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Fast Quadrature Techniques for Retarded
Potentials Based on TT/QTT Tensor

Approximation

Boris Khoromskij · Stefan Sauter · Alexander Veit

Abstract — We consider the Galerkin approach for the numerical solution of retarded
boundary integral formulations of the three dimensional wave equation in unbounded
domains. Recently smooth and compactly supported basis functions in time were in-
troduced which allow the use of standard quadrature rules in order to compute the
entries of the boundary element matrix. In this paper, we use TT and QTT tensor
approximations to increase the efficiency of these quadrature rules. Various numerical
experiments show the substantial reduction of the computational cost that is needed
to obtain accurate approximations for the arising integrals.

2010 Mathematical subject classification: 65F30; 65F50; 65N38; 65F10.

Keywords: multi-dimensional problems; tensor approximation; quantized representa-
tion of vectors; model reduction; retarded potentials; 3D wave equation; quadrature
rules.

1. Introduction

Acoustic and electromagnetic scattering problems in three dimensions have a wide range
of practical applications in physics and engineering. An important model problem for the
development of efficient and accurate numerical methods for such types of time-dependent
physical applications is the three-dimensional wave equation in unbounded exterior domains.
Here, boundary element methods show their natural strength, reducing the problem in the
unbounded domain to integral equations on the bounded surface of the scatterer.

The efficient numerical solution of such retarded boundary integral equations has gained
growing attention in the last years. Existing approaches include methods based on convo-
lution quadrature (cf. [3, 4, 5, 11, 12]) and methods based on bandlimited interpolation
and extrapolation (cf. [32, 33, 34, 36]). Here, we consider a Galerkin method in order to
discretize the integral equations in space and time (cf. [2, 6, 8, 9]). It can be shown that
the corresponding space-time variational formulation in this approach satisfies a coercivity
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property which ensures the unconditional stability of conforming Galerkin schemes. Fur-
thermore, this approach is very flexible with regard to the use of variable time stepping
and spatially curved scatterers. The standard Galerkin approach uses piecewise polynomial
basis functions in time. The drawback of the method in this case is that due to the retarded
time argument the domain for the spatial integration is the intersection of (possibly curved)
pairs of surface panels with the discrete light cone. The stable numerical handling of these
intersections is complicated even for flat panels and might be intractable for curved surface
patches. We refer to [7, 21, 29] for examples of quadrature schemes tailored to this problem.

In [26] smooth and compactly supported basis functions in time were introduced. This
choice circumvents the problem of integrating on the complicated intersections of the discrete
light cone with the spatial surface mesh and allows to apply standard quadrature rules to
compute the entries of the boundary element matrix. Due to the compact support of the
basis functions the sparsity of the system matrix is maintained. On the other hand this leads
to C∞ but, in general, non-analytic integrands, which makes the quadrature problem more
difficult. In general, more quadrature points have to be used as for analytic integrands as
they arise, e.g., for boundary element methods applied to elliptic boundary value problems.

In this paper we therefore address the problem how to efficiently evaluate the arising
integrals using tensor Gauss quadrature and TT/QTT approximation. Note, that other
techniques such as sparse, possibly adaptive quadrature also have the potential to be applied
to this problem. Preliminary test with sparse grid quadrature indicates, that our TT/QTT
approach is preferable for this class of problems, especially if high accuracies are needed.
However an asymptotic complexity analysis still has to be done.

The integrals which define the entries of the block system matrix are defined over pairs
of surface panels. They are transformed to the reference triangle in Euclidean space and by
applying simplex coordinates the quadrature problems boils down to the approximation of
an integral over the four-dimensional unit cube. A tensor quadrature rule applied to these
integrals leads to a four dimensional tensor A of size N ×N ×N ×N , whose entries are the
values of the integrand evaluated at the different quadrature points.

To reduce the storage and computational costs to handle this large data array, we apply
the methods of tensor approximation based on the idea of separation of variables. There
are various tensor-product formats which allow the low parametric representation of high-
dimensional data. The most commonly used are the canonical, Tucker formats as well as the
class of so-called matrix product states (MPS) representations [35, 30, 31] commonly used in
high-dimensional quantum computations (see survey paper [16] for more details). Recently
these types of tensor formats have attracted much attention in the community of numerical
analysis. In particular, the hierarchical Tucker [13], the tensor train (TT) [23] and the tensor
chain (TC) [17] formats were considered. In the following we make use of the TT format
applied to both the initial fourth order tensor and to its quantized-TT (QTT) representation.
Such representations allow to reduce the asymptotical storage and computational costs of
certain bilinear tensor operations from O(N4) to O(r2N) or even to O(r2 logN) (avoiding
the dependence on the grid-size), where r is the small rank parameter, characterizing the
separability properties of the target tensor A. Notice that the hierarchical Tucker format was
recently applied in the same spirit to computation of certain multivariate integrals arising
in boundary element methods [1].

