obstacle D can be reconstructed based on the following two properties of the probe method:
I.1. $|I(z)|<\infty$ if z is away from ∂D and
I.2. $\lim _{z \rightarrow \partial D}|I(z)|=\infty$ where

$$
\begin{equation*}
I(z)=\gamma_{n}^{-1} \lim _{p \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{\mathbb{S}^{n}} \int_{\mathbb{S}^{n}} u^{\infty}(-\theta, d) f_{m}(\theta) f_{p}(d) d s(\theta) d s(d), \tag{1.14}
\end{equation*}
$$

and the sequence $\left(f_{m}\right)_{m \in N}$ satisfies (1.7).
II. The complex valued surface impedance λ can be reconstructed using one of the two methods
II. 1 First method. For this method we need the unknown λ to be only a measurable and bounded function with a positive real part.

The function λ is the solution of the following invertible integral equation:

$$
\begin{equation*}
\lambda(z)-\int_{\partial D} \lambda(x) \frac{\partial G}{\partial \nu_{z}}(x, z) d s(x)=F(z) \text { for } z \in \partial D \tag{1.15}
\end{equation*}
$$

from $L^{2}(\partial D)$ to itself, where F is given by

$$
\begin{equation*}
F(z):=-i \int_{\partial D} \frac{\partial G}{\partial \nu_{z}}(x, z)\left[\frac{\partial w}{\partial \nu}(x)\right] d s(x) . \tag{1.16}
\end{equation*}
$$

The function w is the solution of the following Dirichlet exterior problem:

$$
\left\{\begin{array}{l}
\left(\Delta+\kappa^{2}\right) w=0 \text { in } \mathbb{R}^{n} \backslash \bar{D} \tag{1.17}\\
w=1 \quad \text { on } \partial D, \\
w \text { satisfies the Sommerfeld radiation conditions. }
\end{array}\right.
$$

II. 2 Second method. For this method we assume, in addition, that λ is of the class $C^{0, \alpha}(\partial D)$, with $\alpha>0$, and ∂D is of the class C^{2}.

Let $z_{0} \in \partial D$ and let us denote by $V\left(z_{0}\right)$ the open neighborhood of z_{0} on ∂D. Then λ is computable on $V\left(z_{0}\right)$ by inverting the following system:

$$
\begin{equation*}
K(z) \lambda(z)=-\int_{\partial D} \frac{\partial}{\partial \nu_{z}} G(x, z) \frac{\partial}{\partial \nu} u_{z}(x) d s(x), z \in V\left(z_{0}\right) \tag{1.18}
\end{equation*}
$$

where the complex valued function $K(z)$ is given by

$$
\begin{equation*}
K(z):=i \int_{\partial D} \frac{\partial}{\partial \nu_{z}} G(x, z) \bar{G}(x, z) \xi_{z_{0}}(x) d s(x), \text { for } z \in \overline{V\left(z_{0}\right)}, \tag{1.19}
\end{equation*}
$$

and for every $z \in \partial D$, the function u_{z} is the solution of the following problem:

$$
\left\{\begin{array}{l}
\left(\Delta+\kappa^{2}\right) u_{z}=0 \quad \text { in } \mathbb{R}^{n} \backslash \bar{D} \tag{1.20}\\
u_{z}=\bar{G}(x, z) \xi_{z_{0}}(x) \text { on } \partial D \\
u_{z} \text { satisfies the Sommerfeld radiation conditions }
\end{array}\right.
$$

with $\xi_{z_{0}}$ as any C^{1}-smooth function defined on ∂D satisfying $\xi_{z_{0}}(x)=0$ for $x \in \overline{V\left(z_{0}\right)}$ and positive elsewhere. In addition, writing (1.18) as

$$
\left[\begin{array}{cc}
\Re K & -\Im K \tag{1.21}\\
\Im K & \Re K
\end{array}\right]\left[\begin{array}{c}
\Re \lambda \\
\Im \lambda
\end{array}\right]=\left[\begin{array}{c}
\Re L \\
\Im L
\end{array}\right],
$$

where $L:=-\int_{\partial D} \frac{\partial}{\partial \nu_{z}} G(x, z) \frac{\partial}{\partial \nu} u_{z}(x) d s(x)$, we get

$$
\operatorname{det}\left[\begin{array}{cc}
\Re K & -\Im K \tag{1.22}\\
\Im K & \Re K
\end{array}\right]>0 \text { on } \partial D
$$

If $\Im \lambda=0$ then $\Re K>0$ on ∂D.
For both the methods, we use the following limits:

$$
\left\{\begin{array}{l}
G(x, z)=\lim _{k, h \rightarrow 0} G\left(x_{k}, z_{h}\right), \tag{1.23}\\
\frac{\partial G}{\partial \nu_{z}}(x, z)=\lim _{k, h \rightarrow 0} \frac{\partial G}{\partial \nu_{z}}\left(x_{k}, z_{h}\right),
\end{array}\right.
$$

in $L^{1}(\partial D \times \partial D)$ where $x_{k}:=x+k \nu(x), z_{h}:=z+h \nu(z)$ and h, k are positive real numbers.
Remark 1.1.1. Regarding the first method, if we assume, in addition, that λ is of the class $C^{0, \alpha}(\partial D)$, with $\alpha>0$, and ∂D is of the class C^{2}, then the integral equation (1.15) is invertible from $C^{0, \beta}(\partial D)$ to $C^{0, \beta}(\partial D)$ for every $\beta, 0<\beta<\alpha$.
2. Regarding the second method, we can write $\lambda(z)=i \frac{\lim _{k, h \rightarrow 0} \frac{\partial}{\partial \nu} G\left(x_{k}, z_{h}\right)}{\lim _{k, h \rightarrow 0} G\left(x_{k}, z_{h}\right)}$ for $x, z \in \partial D$ by using (1.23). However, $\lim _{k, h \rightarrow 0} G\left(x_{k}, z_{h}\right)=G(x, z)$ may vanish. To avoid this, we need to fix every point z and then take the limit for x approaching z. Similar asymptotics was used in [19] but it seems to be quite instable if ∂D is not known with a good approximation. This is due to the pointwise behavior with respect to the variable x while the coefficients in $K(z)$ and the second member of (1.18) are averages with respect to the variable x.

Knowing D, the straight way of computing λ is the direct use of the boundary conditions for the total waves as was proposed by Akduman and Kress (see [1]). Precisely, for any
incident wave u^{i}, Akduman and Kress proposed to compute the corresponding total waves u and $\frac{\partial u}{\partial \nu}$ on ∂D and then solve, by regularization, the equation

$$
\begin{equation*}
u \lambda=i \frac{\partial u}{\partial \nu} \tag{1.24}
\end{equation*}
$$

Due to the unique continuation property the total wave u never vanishes in open sets of ∂D, however it may vanish at several points of ∂D. This is why a regularization is needed in solving (1.24). The interesting use of A_{p}-weights, in the case of smooth ($\partial D, \lambda$), enables Sincich (see [26]) to show that u^{-1} is in $L^{p}(\partial D)$ for some values of p, which means that (1.24) is solvable in those L^{p}-spaces. As we showed in Theorem 1.3, part II.2, using superpositions of such incident waves, generating the Green function, we could transform (1.24) into (1.18) which is a stable formula due to (1.22).

We wish to mention the works by Cakoni, Colton, and Monk on the reconstruction of such rough obstacles $(\partial D, \lambda)$ (see [3]). Based on the use of the linear sampling method, they reconstruct D and provide an estimate of the L^{∞}-norm of λ. Assuming that $(\partial D, \lambda)$ are smoother, we showed how we can reconstruct the shape of D and compute the pointwise values of λ (see [23] and [19]) using the probe method in collaboration with J. Liu and G. Nakamura and [5] using the linear sampling method in collaboration with F. Cakoni, G. Nakamura, and N. Zeev (see also [27]). In Theorem 1.3, we improve those results by considering Lipschitz obstacles and reconstructing the surface impedance requiring only its bounded-ness.

The condition that κ^{2} is not a Dirichlet eigenvalue for $(-\Delta)$ on $D_{j}, j=1,2$ is due to the use of layer potentials and it is not a necessary condition for the problem itself.

We also wish to emphasize that the method of the proof proposed here can be used to consider other useful settings as the transmission problems for scalar elliptic operators as well as for Maxwell related models.

The rest of the paper is organized as follows. In Section 2, we derive some useful links between the fundamental solution Φ and the Robing function G. In Section 3, we use these properties to derive the integral equation we mentioned before having $(\partial D, \lambda)$ as the unknown. In section 4, we use the results of Section 2 and Section 3 to prove the two stated theorems. Finally, in Section 5, we recall some properties of the layer potentials defined by the fundamental solutions and give a justification of (1.23).

2. Some useful links between the Robin function and the fundamental solution

We start with the following lemma on the symmetry of the Robin function $G(x, z)$ whose proof can be obtained, for instance, as in Lemma 1.9 of [2] by minor changes.

