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Feedback Controls for Continuous Priority
Models in Supply Chain Management

Michael Herty · Christian Ringhofer

Abstract — We are interested in closed loop feedback control laws for supply chains.
The mathematical modeling is based on Boltzmann–type equations. These equations
allow to model a supply chain with priorities. The latter influence the processing time
in a nonlinear way. For this class of models we derive a control law and we show
numerical results.
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1. Modeling of a supply chain with priorities

Production and supply chain modeling is characterized by a variety of mathematical ap-
proaches at different scales. Here, we are interested in continuous models for high volume
production systems. These models use partial differential equations to model production
flow and have been discussed for example in [1, 2, 4, 3, 11, 15]. This approach leads to deter-
ministic and fast but coarse grain models. However, the additional mathematical structure
of the partial differential equations allows for further analysis and control approaches as for
example employed in [17, 22, 10]. In the preceeding we focus on the following model intro-
duced recently in [23]. The supply chain is characterized by an interval x ∈ (−∞,∞) At
stage x = −∞ the products enter the supply chain and leave as finished products at x = +∞.
Their evolution along the chain is described by a kinetic equation including scheduling poli-
cies y. The need of such policies arises when not all products are treated in the same way
but distinguished by certain features. Such features might be the due date, the time spent in
the production line or the experation date. Therefore, the products in the chain might not
be processed in a sequence and the production order might change according to some policy
or service rule. The focus of the present paper is on the optimal choice of such a service rule.

Based on the previous motivations the general model considered in [23] is as follows.
Let x denote the production stage of the product, y ∈ Rd the attribute or property of an
individual product and t the time. Newton’s equations for the evolution of an individual
product are

dx

dt
= v,

dy

dt
= E,
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where E = E(x, t, y) is function describing a possible change in attributes due e.g. to
perishability of products and v = v(x, t, z) the production velocity. Depending on the
model at hand z ∈ R might be given by a function depending on macroscopic properties
as for example the product density. We introduce a prototype in equation (1.2) below. For
convenience y is treated as continuous variable. Hence, if f(t, x, y) denotes the product
density with attribute y at stage x and time t, then f satisfies the transport equation

∂tf + ∂x (vf) +∇y · Ef = 0. (1.1)

In the model [23] this velocity is obtained using certain scheduling policies or priority func-
tions p. The latter describes the order of processing the parts and the basic concept is as
follows: production of parts of high priority is enforced compared with low priority parts.
Given a set of sufficiently regular priority functions p(y, α) : Rd × Rm → R, where α is an
external control, the production velocity is defined by

v = v(x, t, φf (p(y, α), α)) and φf (q, α) =

∫
H(p(η, α)− q)f(η)dη. (1.2)

The function H(x) denotes the Heavi-side function. Note that α might be time–dependent
in order to allow for dynamic priority changes. In the following we assume that function
z → v(x, t, z), z, α → p(z, α) are arbitrary but sufficiently smooth. The function φf (q, α)
measures the number of parts with priority larger than q at the given control value α. Hence,
only parts with priority higher than q will be considered in th the computation of φf and
therefore in turn the production velocity. The function v is such that a higher priority
guarantees a larger processing speed, i.e., v is monotone in z. Typical examples for v are
[2, 1, 4, 3, 11, 15, 16]

v(x, t, φ) = v0(x)H(c(x)− v0(x)φ) (1.3)

or
v(x, t, φ) = v0(x) exp(−v0(x)φ/c(x)), (1.4)

where v0(x) and c(x) are the known velocities and capacities of the machines.
The parameter α was not present in the original model [23, 11]. We offer the folllowing

interpretation: the function p(y, α) is a measure of the priority associated with a property
value y and the parameter α acting as control. E.g., in case of perishable goods one might
want to temporarily change the priority in order to guarantee on–time delivery.

We are interested in control problems related to the supply chain model (1.1). For
simplicity we consider the Cauchy problem on real axis x. Ultimately, we want to derive
a feedback law to chose an optimal policy α = α(t) in order to obtain a product density
f(t, x, y) close to a some given production demand f̄(t, x, y). This question leads to control-
lability and optimal control problems studied for example in [16, 12, 13, 14]. In the existing
work there has always been the assumption that the demand f̄ is known a priori at any time
t > 0. However, this is typically not the case in supply chain problems. The reasons are
unpredictable changes in demand or stochastic fluctuations.