Various numerical experiments show that these tensors have usually a low rank represen-
tation in TT and QTT format which reduces the storage and computational cost substan-
tially. The evaluation of the quadrature then corresponds to a simple scalar product of the
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TT/QTT representation of A and a rank-1 tensor containing the weights of the quadrature
rule. This evaluation can be performed considerably faster compared to the standard ap-
proach. In order to compute the TT/QTT approximation of A directly, without computing
A itself, we apply a TT cross approximation scheme (cf. [24]) in the QTT format. This
further reduces the computational cost, since considerably less evaluations of the integrand
are required. We perform numerical experiments to show the efficiency of this scheme in our
case.

Note that our sparse approximation method for high-dimensional quadrature problems
is by no means restricted to the retarded potential integral equation but, potentially, can
be applied to a much larger class of problems. We restricted to this application because
quadrature is the major bottleneck for the direct discretization of retarded potentials.

2. Problem Setting

Let Ω ⊂ R
3 be a Lipschitz domain with boundary Γ. We consider the homogeneous wave

equation
∂2t u−∆u = 0 in Ω× [0, T ] (2.1a)

with initial conditions
u(·, 0) = ∂tu(·, 0) = 0 in Ω (2.1b)

and Dirichlet boundary conditions

u = g on Γ× [0, T ] (2.1c)

on a time interval [0, T ] for T > 0. In applications, Ω is often the unbounded exterior of
a bounded domain. For such problems, the method of boundary integral equations is an
elegant tool where this partial differential equation is transformed to an equation on the
bounded surface Γ. We employ an ansatz as a single layer potential for the solution u

u(x, t) := Sφ(x, t) :=

∫

Γ

φ(y, t− ‖x− y‖)

4π‖x− y‖
dΓy, (x, t) ∈ Ω× [0, T ] (2.2)

with unknown density function φ. S is also referred to as retarded single layer potential due
to the retarded time argument t− ‖x− y‖ which connects time and space variables.

The ansatz (2.2) satisfies the wave equation (2.1a) and the initial conditions (2.1b). Since
the single layer potential can be extended continuously to the boundary Γ, the unknown
density function φ is determined such that the boundary conditions (2.1c) are satisfied. This
results in the boundary integral equation for φ,

∫

Γ

φ(y, t− ‖x− y‖)

4π‖x− y‖
dΓy = g(x, t) ∀(x, t) ∈ Γ× [0, T ] . (2.3)

In order to solve this boundary integral equation numerically we introduce the following
space-time variational formulation (cf. [2, 8]): Find φ in an appropriate Sobolev space V
such that

∫ T

0

∫

Γ

∫

Γ

φ̇(y, t− ‖x− y‖)ζ(x, t)

4π‖x− y‖
dΓydΓxdt =

∫ T

0

∫

Γ

ġ(x, t)ζ(x, t)dΓxdt (2.4)

for all ζ ∈ V , where we denote by φ̇ the derivative with respect to time.



Fast quadrature techniques for retarded potentials 345

Let VGalerkin be a finite dimensional subspace of V being spanned by L basis functions
{bi}

L
i=1 in time and M basis functions {ϕj}

M
j=1 in space. This leads to the fully discrete

ansatz

φGalerkin(x, t) =
L∑

i=1

M∑

j=1

α
j
iϕj(x)bi(t), (x, t) ∈ Γ× [0, T ] , (2.5)

where αj
i are the unknown coefficients. Plugging this ansatz in (2.4) and rearranging terms

shows that this is equivalent to: Find αj
i for i = 1, . . . , L and j = 1, . . . ,M such that

L∑

i=1

M∑

j=1

A
i,k
j,lα

j
i = gkl ∀1 6 k 6 L ∀1 6 l 6M, (2.6)

where

gkl :=

∫ T

0

∫

Γ

ġ(x, t)ϕl(x) bk(t)dΓxdt

and

A
i,k
j,l :=

∫

supp(ϕl)

∫

supp(ϕj)

ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx. (2.7)

The function ψi,k contains the time integration and is defined, for s > 0, by

ψi,k(s) :=

∫ T

0

ḃi(t− s)bk(t)

4πs
dt. (2.8)