Lemma 2.1. The Robin function G is symmetric in its arguments

$$
\begin{equation*}
G(x, z)=G(z, x), \text { for } x, z \in \mathbb{R}^{n} \backslash \bar{D} . \tag{2.1}
\end{equation*}
$$

Let us recall the single and double layer potentials related to the fundamental solution $\Phi(x, y)$, i.e.,

$$
\begin{equation*}
S_{D} f(x):=\int_{\partial D} \Phi(x, z) f(z) d s(z), \text { and } K_{D} g(x):=p \cdot v \cdot \int_{\partial D} \frac{\partial}{\partial \nu_{z}} \Phi(x, z) g(z) d s(z) . \tag{2.2}
\end{equation*}
$$

The operators S_{D} and $K_{D}: L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ are bounded (see [22, 10]). In addition, with respect to the bilinear form $(u, v):=\int_{\partial D} u(x) v(x) d s(x)$, we have $S_{D}^{*}=S_{D}$ and $K_{D}^{*} g=$ p.v. $\int_{\partial D} \frac{\partial}{\partial \nu_{x}} \Phi(x, z) g(z) d s(z)$.

We will use the notation $G_{z}(x):=G(x, z)$. Applying the Green formula to $G_{z}(x)$ and $\Phi(x, z)$ in $\mathbb{R}^{n} \backslash \bar{D}$, we obtain

$$
\begin{equation*}
\int_{\partial D} \frac{\partial \Phi}{\partial \nu_{t}}(t, x) G_{z}(t) d s(t)-\int_{\partial D} \frac{\partial G_{z}}{\partial \nu_{t}}(t) \Phi(t, x) d s(t)=G(x, z)-\Phi(x, z), x, z \text { in } \mathbb{R}^{n} \backslash \bar{D} . \tag{2.3}
\end{equation*}
$$

Taking the point x to ∂D, using the jumps of the double layer potential related to Φ and the impedance boundary condition for G_{z}, we obtain

$$
\frac{1}{2} G_{z}(x)+K_{D} G_{z}(x)+i S_{D}\left(\lambda G_{z}\right)(x)=G(x, z)-\Phi(x, z), x \text { on } \partial D \text { and } z \text { in } \mathbb{R}^{n} \backslash \bar{D}
$$

Using the notation $S_{D} \cdot \lambda(f):=S_{D}(\lambda f), \forall f \in L^{2}(\partial D)$, we deduce the following result:
Proposition 2.1. We have the following explicit relation between the Robin function related to the complex obstacle $(\partial D, \lambda)$ and the fundamental solution:

$$
\begin{equation*}
-\left(-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}\right) G_{z}(x)=\Phi(x, z), \text { for } x \in \partial D, \text { and } z \in \mathbb{R}^{n} \backslash \bar{D} \tag{2.4}
\end{equation*}
$$

We need the following proposition on the invertibility of the operator $\left(-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}\right)$: $L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ and $\left(-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}\right): C^{0, \beta}(\partial D) \rightarrow C^{0, \beta}(\partial D), 0<\beta \leqslant \alpha$.

Proposition 2.2. Suppose that ∂D is Lipschitz and $\lambda \in L^{\infty}$. Assume also that κ^{2} is not an eigenvalue for $-\Delta$ in D with Dirichlet boundary conditions. Then

1) the operator

$$
\begin{equation*}
\left(-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}\right): L^{2}(\partial D) \rightarrow L^{2}(\partial D) \tag{2.5}
\end{equation*}
$$

is invertible and
2) if, in addition, ∂D is of the class C^{2} and $\lambda \in C^{0, \alpha}(\partial D)$, then the operator

$$
\begin{equation*}
\left(-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}\right): C^{0, \beta}(\partial D) \rightarrow C^{0, \beta}(\partial D) \tag{2.6}
\end{equation*}
$$

is invertible for every $\beta, 0<\beta \leqslant \alpha$.
Proof of Proposition 2.2

1) It is enough to prove that its adjoint $-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}: L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ is invertible. Indeed, assume that $-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}$ is invertible. We set

$$
-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}=: A+P
$$

where $A:=-\frac{1}{2} I+K_{D}$ and $P:=i S_{D} \cdot \lambda$. Since κ^{2} is not a Dirichlet eigenvalue, the operator A is invertible from $L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ (see Appendix). In addition, the operator $P: L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ is compact. Hence we can write

$$
-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}=A\left(I+A^{-1} P\right)
$$

Now we write

$$
-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}=A^{*}+P^{*}=\left(I+P^{*}\left(A^{*}\right)^{-1}\right) A^{*}
$$

since $A^{*}:=-\frac{1}{2} I+K_{D}^{*}$ is also invertible, as is the adjoint of A.
Hence the invertibility of $-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}$ implies the invertibility of $I+P^{*}\left(A^{*}\right)^{-1}$. Since the operator $P^{*}\left(A^{*}\right)^{-1}$ is compact, we can apply the Fredholm alternative to deduce that $I+A^{-1} P$ is also invertible since $I+A^{-1} P=\left(I+P^{*}\left(A^{*}\right)^{-1}\right)^{*}$ (see, e.g., [7]). Then $-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}$ is invertible.

To show the invertibility of $-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}$, we start by recalling that the operator $S_{D}: L^{2}(\partial D) \rightarrow L^{2}(\partial D)$, and then $i \lambda S_{D}$, is compact. Hence the sum $-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}$ is Fredholm of index zero. The injectivity of $-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}$ in $L^{2}(\partial D)$ is deduced by standard arguments using the uniqueness character of both the exterior impedance problem and the interior Dirichlet problem and the jumps of the double layer potential related to the fundamental solution Φ. Hence the operator $\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right): L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ is invertible.
2) Since ∂D is C^{2}-smooth, the single layer operator $S_{D}: C^{0, \alpha}(\partial D) \rightarrow C^{1, \beta}(\partial D)$ and the double layer operator $K_{D}: C^{0, \alpha}(\partial D) \rightarrow C^{1, \beta}(\partial D)$ are compact for every $\alpha, \beta>0$ such that $\beta<\alpha$, as a combination of bounded operators from $C^{0, \alpha}(\partial D)$ to $C^{1, \alpha}(\partial D)$ (see [8]), and the compact operator given by the injection of $C^{1, \alpha}(\partial D)$ in $C^{1, \beta}(\partial D)$ for $0<\beta<\alpha$. Now, since λ is in $C^{0, \alpha}(\partial D)$, the operator $-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}$ is well defined from $C^{0, \beta}$ to itself, $0<\beta \leqslant \alpha$, and it is a Fredholm operator with index zero. Its injectivity is justified by the previous point 1). Hence it is invertible.

As a consequence of these last two propositions, we have the following properties of the layer potentials related to the Robin function G.

Proposition 2.3. Let D be a Lipschitz domain such that $\mathbb{R}^{n} \backslash \bar{D}$ is connected and let λ be a complex valued, measurable and bounded function defined on ∂D with a positive real part. Assume that κ^{2} is not a Dirichlet eigenvalue of $-\Delta$ in D^{2}. Let G be the corresponding Robin function. Then we have the following properties.

1. The single layer potential \tilde{S}_{G} defined by

$$
\tilde{S}_{G} f(z):=\int_{\partial D} G(x, z) f(x) d s(x), \text { with } f \in L^{2}(\partial D)
$$

for $z \in \mathbb{R}^{n} \backslash \bar{D}$ has the trace on ∂D as a bounded operator S_{G} from $L^{2}(\partial D)$ to $L^{2}(\partial D)$ given by

$$
\begin{equation*}
S_{G}=-S_{D}\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1} \tag{2.7}
\end{equation*}
$$

In addition, for every $f \in L^{2}(\partial D)$ we have

$$
\begin{equation*}
\lim _{h \rightarrow 0}\left[\tilde{S}_{G} f(z+h \nu(z))-S_{G} f(z)\right]=0 \text { in } L^{2}(\partial D) \tag{2.8}
\end{equation*}
$$

If, in addition, ∂D is of the class C^{2} and λ is in $C^{0, \alpha}(\partial D)$, then S_{G} is bounded from $C^{0, \beta}(\partial D)$ into $C^{1, \beta}(\partial D)$ for every $\beta, 0<\beta \leqslant \alpha$ and the limit above is understood in the pointwise sense.
2. The normal derivative of the single layer potential $\tilde{S}_{G} f, \frac{\partial}{\partial \nu} \tilde{S}_{G} f$ has the following trace on ∂D :

$$
\begin{equation*}
-f-i \lambda S_{G} f \tag{2.9}
\end{equation*}
$$

[^3]In addition, for every $f \in L^{2}(\partial D)$ we have

$$
\lim _{h \rightarrow 0}\left[\frac{\partial}{\partial \nu} \tilde{S}_{G} f(z+h \nu(z))+\left(f(z)+i \lambda(z) S_{G} f(z)\right)\right]=0 \text { in } L^{2}(\partial D)
$$

The operator $K_{G}^{*}:=-i \lambda S_{G}$ is bounded from $L^{2}(\partial D)$ to $L^{2}(\partial D)$. If, in addition, ∂D is of the class C^{2} and λ is in $C^{0, \alpha}(\partial D)$, then (2.9) defines a bounded operator from $C^{0, \beta}(\partial D)$ to $C^{0, \beta}(\partial D)$ and K_{G}^{*} is bounded from $C^{0, \beta}(\partial D)$ to $C^{0, \beta}(\partial D)$, for every $\beta, 0<\beta \leqslant \alpha$ and the limit above is understood in the pointwise sense.