Therefore, we devise a strategy chosing α(t) even when f̄ is unknown a priori. To be more
precise we derive an closed-loop control concept for the priority supply chain model (1.1).
This will allow to explicitly chose α(t) at every time t based on predictions of the underlying
model (1.1) and depending only on the current desired demand (x, y) → f̄(t, x, y). The
closed loop control concept is similar to model predictive control [5, 6] and receding horizon
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control [24], developed in engineering context. In applied mathematics closed loop control
concepts have been studied to stabilize fluid flow in [9, 25, 7, 21, 20, 19, 18, 8]. Here,
we proceed different as in the previous references. We introduce a linear relation between
multiplier and state which additionally is space and velocity dependent. The linear factor
itself satisfies a newly derived equation. After further linearizations we observe that this
factor in fact is determined by an ordinary differential equation. In order to compute the
value of α this ordinary differential equation has to be solved. The current state and demand
f̄(t, x, y) as well as the derivatives of φ with respect to f enter in this computations. The
precise derivation will be given in Section 2 together with some numerical results.

2. The control law

We derive the closed loop control law in this section. We assume at first that the demand
f̄(t, x, y) is known over a time interval [0, T ]. In this case the best possible choice for the
parameter α is obtained as solution to an optimal control problem. Consider the mean
squared deviation in f on the full space R × [0, T ] × Rn and minimize this distance with
respect to α. To be more precise, consider the problem

min

∫
1

2

(
f − f̄

)2
dxdydt (2.1)

subject to (2.2)

∂tf + ∂x (vf) +∇y · Ef = 0, f(x, 0, y) = f0 (2.3)

Here, f0 is the given initial supply of parts. Formally [26], the optimal priority α satisfies
the first–order optimality system

∂tf + ∂x (vf) +∇y · Ef = 0, f(x, 0, y) = f0 (2.4)

−∂tλ− v∂xλ+ v∗ +∇yλ · E = f − f̄ , λ(x, T, y) = 0 (2.5)∫
(−∂xλ)fvδαdxdy = 0. (2.6)

The functions v∗ and vδα are defined as follows:

v∗ =

∫
vz(x, t, η)∂x (λ(t, x, η)) f(t, x, η)H(p(η, α)− p(y, α))dη (2.7)

vδα =

∫
vz(x, t, η) (∆εH(p(η, α)− p(y, α))) (∂αp(η, α)− ∂αp(y, α)) f(η)dη. (2.8)

For the detailed computations we refer to the appendix A. Since H is not differentiable we
introduce a smoothed version as

∆εH(x) =
1

2ε
(H(x+ ε)−H(x− ε)) ,

and where
vz(x, t, y) := ∂φfv(x, t, φf (p(y, α), α)).

The previous equations can be easily deduced. The only interesting part in the previous
derivation of the optimality system is the derivative of v = v(x, t, φf (p(y, α), α)). Since φf is
depending on the non–differentiable Heavi–side function H. We have the following lemma.
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Lemma 2.1. Let v = v(x, t, z) and p = p(y, α) be smooth functions in their arguments.
Let φf (q, α) =

∫
H(q − p(η, α)f(η)dη. Let ε > 0 be given. Then, an approximation of order

ε to the derivative in direction δα is

∂αv(x, t, φf (p(y, α), α)) := vz(x, t, φf (p(y, α), α)) ·∫
∆εH(p(η, α)− p(y, α))(∂αp(η, α)− ∂αp(y, α))f(η)dη

and the derivative in direction δf is

∂fv(x, t, φf (p(y, α), α)δf =

∫
vz(x, t, φf (p(y, α), α)H(p(η, α)− p(y, α)δf(x, t, η)dη

respectively.

Proof. The second derivative is obvious. We compute the derivative with respect to α by
replacing H(x) with a finite–difference approximation of ∂x(xH(x)):

H(x) =
1

2ε

(
(x+ ε)H(x+ ε)− (x− ε)H(x− ε)

)
+O(ε2).

Hence, we obtain an approximation on ∂xH(x) as ∂xH(x) = ∆εH(x) which yields the pre-
vious formula.