Proof of Proposition 2.3

1. From Proposition 2.1 we have

$$
\begin{equation*}
\tilde{S}_{G}=-\tilde{S}_{D}\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1} \tag{2.10}
\end{equation*}
$$

where $\tilde{S}_{D} f(z):=\int_{\partial D} \Phi(x, z) f(x) d s(x)$, with $f \in L^{2}(\partial D)$, for $z \in \mathbb{R}^{n} \backslash \bar{D}$.
We set $S_{G}:=-S_{D}\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1}$. Hence S_{G} is bounded in the mentioned spaces since S_{D} and $\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1}$) are (see Proposition 2.2) for the latter. Property (2.8) is a direct consequence of the corresponding property of S_{D}.
2. Let $f \in L^{2}(\partial D)$ (or in $C^{0, \beta}(\partial D)$ in case when $(\partial D, \lambda)$ are smoother). We start by taking a derivative in identity (2.10) applied to f

$$
\frac{\partial}{\partial \nu} \tilde{S}_{G} f(z+h \nu(z))=-\frac{\partial}{\partial \nu} \tilde{S}_{D}\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1} f(z+h \nu(z))
$$

Using the jumps relation of the normal derivative of the single layer potential in the $L^{2}(\partial D)$ sense (accordingly, in the pointwise sense for smoother $(\partial D, \lambda)$), we obtain

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\partial}{\partial \nu} \tilde{S}_{G}(z+h \nu(z)) & =-\left[-\frac{1}{2} I+K_{D}^{*}\right]\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1} f(z) \\
& =-\left(I-i \lambda S_{D}\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1}\right) f(z)
\end{aligned}
$$

Hence

$$
\lim _{h \rightarrow 0} \frac{\partial}{\partial \nu} \tilde{S}_{G}(z+h \nu(z))=-f(z)-i \lambda S_{G} f(z)
$$

3. Reduction to an integral equation

Let w be the solution of the following Dirichlet scattering problem:

$$
\left\{\begin{array}{l}
\left(\Delta+\kappa^{2}\right) w=0, \text { in } \mathbb{R}^{n} \backslash \bar{D} \tag{3.1}\\
w=1, \quad \text { on } \partial D \\
w \text { satisfies the Sommerfeld radiation conditions. }
\end{array}\right.
$$

Since κ^{2} is not a Dirichlet eigenvalue for $-\Delta$ in D, the operator $S_{D}: L^{2}(\partial D) \rightarrow H^{1}(\partial D)$ is invertible (see Appendix). Let $f \in L^{2}(\partial D)$ such that $S_{D} f=1$. The uniqueness character of the Dirichlet exterior problem implies that $w=\tilde{S}_{D} f$. Hence

$$
\left.\frac{\partial w}{\partial \nu}\right|_{\partial D}=S_{D} f-\frac{1}{2} f \in L^{2}(\partial D)
$$

Integrating by parts with the use of the Green function G, we obtain

$$
\begin{equation*}
\int_{\partial D} \frac{\partial G}{\partial \nu_{x}}(x, z) d s(x)-\int_{\partial D} \frac{\partial w}{\partial \nu_{x}}(x) G(x, z) d s(x)=w(z), \quad z \in \mathbb{R}^{n} \backslash \bar{D} \tag{3.2}
\end{equation*}
$$

which we write as

$$
\int_{\partial D} \frac{\partial G}{\partial \nu_{x}}(x, z) d s(x)=w(z)+\tilde{S}_{G}\left(\frac{\partial w}{\partial \nu}\right)(z), \text { for } z \in \mathbb{R}^{n} \backslash \bar{D}
$$

From the impedance boundary condition in (1.12) we deduce that

$$
\begin{equation*}
-\tilde{S}_{G}(i \lambda)=w(z)+\tilde{S}_{G}\left(\frac{\partial w}{\partial \nu}\right)(z), \text { for } z \in \mathbb{R}^{n} \backslash \bar{D} \tag{3.3}
\end{equation*}
$$

From the trace of the normal derivative of the layer potentials defined by the Robin functions (see Proposition 2.3) we get the following integral equation involving the unknowns ∂D and λ :

$$
\begin{equation*}
\lambda(z)+\lambda(z) \int_{\partial D} G(x, z)(i \lambda(x)) d s(x)=-i K_{G}^{*}\left(\frac{\partial w}{\partial \nu}\right)(z) \text { for } z \in \partial D \tag{3.4}
\end{equation*}
$$

which we can write in a compact form as

$$
\begin{equation*}
\left(I-K_{G}^{*}\right) \lambda=-i K_{G}^{*}\left(\frac{\partial w}{\partial \nu}\right) \tag{3.5}
\end{equation*}
$$

From Theorem 5.2, the kernel of K_{G}^{*}, i.e., $-i \lambda(z) G(x, z), x, z \in \partial D$ is computable as

$$
\lim _{k, h \rightarrow 0} \frac{\partial}{\partial \nu_{z}} G\left(x_{k}, z_{h}\right), \text { in } L^{1}(\partial D \times \partial D)
$$

where $x_{k}:=x+k \nu(x)$ and $z_{h}:=z+h \nu(z)$ and $\frac{\partial}{\partial \nu_{z}} G\left(x_{k}, z_{h}\right)$ is computable from the scattering data as in Theorem 1.2 replacing $\Phi(\cdot, x)$ by $\frac{\partial}{\partial x_{j}} \Phi(\cdot, x)$ in (1.7).

4. Proofs of Theorem 1.1 and Theorem 1.3

4.1. Uniqueness (Theorem 1.1)

The proof of Theorem 1.1 is as follows. Firstly, we recall the known arguments by Isakov, Kirsch, and Kress to prove the uniqueness of ∂D by adapting them for rough complex obstacles and using identity (2.4). Secondly, knowing D from the first step and G from Theorem 1.2, then using the jumps of the double layer potential corresponding to G and again identity (2.4), we show the uniqueness of λ.
4.1.1. Invertibility of (2.4) and uniqueness of obstacles Let $\left(D_{1}, \lambda_{1}\right)$ and $\left(D_{2}, \lambda_{2}\right)$ be two obstacles having the same far field maps $u_{1}^{\infty}(\cdot, \cdot)=u_{2}^{\infty}(\cdot, \cdot)$ on $\mathbb{S}^{n} \times \mathbb{S}^{n}$. Suppose that $D_{1} \neq D_{2}$. We can assume without loss of generality that there exists $\bar{z} \in \partial D_{1} \cap\left(\mathbb{R}^{n} \backslash \overline{D_{2}}\right)$. The function $\left\|\Phi_{z}(\cdot)\right\|_{L^{2}\left(\partial D_{2}\right)}$ is bounded for z near \bar{z}, i.e., z is away from ∂D_{2}. We set G_{j} to be the Robin function related to $\left(D_{j}, \lambda_{j}\right), j=1,2$ (as defined in (1.12)). From the invertibility of Eq. (2.4) we deduce that

$$
\begin{equation*}
\left\|G_{2}(\cdot, z)\right\|_{L^{2}\left(\partial D_{2}\right)} \text { is also bounded for } z \text { near } \bar{z} \tag{4.1}
\end{equation*}
$$

From the impedance boundary conditions, $\left\|\frac{\partial G_{2}}{\partial \nu}(\cdot, z)\right\|_{L^{2}\left(\partial D_{2}\right)}$ is also bounded for z near \bar{z}. Since $G_{2}(\cdot, z)=\Phi_{2}^{s}(\cdot, z)+\Phi(\cdot z)$ then $\left\|\Phi_{2}^{s}(\cdot, z)\right\|_{L^{2}\left(\partial D_{2}\right)}$ and $\left\|\frac{\partial \Phi_{2}^{s}}{\partial \nu}(\cdot, z)\right\|_{L^{2}\left(\partial D_{2}\right)}$ are also bounded for z near \bar{z}.

From Theorem 1.2 we know that $\Phi_{1}^{s}(x, z)=\Phi_{2}^{s}(x, z)$ for x, z in the unbounded connected component of $\mathbb{R}^{n} \backslash\left(D_{1} \cup D_{2}\right)$, which we denote by $D_{1,2}$. Let Γ be a part of ∂D_{1} containing \bar{z} and not intersecting ∂D_{2}. Without loss of generality, we can assume that $\Gamma \subset \mathbb{R}^{n} \backslash D_{2}$. We set $\Gamma^{c}:=\partial D_{1} \backslash \Gamma$. Then, $\left(\frac{\partial \Phi_{1}^{s}}{\partial \nu_{x}}+i \lambda_{1} \Phi_{1}^{s}\right)(\cdot, z)$ is bounded in $L^{2}(\Gamma)$ for z near \bar{z}.