The major drawback of the optimality system (2.4) is the explicit dependence of its
solution (f, λ, α) on the full time evolution f̄ . Thinking of possibly random demands over
time this knowledge is not easily available. Therefore, we look for a formulation allowing the
controls α depending only on the current demand (x, y)→ f̄(t, x, y) at time t and the state
of the system f(t, x, y). Obviously, any choice depending on this local information yields a
suboptimal control to the system. However, we show later on in the numerical results that
this choice is at least better than any a priori choice of α(t).

A reasonable control strategy is devised as follows. Starting from the optimality system
(2.4) and we approximate the full adjoint state λ by a linear function G. More precisely,
assume from now on that (2.9) holds true.

Assumption 2.1.

λ(x, t, y) = G(x, y)
(
f(x, t, y)− f̄(x, t, y)

)
. (2.9)

Remark 2.1. The idea to replace the adjoint variable by an unknown linear operator
G(x, y) is in analogy to LQ–controllers. Those are common practice in the design of a
feedback controller. There, typically the dynamics is x′(t) = Ax(t) + Bu(t) with a cost∫∞

0
x′(t)Qx(t) + u′(t)Ru(t)dt. The ansatz u(t) = Kx(t) leads to the so–called Riccati equa-

tion. We try to mimic this procedure in the nonlinear and partial differential equations case
and obtain in equation (2.13) the corresponding equation for G.

We furthermore assume that the given demand f̄ is a solution to the kinetic equation,
i.e., f̄ is a reachable state. Additionally, we assume that the difference between f̄ and f is
sufficiently small at some given time t.

Assumption 2.2.

f̄(x, t, y) solves (1.1), ‖f(t, ·, ·)− f̄(t, ·, ·)‖W 1,∞ 6 δ. (2.10)
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Now, we insert the ansatz for λ in (2.5), multiply (2.4) by G and add both equations.

−vGx(f − f̄)− vG(f − f̄)x +G(vf)x −G(v̄f̄)x + v∗ (2.11)

+∇y ·
(
EG(f − f̄)

)
+GE · ∇y(f − f̄) = f − f̄ (2.12)

Here, v̄ denotes the velocity corresponding to f̄ , i.e., v̄ = v(x, t, φf̄ ). Note that φf is linear
in f and v is supposed to be a smooth function in x, t and φf . Hence, ‖f(t, ·)− f̄(t, ·)‖ 6 δ
implies that v̄ = v +O(δ). Furthermore, we have

v∗ =

∫
vz(x, t, η)∂x

(
G(f − f̄)

)
(t, x, η)f(t, x, η)H(p(η, α)− p(y, α))dη.

Due to assumption (2.10), we have v∗ = O(δ). We further simplify the equation by consid-
ering only terms linear in f − f̄ . We neglect all terms having derivatives on f and f̄ . Hence,
the simplified equation for G up to order O(δ) reads(

−vGx +Gvx − 1 +∇y · (EG)
)

(f − f̄) = 0. (2.13)

Note that the term −1 appears to the right-hand side in equation (2.12). The term v∗ is
of order O(δ) and has been dropped, simiarly, the term ∇y(f − f̄) has been dropped. The
terms G(vf)x−G(v̄f̄)x = G(vf)−G(vf̄)x + o(δ) = G(v(f − f̄))x + o(δ) ≈ Gvx(f − f̄). Note
that this equation can be solved for G independent of f − f̄ , similar to the Riccati equation
for a linear feedback controller.

Last, we use the representation of λ in terms of G in order to obtain the final control law.
We apply a single step of a Gauss–Seidel method to (2.4)–(2.6). Note that this corresponds
to a single step of a steepest descent method applied to the probem (2.1). Starting with
α ≡ 0 we obtain

αnew(t) =

∫
∂xλfvδαdxdy a.e. t (2.14)

We use this result and the previous computations to define the closed loop feedback control

αctrl(t) :=

∫
∂x(G(x, y) · (f(t, ·)− f̄(t, ·)))f(t, ·)vδαdxdy (2.15)

Here, G is the solution to (2.13) at time t. The concept of using a one–step steepest descent
method as control law has also been applied in the case of the Navier–Stokes equation, see
e.g. [19]. Therein, it has shown that this control leads to a suboptimal control strategy.
However, here we have an additional linearization procedure employed in order to obtain a
suitable formulation for G(x, y) not depending on the full adjoint state.