Since $\left(\frac{\partial \Phi_{1}^{s}}{\partial \nu_{x}}+i \lambda_{1} \Phi_{1}^{s}\right)=-\left(\frac{\partial \Phi}{\partial \nu_{x}}+i \lambda_{1} \Phi\right)$ on $\partial D_{1},\left(\frac{\partial \Phi}{\partial \nu_{x}}+i \lambda_{1} \Phi\right)(\cdot, z)$ is bounded in $L^{2}(\Gamma)$ and hence in $L^{2}\left(\partial D_{1}\right)$ for z near \bar{z}. The well-posedness of the interior problem implies, in particular, that $\|\Phi(\cdot, z)\|_{H^{1}\left(D_{1}\right)}$ is bounded for z near \bar{z}, which is impossible. This contradiction implies that $D_{1}=D_{2}$.
4.1.2. Invertibility of (2.4) and uniqueness of the surface impedance. Since the far fields $u_{j}^{\infty}(\cdot, \cdot)$ on $\mathbb{S}^{n} \times \mathbb{S}^{n}, j=1,2$, are equal, from the previous section we know that $D_{1}=D_{2}$. We set then $D:=D_{1}=D_{2}$. From Theorem 1.2 we have

$$
\begin{equation*}
G_{1}(x, z)=G_{2}(x, z)=: G(x, z), x, z \in \mathbb{R}^{n} \backslash D \tag{4.2}
\end{equation*}
$$

and

$$
\nabla_{z} G_{1}(x, z)=\nabla_{z} G_{2}(x, z), x, z \in \mathbb{R}^{n} \backslash \bar{D},
$$

hence by the trace theorem

$$
\frac{\partial G_{1}}{\partial \nu_{z}}(x, z)=\frac{\partial G_{2}}{\partial \nu_{z}}(x, z) \text {, a.e } x \in \partial D \text { and } z \in \mathbb{R}^{n} \backslash \bar{D}
$$

Let now $f \in L^{2}(\partial D)$, then for $z \in \mathbb{R}^{n} \backslash \bar{D}$ we have

$$
\int_{\partial D} \frac{\partial G_{1}}{\partial \nu_{z}}(x, z) f(x) d s(x)=\int_{\partial D} \frac{\partial G_{2}}{\partial \nu_{z}}(x, z) f(x) d s(x)
$$

Using the properties of the layer potentials defined by G, i.e., Theorem 5.2, we obtain

$$
-f(z)-i \lambda_{1}(z) \int_{\partial D} G_{1}(x, z) f(x) d s(x)=-f(z)-i \lambda_{2}(z) \int_{\partial D} G_{2}(x, z) f(x) d s(x)
$$

Combining this with (4.2) gives

$$
\begin{equation*}
\left(\lambda_{1}-\lambda_{2}\right)(z) \int_{\partial D} G(x, z) f(x) d s(x)=0, z \in \partial D \tag{4.3}
\end{equation*}
$$

The relation

$$
\begin{equation*}
S_{G}=-S_{D}\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1} \tag{4.4}
\end{equation*}
$$

the invertibility of $\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)$ and the fact that the single layer operator S_{D} has a dense range imply that S_{G} has also a dense range.

From (4.3) and the denseness of the range of S_{G} we deduce that

$$
\int_{\partial D}\left(\lambda_{1}-\lambda_{2}\right)(z) g(z) d s(z)=0, \forall g \in L^{2}(\partial D) .
$$

This implies that

$$
\lambda_{1}=\lambda_{2} .
$$

4.2. Reconstruction (Theorem 1.3)

In the first part, we justify the two properties of the probe method. If the obstacles $(\partial D, \lambda)$ are smooth, then pointwise estimates of $|\Phi(z, z)|$ can be obtained (see [23] and [24]). We justify this method for Lipschitz obstacles D and complex valued, measurable, and bounded surface impedances λ.
4.2.1. Reconstruction of the obstacle. Let B be a C^{2} domain containing the unknown obstacle D. We take a point $z_{0} \in \partial B$ and a curve $z:=z(t)_{t \in[0,1]}$ starting from z_{0} and going into the inside of B. In Section 2, we showed how we can reconstruct $\Phi^{s}(z, z)$ from the scattering data. If the curve is out of D, then $\left(\frac{\partial}{\partial \nu} \Phi+i \lambda \Phi\right)(\cdot, z)$ is bounded in $L^{2}(\partial D)$. The well-posedness of the forward scattering problem coupled with the interior estimate implies that $\Phi^{s}(z, z)$ is bounded. Then it is enough to show that when the curve z touches ∂D, $\Phi^{s}(z, z)$ blows up. We proceed as follows. The integration by parts in $B \backslash \bar{D}$ implies that

$$
\begin{gather*}
\int_{B \backslash \bar{D}}\left|\nabla \Phi^{s}\right|^{2}(x, z)-\kappa^{2}\left|\Phi^{s}\right|^{2}(x, z) d x=\int_{\partial(B \backslash \bar{D})} \frac{\partial \Phi^{s}}{\partial \nu}(x, z) \overline{\Phi^{s}(x, z)} d s(x) \\
=-i \int_{\partial D} \lambda\left|\Phi^{s}\right|^{2}(x, z) d s(x)-\int_{\partial D} \frac{\partial \Phi}{\partial \nu}(x, z) \overline{\Phi^{s}(x, z)} d s(x)-i \int_{\partial D} \lambda \Phi(x, z) \overline{\Phi^{s}(x, z)} d s(x)+O(1) \tag{1}
\end{gather*}
$$

for z near ∂D where we used $O(1)$ as an estimate of the integrals on ∂B, since z is far away from ∂B.

The Green formula applied in $B \backslash \bar{D}$ implies again that

$$
\int_{\partial D} \frac{\partial \Phi}{\partial \nu}(x, z) \overline{\Phi^{s}(x, z)} d s(x)=\int_{\partial D} \overline{\frac{\partial \Phi^{s}}{\partial \nu}(x, z)} \Phi(x, z) d s(x)-\overline{\Phi^{s}(z, z)}+O(1) .
$$

Hence

$$
\begin{aligned}
\int_{\partial D} \frac{\partial \Phi}{\partial \nu}(x, z) \overline{\Phi^{s}(x, z)} d s(x) & =i \int_{\partial D} \overline{\lambda(x) \Phi^{s}(x, z)} \Phi(x, z) d s(x)-\int_{\partial D} \overline{\frac{\partial \Phi}{\partial \nu}(x, z)} \Phi^{s}(x, z) d s(z) \\
& +i \int_{\partial D} \bar{\lambda}|\Phi|^{2}(x, z) d s(x)-\overline{\Phi^{s}(z, z)}+O(1) .
\end{aligned}
$$

In addition

$$
\int_{\partial D} \overline{\frac{\partial \Phi}{\partial \nu}(x, z)} \Phi(x, z) d s(x)=\int_{D}|\nabla \Phi|^{2}(x, z)-\kappa^{2}|\Phi|^{2}(x, z) d x .
$$

Using these two last identities in the first equality gives

$$
\begin{aligned}
& \int_{B \backslash \bar{D}}\left|\nabla \Phi^{s}\right|^{2}(x, z)-\kappa^{2}\left|\Phi^{s}\right|(x, z) d x-\int_{D}|\nabla \Phi|^{2}(x, z)-\kappa^{2}|\Phi|^{2}(x, z) d x=-\overline{\Phi^{s}(z, z)} \\
& -i \int_{\partial D} \lambda\left|\Phi^{s}\right|^{2}(x, z) d s(x)-i \int_{\partial D} \lambda \Phi(x, z) \overline{\Phi^{s}(x, z)} d s(x) \\
& -i \int_{\partial D} \overline{\lambda(x) \Phi^{s}(x, z)} \Phi(x, z) d s(x) i \int_{\partial D} \bar{\lambda}|\Phi|^{2}(x, z) d s(x)+O(1) \text { for } z \text { near } \partial D .
\end{aligned}
$$

Then for $z \in \mathbb{R}^{n} \backslash \bar{D}$, but near ∂D we have

$$
\begin{align*}
& \|\Phi(\cdot, z)\|_{H^{1 / 2}(\partial D)}^{2} \leqslant c\|\Phi(\cdot, z)\|_{H^{1}(D)}^{2} \leqslant c\left[\left|\Phi^{s}(z, z)\right|+\int_{\partial D}\left|\Phi^{s}\right|^{2}(x, z) d s(x)\right. \\
& \left.+\int_{\partial D}|\Phi|^{2}(x, z) d s(x)+\int_{B \backslash \bar{D}}\left|\Phi^{s}\right|^{2}(x, z) d x+\int_{D}|\Phi|^{2}(x, z) d x\right]+O(1) . \tag{4.5}
\end{align*}
$$

However using (2.4) and Proposition 2.2, we obtain

$$
\int_{\partial D}\left|\Phi^{s}+\Phi\right|^{2}(x, z) d s(x)=\|G(\cdot, z)\|_{L^{2}(\partial D)}^{2} \leqslant c_{3}\|\Phi(\cdot, z)\|_{L^{2}(\partial D)}^{2}
$$

hence also

$$
\int_{\partial D}\left|\Phi^{s}\right|^{2}(x, z) d s(x) \leqslant \int_{\partial D}\left|\Phi^{s}+\Phi\right|^{2}(x, z) d s(x)+\int_{\partial D}|\Phi|^{2}(x, z) d s(x) \leqslant C\|\Phi(\cdot, z)\|_{L^{2}(\partial D)}^{2}
$$

with $C:=c_{3}+1$. From the explicit form of Φ we can estimate $\int_{D}|\Phi|^{2}(x, z) d x$. In principle, we have the same for Φ^{s}, and then we can estimate $\int_{B \backslash \bar{D}}\left|\Phi^{s}\right|^{2}(x, z) d x$, since for the Green function G we have estimates similar to those for Φ as is shown for a family of scalar equations (see ([12]) and also ([9])). Since these references do not include impenetrable obstacles and we are dealing with low regularity for D and the surface impedance λ, we prefer to provide a justification of a weaker property but sufficient for our purpose. Indeed, we start with the following identity:

$$
\begin{equation*}
G(x, z)-\Phi(x, z)=\int_{\partial D} \frac{\partial \Phi}{\partial \nu_{t}}(t, x) G_{z}(t)-\int_{\partial D} \frac{\partial G_{z}}{\partial \nu_{t}}(t) \Phi(t, x) d s(t), x, z \text { in } \mathbb{R}^{n} \backslash \bar{D} \tag{4.6}
\end{equation*}
$$

which we write as

$$
\begin{equation*}
G(x, z)-\Phi(x, z)=\int_{\partial D}\left[\frac{\partial \Phi}{\partial \nu_{t}}(t, x)-i \lambda(t) \Phi(t, x)\right] G_{z}(t, z) d s(t), x, z \text { in } \mathbb{R}^{n} \backslash \bar{D} \tag{4.7}
\end{equation*}
$$

using the impedance boundary conditions. Hence

$$
|G(x, z)-\Phi(x, z)|^{2} \leqslant \int_{\partial D}\left|\frac{\partial \Phi}{\partial \nu_{t}}(t, x)-i \lambda(t) \Phi(t, x)\right|^{2} d s(t) \int_{\partial D}|G(t, z)|^{2} d s(t), x, z \text { in } \mathbb{R}^{n} \backslash \bar{D}
$$

and then

$$
|G(x, z)-\Phi(x, z)|^{2} \leqslant C \int_{\partial D}\left|\frac{\partial \Phi}{\partial \nu_{t}}(t, x)-i \lambda(t) \Phi(t, x)\right|^{2} d s(t) \int_{\partial D}|\Phi(t, z)|^{2} d s(t), x, z \text { in } \mathbb{R}^{n} \backslash \bar{D}
$$

This implies that

$$
\int_{B \backslash \bar{D}}|\Phi(x, z)|^{2} d x \leqslant C\left[\int_{B \backslash \bar{D}}\left|\Phi^{s}(x, z)\right|^{2} d x+\int_{B \backslash \bar{D}} l(x, z) d x\right],
$$

where $l(x, z):=\int_{\partial D}\left|\frac{\partial \Phi}{\partial \nu_{t}}(t, x)-i \lambda(t) \Phi(t, x)\right|^{2} d s(t) \int_{\partial D}|\Phi(t, z)|^{2} d s(t)$.
Finally, from (4.5) we obtain

$$
1 \leqslant C\left[\frac{\left|\Phi^{s}(z, z)\right|}{\|\Phi(\cdot, z)\|_{H^{1 / 2}(\partial D)}^{2}}+\frac{\|\Phi(\cdot, z)\|_{L^{2}(\partial D)}^{2}}{\|\Phi(\cdot, z)\|_{H^{1 / 2}(\partial D)}^{2}}+\frac{\int_{B \backslash \bar{D}}\left|\Phi^{s}(x, z)\right|^{2} d x+\int_{B \backslash \bar{D}} l(x, z) d x}{\|\Phi(\cdot, z)\|_{H^{1 / 2}(\partial D)}^{2}}\right] .
$$

Due to the type of singularity of Φ, the second and the third terms of the right hand side of this last inequality are $o(1)$ for z near ∂D. Hence, we deduce that there exists a positive constant \bar{c} such that

$$
\bar{c}\|\Phi(\cdot, z)\|_{H^{1 / 2}(\partial D)}^{2} \leqslant\left|\Phi^{s}(z, z)\right|, \text { for } z \text { near } \partial D
$$

which implies that $\left|\Phi^{s}(z, z)\right|$ blows up for z near ∂D.

4.2.2. Reconstruction of the surface impedance.

I) First method. The unknown surface impedance is a solution of the integral equation (3.4) (or (3.5)). Knowing the surface of the obstacle ∂D, the kernel of the integral operator is constructible as in Theorem1.2. Hence the next question is to prove the invertibility of this integral equation.

We start with showing that the operator equation in (3.5) defined from $L^{2}(\partial D)$ to $L^{2}(\partial D)$ is Fredholm of index zero. We recall that $S_{G}=-S_{D}\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1}$. The operator S_{G} is compact as a product of the bounded operator $\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)^{-1}$ by the compact operator S_{D}. Then λS_{G} is compact too and hence $I+i \lambda S_{G}: L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ is Fredholm of index zero. Now we consider the unique solvability. Suppose that $f+i \lambda \int_{\partial D} G(x, z) f(x) d s(x)=0$, for some $f, f \in L^{2}(\partial D)$. We define $\tilde{S}_{G} f(z):=\int_{\partial D} G(x, z) f(x) d s(x)$. Hence it satisfies $\left(\Delta+\kappa^{2}\right) \tilde{S}_{G} f=0$, in $\mathbb{R}^{n} \backslash D$ and the Sommerfeld radiation conditions. In addition, we have $\frac{\partial}{\partial \nu} \tilde{S}_{G} f(z)=-f(z)-i \lambda \int_{\partial D} G(x, z) f(x) d s(x)=0$ on ∂D. The uniqueness of the Neumann type scattering problem implies that $\tilde{S}_{G} f(z)=0, z \in \mathbb{R}^{n} \backslash \bar{D}$. Again, by the trace property of $\tilde{S}_{G} f$ we deduce that $S_{G} f=0$ and hence $f=0$ using the invertibility of S_{D} and $\left(-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}\right)$.
II) Second method. Let u_{f} be the solution of the problem

$$
\left\{\begin{array}{l}
\left(\Delta+\kappa^{2}\right) u_{f}=0 \text { in } \mathbb{R}^{n} \backslash \bar{D} \tag{4.8}\\
u_{f}=f \quad \text { on } \partial D, \\
u_{f} \text { satisfies the Sommerfeld radiation conditions }
\end{array}\right.
$$

where $f \in H^{1 / 2}(\partial D)$. Since ∂D is C^{2}-smooth, for $f \in C^{1, \beta}(\partial D)$ we associate $u_{f} \in C^{1, \beta}\left(\mathbb{R}^{n} \backslash\right.$ D) (see [8]).

The integration by parts applied for u_{f} and $G(\cdot, \cdot)$ gives

$$
\int_{\partial D} \frac{\partial}{\partial \nu_{x}} G(x, z) u_{f}(x) d s(x)-\int_{\partial D} \frac{\partial}{\partial \nu_{x}} u_{f}(x) G(x, z) d s(x)=u_{f}(z), z \in \mathbb{R}^{n} \backslash \bar{D}
$$

which we write as:

$$
\begin{equation*}
-i \int_{\partial D} \lambda(x) G(x, z) u_{f}(x) d s(x)=\int_{\partial D} \frac{\partial}{\partial \nu_{x}} u_{f}(x) G(x, z) d s(x)+u_{f}(z), z \in \mathbb{R}^{n} \backslash \bar{D} \tag{4.9}
\end{equation*}
$$

Taking a derivative with respect to z and using the trace of the double layer potential related to G, we obtain

$$
\begin{equation*}
i \lambda(z) f(z)+i \lambda(z) \int_{\partial D} G(x, z)(i \lambda(x)) f(x) d s(x)=-i \lambda(z) \int_{\partial D} \frac{\partial}{\partial \nu_{x}} u_{f}(x) G(x, z) d s(x) \tag{4.10}
\end{equation*}
$$

for z in ∂D.
We set $\bar{G}(x, z)$ to be the complex conjugate of $G(x, z)$. Let $V\left(z_{0}\right)$ be a neighborhood of z_{0} in ∂D. For $x \in \partial D$ and $z \in V\left(z_{0}\right)$, we take $f_{z}(x):=\bar{G}(x, z) \xi_{z_{0}}(x)$, where $\xi_{z_{0}}(x) \geqslant 0$ in ∂D and $\xi_{z_{0}}=0$ for $x \in V\left(z_{0}\right)$. Since ∂D is C^{2}-smooth and λ is $C^{1, \alpha}(\partial D)$, the representation $G(\cdot, z)=-\left(-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}\right)^{-1} \Phi(\cdot, z)$ and the invertibility of $\left(-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}\right)$ from $C^{1, \beta}(\partial D)$ to $C^{1, \beta}(\partial D)$, for every $\beta, 0<\beta \leqslant \alpha$, imply that $G(\cdot, z)$ is $C^{1, \alpha}(\partial D)$. In addition, $f_{z}(x)=0$ for $x, z \in V\left(z_{0}\right)$. Using f_{z} in (4.10), we have for every z in $V\left(z_{0}\right)$

$$
\begin{equation*}
\lambda(z) \int_{\partial D}|G(x, z)|^{2} \xi_{z_{0}}(x) \lambda(x) d s(x)=i \int_{\partial D} \frac{\partial}{\partial \nu_{x}} u_{z}(x) \lambda(z) G(x, z) d s(x), \tag{4.11}
\end{equation*}
$$

where we used the notation $u_{z}:=u_{f_{z}}$. We write it as

$$
\begin{equation*}
K \cdot \lambda=L, \tag{4.12}
\end{equation*}
$$

where

$$
\begin{equation*}
K(z):=\int_{\partial D}|G(x, z)|^{2} \xi_{z_{0}}(x) \lambda(x) d s(x)=i \int_{\partial D}[-i \lambda(x) G(x, z)] \bar{G}(x, z) \xi_{z_{0}}(x) d s(x) \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
L(z):=i \int_{\partial D} \frac{\partial}{\partial \nu_{x}} u_{z}(x) \lambda(z) G(x, z) d s(x) . \tag{4.14}
\end{equation*}
$$

From Theorem 5.2 we can compute $G(x, z)$ for $x, z \in \partial D$ as the limit of $G\left(x_{k}, z_{h}\right)$ and $-i \lambda(z) G(x, z)$ as the limit of $\frac{\partial}{\partial \nu_{z}} G\left(x_{k}, z_{h}\right)$, where x_{k}, z_{h} are in $\mathbb{R}^{n} \backslash \bar{D}$. In addition, we can compute $\frac{\partial}{\partial \nu} u_{z}(x)$ by solving the exterior problem (4.8). Hence K and L are computable from the far field data.