Note that αctrl is explicit and depends only on the knowledge of the current state of the
system and the current data f̄ . There is no need to solve an optimal control problem.

Clearly, due to the previous assumptions αctrl is only an approximation to the first
iteration of a steepest descent method for the full control problem (2.1). However, the focus
is not on a time–optimal control but rather on a feedback control with validation given
through the equations.

We test the control law in a numerical simulation of the kinetic equation with x, yi ∈
[0, 1]2. We chose E ≡ 0 and p(y, α) = αy1 + y2. The smoothing parameter for the Heavi–
side function is ε = 10−2 and we use Ny and Nx discretization points in space y and x,
respectively. We use a maximal time horizon T = 2 and set f(t = 0, x, y1, y2) = H(1

4
−x) The



Feedback controls for continuous priority models in supply chain management 211

time–discretization is chosen such that the CFL condition is satisfied, i.e., ∆t
∆x

maxx,y,t ‖v‖ 6
1. Since v > 0 we apply a first–order Upwind discretization in x and an explicit Euler–
discretization in t to equation (1.1). We compute the controlled case and the case of an
a priori fixed control α ≡ 0. In the controlled case we compute α according to equation
(2.15). This amounts in solving (2.13) at every time step. The ordinary differential equation
is solved using the implicit Euler method on the same grid as f. As example we prescribe
as desired state f̄(t, x, y1, y2) = 1−H(y2 − 4

5
). We show the evolution of the costs over time

as well as the chosen control αctrl. The evolution is compared with a fixed choice of α. The
results are depicted in Figure 2.1. In the second example we consider two states f̄0 and
f̄1. The initial data is f 0 := f(t = 0, x, y1, y2) = y1H(1

4
− x). The states f̄0 and f̄1 are the

solution to ( 1.1) with initial data f 0 and for α ≡ 0 and α ≡ 1, respectively. The desired
state is f̄ = f̄0H(2 − t) + f̄1H(t − 2)H(7.5 − t) + f̄0H(7.5 − t). Hence, there is a need to
modify the control in the time–interval t ∈ [2, 7.5]. The costs over time for fixed controls and
the control law are depicted in Figure 2.2.
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Figure 2.1. Fully discretized kinetic equation with Nx = Ny = 20. Left part is the cost functional over

time in the controlled (dotted) and uncontrolled (solid line) case in the right part depicts the control over

time for both cases

3. Summary

Using the first–order optimality system for a priority supply chain model we derive a feedback
control law for priority scheduling. Numerical results for the kinetic equation are given and
show the expected behavior.

A. Formal derivation of the optimality system to (2.1)

The first–order optimality system to (2.1) can formally be derived using the following cal-
culus. For a given terminal time T > 0 we introduce the Lagrange function to the system
(2.1) as

L(f, λ, α) =

∫
R

∫
R

∫ T

0

1

2

(
f − f̄

)2 − λ∂tf − λ∂x(vf)− λ∇y · Efdxdydt.

The dependence of L on α is through the function v defined in equation (1.2). Using integra-
tion by parts and assuming that f decays to zero for x, y → ±∞ we obtain a reformulation
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Figure 2.2. Fully discretized kinetic equation with Nx = Ny = 20. Evolution of the cost functional over

time for various choices of α

of L as

L(f, λ, α) =

∫
R

∫
R

∫ T

0

1

2

(
f − f̄

)2
+ (∂tλ+ ∂xλ(v) +∇yλ · E) fdxdydt

−
∫
R

∫
R
λ(x, T, y)f(x, T, y)− λ(x, 0, y)f0(x, y)dxdy.

Now, the formal first–order optimality system is obtained by computing the derivative with
respect to f , λ and α, respectively. The derivative with respect to λ yields equation (2.4).
The derivative with respect to f yields equation (2.5) and the derivative with respect to α
yields (2.6). We discuss the derivative with respect to α = α(t) in more detail: we consider a
smooth variation of δα(t) . Since only v depends on α we are lead to consider the difference

vα(t)+δα(t) − vα(t) =

∫
R

∫
R
(−∂xλ)fvδα (δα(t)) dtdxdy + o(‖δα‖).

Equation (2.4) is the pointwise in time formulation of the previous equation.
Acknowledgments. Michael Herty wants to thank the Arizona State University for

their hospitality.
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