Let us now show that (4.12) is invertible pointwisely. We write (4.12) as the following system:

$$
\left[\begin{array}{cc}
\Re K & -\Im K \tag{4.15}\\
\Im K & \Re K
\end{array}\right]\left[\begin{array}{c}
\Re \lambda \\
\Im \lambda
\end{array}\right]=\left[\begin{array}{c}
\Re L \\
\Im L
\end{array}\right] .
$$

We will show that $\operatorname{det} K>0$ for every point $z \in V\left(z_{0}\right)$. Since this determinant is continuous, there exists a positive constant c such that $\operatorname{det} K \geqslant c$ in $V\left(z_{0}\right)$. We write the determinant as follows:

$$
\operatorname{det} K=\left[\int_{\partial D}|G(x, z)|^{2} \xi_{z_{0}}(x) \Re \lambda(x) d s(x)\right]^{2}+\left[\int_{\partial D}|G(x, z)|^{2} \xi_{z_{0}}(x) \Im \lambda(x) d s(x)\right]^{2}
$$

We assume that $\operatorname{det} K(\bar{z})=0$ for some point \bar{z} in $V\left(z_{0}\right)$. We deduce that $G(x, \bar{z})=0$ for $x \in \partial D \backslash V\left(z_{0}\right)$ since $\xi_{z_{0}}$ and $\Re \lambda$ are positive on $\partial D \backslash V\left(z_{0}\right)$.

If the point \bar{z} was in $\mathbb{R}^{n} \backslash \bar{D}$, then we have also $\frac{\partial}{\partial \nu_{x}} G(x, \bar{z})=0$ for $x \in \partial D \backslash V\left(z_{0}\right)$. By the unique continuation property satisfied by $G(x, \bar{z})$, as a solution of $\left(\Delta+\kappa^{2}\right) G(x, \bar{z})=-\delta(x, \bar{z})$ for $x \in \mathbb{R}^{n} \backslash \bar{D}$, we deduce that $G(x, \bar{z})=0$ for every $x \neq \bar{z}$, which is absurd. However, the point \bar{z} is on ∂D and the argument above is not applicable. For this reason, we proceed as follows. Since $S_{G}\left(-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}\right) f=-S_{D} f$ for every f in $L^{2}(\partial D)$, we have

$$
\left(-\frac{1}{2} I+i S_{D} \cdot \lambda+K_{D}\right) G_{z}(x)=-\Phi(x, z), \text { for } x, z \in \partial D
$$

This means that

$$
\begin{equation*}
\left(i S_{D} \cdot \lambda+K_{D}\right) G_{z}(x)=-\Phi(x, z), \text { for } x \in \partial D \backslash V\left(z_{0}\right) \text { and } z=\bar{z} \tag{4.16}
\end{equation*}
$$

We show that this contradicts the singular behavior of the Green function G and the fundamental solution Φ. Indeed, we use the known estimates $|G(x, z)| \leqslant C_{n}|x-z|^{2-n}$, $|\Phi(x, z)| \leqslant C_{n}|x-z|^{2-n}$ for $n \geqslant 3$ and the log type ones for $n=2$, see [28]. Using these estimates, we obtain

$$
\begin{gathered}
\left|S_{D} \cdot \lambda G_{z}(x)\right| \leqslant\|\lambda\|_{\infty} C_{n}^{2} \int_{\partial D}|x-y|^{2-n}|z-y|^{2-n} d s(y) \sim|x-z|^{3-n} \text { for } n>3 \\
\text { and }\left|S_{D} \cdot \lambda G_{z}(x)\right| \sim \ln (|x-z|) \text { for } n=3 .
\end{gathered}
$$

In addition, since ν is of the class C^{1}, we have $\left|\frac{\partial \Phi}{\partial \nu}(x, z)\right| \leqslant c_{n}|x-z|^{2-n}$ for x, z on ∂D (see, e.g.,[7]. Hence, we have also

$$
\begin{gathered}
\left|K_{D} G_{z}(x)\right| \leqslant C_{n}^{\prime} \int_{\partial D}|x-y|^{2-n}|z-y|^{2-n} d s(y) \sim|x-z|^{3-n} \text { for } n>3 \\
\quad \text { and }\left|K_{D} G_{z}(x)\right| \sim \ln (|x-z|) \text { for } n=3
\end{gathered}
$$

However we know that

$$
|\Phi(x, z)|=C_{n}|x-z|^{2-n}, \text { for } n \geqslant 3
$$

This contradicts equality (4.16) for x near $V\left(z_{0}\right)$ taking $V\left(z_{0}\right)$ smaller if necessary. A similar contradiction holds for the case $n=2$ using the appropriate singularities. This contradiction implies that $\operatorname{det} K>0$ for every point z on $V\left(z_{0}\right)$.

5. Appendix

In the following theorem, we recall some properties of the single layer potentials related to the fundamental solutions Φ.

Theorem 5.1. Let D be a bounded and Lipschitz domain of \mathbb{R}^{n}. Assume that κ^{2} is not a Dirichlet eigenvalue of $(-\Delta)$ in D. The single layer operator

$$
\tilde{S}_{D} f(x):=\int_{\partial D} \Phi(x, z) f(z) d s(z)
$$

defined in $\mathbb{R}^{n} \backslash \partial D$ has a trace on ∂D as a bounded operator S_{D} from $L^{2}(\partial D)$ to $L^{2}(\partial D)$. This operator has the following properties.

1. $S_{D}: L^{2}(\partial D) \rightarrow H^{1}(\partial D)$ is invertible.
2. $S_{D}: L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ has a dense range.

The operator

$$
K_{D} f:=p v \int_{\partial D} \frac{\partial}{\partial \nu_{z}} \Phi(x, z) f(x) d s(x)
$$

and its L^{2} - adjoint

$$
K_{D}^{*} f:=p v \int_{\partial D} \frac{\partial}{\partial \nu_{x}} \Phi(x, z) f(x) d s(x)
$$

have the following properties:
3. $\left.\frac{\partial}{\partial \nu} \tilde{S}_{D} f\right|_{\partial D^{ \pm}}=\left(\mp \frac{1}{2} I+K_{D}\right) f$ for every f in $L^{2}(\partial D)$, where $D^{ \pm}$refers to the trace from the outside or inside of D.
4. The operators $-\frac{1}{2} I+K_{D}$ and $-\frac{1}{2} I+K_{D}^{*}$ are invertible from $L^{2}(\partial D)$ to $L^{2}(\partial D)$.

Proof of Theorem 5.1
We will show the proofs for points (1) and (4). The proof of point (2) is equivalent to the proof of the injectivity of the Herglotz wave operator, stated on ∂D, which in turn is a consequence of the the fact that κ^{2} is not a Dirichlet eigenvalue of $-\Delta$ in D, see $[8]$. The proof of (3) can be found in [22].

For $\kappa=0$, the proofs of points (1) and (4) are also given (see, e.g., [10]). The proofs use harmonic analysis. Here we show that since κ^{2} is not a Dirichlet eigenvalue of $(-\Delta)$ in D, basing on the results for the case where $\kappa=0$, we obtain (1) and (4) by a compact perturbation argument and the Fredholm alternative. We give the proofs for a dimension greater than 2. The two dimensional case is similar with appropriate changes due to the form of the corresponding fundamental solutions.

Proof of point (1). We set $\Phi_{0}(x, z)=\frac{\gamma_{n}}{|x-z|^{n-2}}$. Hence ${ }^{3}$

$$
\begin{equation*}
\Phi(x, z)-\Phi_{0}(x, z)=\gamma_{n} \frac{e^{i \kappa|x-z|}-1}{|x-z|^{n-2}} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \Phi(x, z)-\nabla \Phi_{0}(x, z)=\gamma_{n} \frac{(x-z)}{|x-z|^{n}}\left[i \kappa|x-z| e^{i \kappa|x-z|}-(n-2)\left[e^{i \kappa|x-z|}-1\right]\right] \tag{5.2}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\frac{\partial}{\partial T} \Phi(x, z)-\frac{\partial}{\partial T} \Phi_{0}(x, z)=\gamma_{n} \frac{(x-z) \cdot T}{|x-z|^{n}}\left[i \kappa|x-z| e^{i \kappa|x-z|}-(n-2)\left[e^{i \kappa|x-z|}-1\right]\right] \tag{5.3}
\end{equation*}
$$

where $\frac{\partial}{\partial T}$ stands for the tangential derivative.
Let S_{D}^{0} be a single layer potential corresponding to the case $\kappa^{2}=0$. From (5.1) and (5.3) we deduce that $S_{D}-S_{D}^{0}$ is compact from $L^{2}(\partial D)$ to $H^{1}(\partial D)$. In particular, S_{D} maps $L^{2}(\partial D)$ to $H^{1}(\partial D)$ since S_{D}^{0} does. In addition, S_{D}^{0} is invertible from $L^{2}(\partial D)$ to $H^{1}(\partial D)$ (see [10]). Then the operator

$$
\left(S_{D}^{0}\right)^{-1} S_{D}=I+\left(S_{D}^{0}\right)^{-1}\left(S_{D}-S_{D}^{0}\right)
$$

is defined from $L^{2}(\partial D)$ to $L^{2}(\partial D)$ and the operator $\left(S_{D}^{0}\right)^{-1}\left(S_{D}-S_{D}^{0}\right)$ is compact from $L^{2}(\partial D)$ to $L^{2}(\partial D)$. Hence we can apply the Fredholm alternative to $\left(S_{D}^{0}\right)^{-1} S_{D}$. Let $f \in L^{2}(\partial D)$ such that $\left(S_{D}^{0}\right)^{-1} S_{D} f=0$. Then $S_{D} f=0$ and then, since κ^{2} is not a Dirichlet eigenvalue, $f=0$. Hence $\left(S_{D}^{0}\right)^{-1} S_{D}$ is invertible. Finally, $S_{D}: L^{2}(\partial D) \rightarrow H^{1}(\partial D)$ is also invertible.

Proof of point (4). It is known that $-\frac{1}{2} I+K_{D}^{0}: L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ is invertible (see [10]) when $K_{D}^{0} f:=p v \int_{\partial D} \frac{\partial}{\partial \nu_{z}} \Phi_{0}(x, z) f(x) d s(x)$ for $f \in L^{2}(\partial D)$. From (5.2) we deduce that the integral operator $K_{D}-K_{D}^{0}$, having $\frac{\partial}{\partial \nu_{z}} \Phi(x, z)-\frac{\partial}{\partial \nu_{z}} \Phi_{0}(x, z)$ as a kernel is compact from $L^{2}(\partial D)$ to $L^{2}(\partial D)$. We write $-\frac{1}{2} I+K_{D}=\left(-\frac{1}{2} I+K_{D}^{0}\right)\left[I+\left(-\frac{1}{2} I+K_{D}^{0}\right)^{-1}\left(K_{D}-K_{D}^{0}\right)\right]$, hence $\left(-\frac{1}{2} I+K_{D}^{0}\right)^{-1}\left(-\frac{1}{2} I+K_{D}\right)=I+\left(-\frac{1}{2} I+K_{D}^{0}\right)^{-1}\left(K_{D}-K_{D}^{0}\right)$. Then we can apply the Fredholm alternative to $\left(-\frac{1}{2} I+K_{D}^{0}\right)^{-1}\left(-\frac{1}{2} I+K_{D}\right)$. The injectivity of $-\frac{1}{2} I+K_{D}$ is due to the fact that κ^{2} is not a Dirichlet eigenvalue of $-\Delta$ in D and the jump relations of the single layer potential (point (3)). We conclude that $-\frac{1}{2} I+K_{D}$ is invertible. Its adjoint $-\frac{1}{2} I+K_{D}^{*}$ is also invertible.

In the following theorem, we justify some properties of the Robin function G.
Theorem 5.2. Let D be a Lipschitz domain such that $\mathbb{R}^{n} \backslash \bar{D}$ is connected and let λ be a complex valued, measurable and bounded function defined on ∂D with a positive real part. Assume that κ^{2} is not a Dirichlet eigenvalue of $-\Delta$ in D^{4}. Let G be the corresponding Robin function. Then we have the following properties:

$$
\left\{\begin{array}{l}
G(x, z)=\lim _{k, h \rightarrow 0} G\left(x_{k}, z_{h}\right), \tag{5.4}\\
\frac{\partial G}{\partial \nu_{z}}(x, z)=\lim _{k, h \rightarrow 0} \frac{\partial G}{\partial \nu_{z}}\left(x_{k}, z_{h}\right),
\end{array}\right.
$$

in $L^{1}(\partial D \times \partial D)$, where $x_{k}:=x+k \nu(x), z_{h}:=z+h \nu(z)$ and h, k are positive real numbers.

[^4]
Proof of Theorem 5.2

Recall that G_{N} is the Neumann function for the exterior problem. The function ($G-$ $\left.G_{N}\right)(\cdot, z), z \in \mathbb{R}^{n} \backslash \bar{D}$ satisfies

$$
\left\{\begin{array}{l}
\left(\Delta+\kappa^{2}\right)\left(G-G_{N}\right)(x, z)=0 \text { in } \mathbb{R}^{n} \backslash \bar{D} \tag{5.5}\\
\frac{\partial}{\partial \nu}\left(G-G_{N}\right)=-i \lambda(x) G \text { on } \partial D, \\
G(\cdot, z) \text { satisfies the Sommerfeld radiation conditions. }
\end{array}\right.
$$

Hence the integration by parts gives

$$
\begin{equation*}
\left(G-G_{N}\right)(x, z)=-i \int_{\partial D} \lambda(y) G(z, y) G_{N}(x, y) d s(y), \text { for } x, z \in \mathbb{R}^{n} \backslash \bar{D} \tag{5.6}
\end{equation*}
$$

and taking a derivative, we obtain

$$
\nabla_{x}\left(G-G_{N}\right)(x, z)=-i \int_{\partial D} \lambda(y) G(z, y) \nabla_{x} G_{N}(x, y) d s(y), \text { for } x, z \in \mathbb{R}^{n} \backslash \bar{D}
$$

From the symmetry of $G(x, z)$ and $G_{N}(x, z)$ we have $\nabla_{z} G(x, z)=\nabla_{x} G(z, x)$, and $\nabla_{z} G_{N}(x, z)$ $=\nabla_{x} G_{N}(z, x)$, for $x, z \in \mathbb{R}^{n} \backslash \bar{D}$. Then

$$
\begin{equation*}
\nabla_{z}\left(G-G_{N}\right)(x, z)=\nabla_{x}\left(G-G_{N}\right)(z, x)=-i \int_{\partial D} \lambda(y) G(x, y) \nabla_{x} G_{N}(z, y) d s(y) \tag{5.7}
\end{equation*}
$$

For x and z on ∂D, we set $x_{k}:=x+k \nu(x)$ and $z_{h}=z+h \nu(z)$, then (5.7) becomes

$$
\begin{equation*}
\nabla_{z}\left(G-G_{N}\right)\left(x_{k}, z_{h}\right)=\nabla_{x}\left(G-G_{N}\right)\left(z_{h}, x_{k}\right)=-i \int_{\partial D} \lambda(y) G\left(x_{k}, y\right) \nabla_{x} G_{N}\left(z_{h}, y\right) d s(y) \tag{5.8}
\end{equation*}
$$

The function $x \rightarrow \int_{\partial D} \lambda(z) G(x, z) d s(z)$ is in $L^{2}(\partial D)$ as is the image by S_{G} of the $L^{2}(\partial D)$ function $\lambda(z)$. In addition, the function $z \rightarrow \lambda(z) \int_{\partial D} G(x, z) d s(x)$ is also in $L^{2}(\partial D)$. Hence the two integrals $\int_{\partial D}^{x} \int_{\partial D}^{z} \lambda(z) G(x, z) d s(z) d s(x)$ and $\int_{\partial D}^{z} \int_{\partial D}^{x} \lambda(z) G(x, z) d s(x) d s(z)$ make sense and they are equal. Now, we use the following splitting:

$$
\begin{gather*}
\int_{\partial D}^{z} \int_{\partial D}^{x} \int_{\partial D}^{y} \lambda(y) G(x+k \nu(x), y) \frac{\partial}{\partial \nu(x)} G_{N}(z+h \nu(z), y) d s(y) d s(x) d s(z) \\
+\int_{\partial D}^{z} \int_{\partial D}^{x} \lambda(z) G(x, z) d s(x) d s(z)= \\
\int_{\partial D}^{z} \int_{\partial D}^{x} \int_{\partial D}^{y} \lambda(y) G(x+k \nu(x), y) \frac{\partial}{\partial \nu(x)} G_{N}(z+h \nu(z), y) d s(y) d s(x) d s(z) \\
\quad-\int_{\partial D}^{z} \int_{\partial D}^{x} \int_{\partial D}^{y} \lambda(y) G(x, y) \frac{\partial}{\partial \nu(x)} G_{N}(z+h \nu(z), y) d s(y) d s(x) d s(z) \\
+\int_{\partial D}^{z} \int_{\partial D}^{x} \int_{\partial D}^{y} \lambda(y) G(x, y) \frac{\partial}{\partial \nu(x)} G_{N}(z+h \nu(z), y) d s(y) d s(x) d s(z) \\
\quad+\int_{\partial D}^{z} \int_{\partial D}^{x} \lambda(z) G(x, z) d s(x) d s(z) . \tag{5.9}
\end{gather*}
$$

We write the two first integrals of the right hand side of (5.9) as follows:

$$
\int_{\partial D}^{x} \int_{\partial D}^{y} \lambda(y) G(x+k \nu(x), y) \int_{\partial D}^{z} \frac{\partial}{\partial \nu(x)} G_{N}(z+h \nu(z), y) d s(z) d s(y) d s(x)
$$

$$
-\int_{\partial D}^{x} \int_{\partial D}^{y} \lambda(y) G(x, y) \int_{\partial D}^{z} \frac{\partial}{\partial \nu(x)} G_{N}(z+h \nu(z), y) d s(z) d s(y) d s(x)
$$

We set $q_{h}(y):=\int_{\partial D}^{z} \frac{\partial}{\partial \nu(x)} G_{N}(z+h \nu(z), y) d s(z)$, for every $h>0$ fixed. Then by the limit of the single layer potential related to the Robin function G we obtain

$$
\int_{\partial D}^{y} \lambda(y) q_{h}(y) G(x+k \nu(x), y) d s(y)-\int_{\partial D}^{y} \lambda(y) q_{h}(y) G(x, y) d s(y) \rightarrow 0 \text { as } k \rightarrow 0
$$

in $L^{2}(\partial D)$ with respect to x, which implies that the difference of the two first terms in (5.9) tends to zero with k.

We write now the two last integrals of the right hand side of (5.9) as follows:

$$
\begin{equation*}
\int_{\partial D}^{z} \int_{\partial D}^{y} \lambda(y) l(y) \frac{\partial}{\partial \nu(x)} G_{N}(z+h \nu(z), y) d s(y) d s(z)+\int_{\partial D}^{z} \lambda(z) l(z) d s(z) \tag{5.10}
\end{equation*}
$$

where $l(z):=\int_{\partial D} G(x, z) d s(x) \in L^{2}(\partial D)$. Using the identity $G_{N}=\left(-\frac{1}{2} I+K_{D}^{*}\right)^{-1} \Phi$ and the jumps of the double layer potential related to Φ, we deduce that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{\partial D}^{y} \frac{\partial}{\partial \nu_{x}} G_{N}\left(z_{h}, y\right)(\lambda l)(y) d s(y)=\lambda(z) l(z), \text { in } L^{2}(\partial D) \tag{5.11}
\end{equation*}
$$

Hence, we deduce that (5.10) goes to zero as h tends to zero.
Summing up, we deduce that the quantity in (5.9) goes to zero with k and h. From (5.8) and the fact that the normal derivative of G_{N} vanishes on ∂D, we obtain

$$
\frac{\partial}{\partial \nu(z)} G\left(x_{k}, z_{h}\right) \rightarrow-i \lambda(z) G(x, z), \text { as } h, k \rightarrow 0, \text { in } L^{1}(\partial D \times \partial D)
$$

We complete the proof by showing that we can exchange the order of the limits with respect to k and h. Indeed, from the symmetry of G and G_{N}, (5.6) can be written as

$$
\begin{equation*}
\left(G-G_{N}\right)(x, z)=-i \int_{\partial D} \lambda(y) G(x, y) G_{N}(z, y) d s(y), \text { for } x, z \in \mathbb{R}^{n} \backslash \bar{D} \tag{5.12}
\end{equation*}
$$

Hence (5.8) becomes

$$
\begin{equation*}
\nabla_{z}\left(G-G_{N}\right)\left(x_{k}, z_{h}\right)=i \int_{\partial D} \lambda(y) \nabla_{x} G\left(z_{h}, y\right) G_{N}\left(x_{k}, y\right) d s(y) \tag{5.13}
\end{equation*}
$$

Arguing as above, we obtain the same limits but with exchanging the order of the limits of h and k.

The proof of the limit for $G(x, z)$ is similar.
Acknowledgments. The author thanks Dr. Haibing Wang for having read the manuscript and suggested some improvements on the content and the presentation. He also wishes to thank the referee for his remarks and suggestions.

References

[1] I. Akduman and R. Kress, Direct and inverse scattering problems for inhomogeneous impedance cylinders of arbitrary shape. Radio Science 38 (2003), pp. 1055-1064.
[2] H. Ammari and H. Kang, Polarization and Moment Tensors: with Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical Sciences Series, Volume 162, Springer-Verlag, New York, (2007).
[3] F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory. An introduction. Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.
[4] F. Cakoni, D. Colton, and P. Monk, The direct and inverse scattering problems for partially coated obstacles, Inverse Problems 17 (2001), no. 6, pp. 1997-2015.
[5] F. Cakoni, G. Nakamura, M. Sini, and N. Zeev, The identification of a penetrable obstacle with mixed transmission conditions from far field measurements, Appl. Anal. 89 (2010), no. 1, pp. 67-86.
[6] R. R. Coifman, M. McIntosh, and Y. Meyer, L'intégral de Cauchy définit un opérateur borné su L^{2} pour les courbes Lipschitziennes, Ann. of Math. (2) 116(1982), pp. 361-387.
[7] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, New York, 1983.
[8] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory(2nd edition), BerlinSpringer, 1998.
[9] Y. Daido and Gen Nakamura, Reconstruction of inclusions for the inverse boundary value problem with mixed type boundary condition and source term, Inverse Problems, 20 (2004), no. 5, pp. 1599-1619.
[10] C. E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, 83. The American Mathematical Society, Providence, RI, 1994. xii +146 pp .
[11] R. Kress and W. Rundell, Inverse scattering for shape and impedance, Inverse Problems, 17 (2001), pp. 1075-1085.
[12] M. Grueter and K-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math, 37 (1982), pp. 303-342.
[13] M. Ikehata, Reconstruction of the shape of the inclusion by boundary measurements, Comm. PDE, $\mathbf{2 3}$ (1998), pp. 1459-1474.
[14] V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math., 41 (1988), pp. 865-877.
[15] V. Isakov, On uniqueness in the inverse transmission scattering problem, Comm. Part. Diff. Equat., 15 (1990), pp. 1565-1587.
[16] V. Isakov, Inverse Problems for Partial Differential Equations, Springer Series in Applied Math. Science 127, Berlin: Springer, (1998).
[17] D. S. Jerison and C. Kenig, The Neumann problem in Lipschitz domains, Bull. Amer. Math. Soc., 4 (1981), pp. 203-207.
[18] R. Leis, Initial boundary value problems in mathematical physics, Teubner, Stuttgart 1986.
[19] J.J. Liu, G. Nakamura, and M. Sini, Reconstruction of the shape and surface impedance from acoustic scattering data for an arbitrary cylinder, SIAM J. Appl. Math. 67 (2007), no. 4, pp. 1124-1146.
[20] J.J. Liu and M. Sini, On the accuracy of reconstruction of obstacles from exterior measurements, Preprint available at http://www.ricam.oeaw.ac.at/people/page/sini/publications.html
[21] J.J. Liu and M. Sini, On the accuracy of the numerical detection of complex obstacles from far field data using the probe method, SIAM J. Sci. Comput., 31(2009), pp. 2665-2687.
[22] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University press, (2000).
[23] G. Nakamura and M. Sini, Obstacle and boundary determination from scattering data, SIAM J. Math. Anal. 39 (2007), no. 3, pp. 819-837.
[24] R. Potthast, Point Sources and Multipoles in Inverse Scattering Theory, V 427 of Chapman-Hall/CRC, Research Notes in Mathematics, Chapman-Hall/CRC, Boca Raton, Fl, (2001).
[25] A. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer, 2004.
[26] E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements, SIAM J. Math. Anal. 38 (2006), no. 2, pp. 434-451
[27] N. T. Thanh and M. Sini, An analysis of the accuracy of the linear sampling method for inverse obstacle scattering problems using asymptotic expansion, Inverse Problems, 26 (2010), no. 1, 015010, 29 pp.
[28] V. A. Solonnikov, On Green's matrices for elliptic boundary value problems, I Proc. Steklov. Inst. Math, 110 (1970).

[^0]: This work was supported by the Austrian Academy of Sciences and the Austrian Science Foundation under the project Austrian Science Foundation (FWF):[P22341-N18]

[^1]: Mourad Sini
 RICAM, Austrian Academy of Sciences, 69 Altenbergerstrasse, A 4040, Linz, Austria
 E-mail: mourad.sini@oeaw.ac.at

[^2]: ${ }^{1}$ We could also use another sampling method as the linear sampling method [3] to compute the Green function of the interior problem instead of the exterior one as for the probe method (see [5]). Hence, we can obtain results similar to those stated in Theorem 1.3, for the linear sampling method.

[^3]: ${ }^{2}$ This condition is needed for using the invertibility of the operator $-\frac{1}{2} I+i \lambda S_{D}+K_{D}^{*}$.

[^4]: ${ }^{3}$ For $\kappa=0$ and $n=2$, we take $\Phi_{0}(x, z)=\frac{1}{2 \pi} \ln \left(\frac{1}{|x-z|}\right)$.
 ${ }^{4}$ This condition is needed to use the invertibility of the representation (2.4) of Proposition 2.1.