Let G :=
{
τi : 1 6 i 6 M

}
denote a finite element mesh on Γ consisting of (possibly curved)

triangles. More precisely, we assume that for any τ ∈ G, there exists a smooth bijection
χτ : τ̂ → τ from the reference element τ̂ := conv {(0, 0)⊺ , (1, 0)⊺ , (1, 1)⊺} to the surface
triangle τ . Then, in the solution process, the following quadrature problem arises: For
τ, τ̃ ∈ G and 1 6 j, l 6 M , compute

I
i,k
τ,τ̃ (ϕj, ϕl) :=

∫

τ

∫

τ̃

ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx, (2.9)

where ϕj and ϕl, typically, are lifted polynomials, i.e., ϕj ◦ χτ and ϕl ◦ χτ̃ are polynomials
on τ̂ .

The definition of smooth and compactly supported temporal shape functions was ad-
dressed in [26] and is as follows. Let

f (t) :=





1
2
erf (2 artanh t) + 1

2
|t| < 1,

0 t 6 −1,
1 t > 1

and note, that f ∈ C∞ (R). Next, we will introduce some scaling. For a function g ∈
C0 ([−1, 1]) and real numbers a < b, we define ga,b ∈ C0 ([a, b]) by

ga,b (t) := g

(
2
t− a

b− a
− 1

)
.

We obtain a bump function on the interval [a, c] with joint b ∈ (a, c) by

ρa,b,c (t) :=





fa,b (t) a 6 t 6 b,

1− fb,c (t) b 6 t 6 c,

0 otherwise.
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Let us now consider the closed interval [0, T ] and l (not necessarily equidistant) timesteps

0 = t0 < t1 < . . . tl−2 < tl−1 = T.

We define τi := [ti−1, ti] for i = 1, ..., l − 1. Then T := {ωi : 1 6 i 6 l − 1} with

ω1 := τ1, ωl := τl−1, ∀2 6 i 6 l − 1 ωi := τi−1 ∪ τi

defines a cover of [0, T ]. A smooth partition of unity subordinate to T then is defined by

ϕ1 := 1− ft0,t1 , ϕl := ftl−2,l−1
, ∀2 6 i 6 l − 1 : ϕi := ρti−2,ti−1,ti .

Smooth and compactly supported basis functions in time can then be obtained by multiplying
these partition of unity functions with suitably scaled Legendre polynomials (cf. [26] for
details).

Remark 2.1. In the case of lowest order basis functions in time we have l = L and

bi(t) = ϕi(t) for i = 1, . . . , L.

With the above definitions it then holds for ψi,k as defined in (2.8) that:

1. suppψi,k ⊂ [tk−2 − ti, tk − ti−2].

2. In particular, ψi,k = 0 for k 6 i− 2.

3. Let R (τ, τ̃ ) := [dist (τ, τ̃ ) ,maxdist (τ, τ̃)], where maxdist (τ, τ̃) := sup(x,y)∈τ×τ̃ ‖x− y‖.
Then,

I
i,k
τ,τ̃ (ϕj , ϕl) = 0 if R (τ, τ̃) ∩ [tk−2 − ti, tk − ti−2] = ∅.

For higher order basis functions in time similar results can be obtained. Let

I (τ, τ̃ ) :=
{
(i, k) ∈ {1, 2, . . . , L}2 | I i,kτ,τ̃ (ϕj , ϕl) 6= 0

}

and, vice versa,

I (i, k) :=
{
(τ, τ̃) ∈ G × G | I i,kτ,τ̃ (ϕj , ϕl) 6= 0

}
.

Note that the index sets I (τ, τ̃ ) and I (i, k) are sparse.

Our goal is, in the following, to approximate I i,kτ,τ̃ (ϕj, ϕl) efficiently using TT- and QTT-
approximations. For simplicity we assume that we have piecewise constant basis functions
in space so that suppϕl = τ and suppϕk = τ̃ with τ, τ̃ ∈ G. In general these basis functions
are lifted piecewise polynomials and typically of low order. Since the use of such low order
basis functions in space will not lead to significantly more oscillatory integrands, we do not
expect a severe impact of this more general case on the rank decomposition in TT/QTT
format.

Because simplex coordinates transform triangles to squares, integrals of the form (2.9)
can be written as

∫

τ

∫

τ̃

ψi,k (‖x− y‖)dΓydΓx =
∫

[0,1]4
4|τ ||τ̃ |ξxξy ψi,k(‖χτ (ξx, ξxηx)− χτ̃ (ξy, ξyηy)‖)︸ ︷︷ ︸

=:f(ξx,ηx,ξy,ηy)

dηydξydηxdξx.
(2.10)
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We apply properly scaled tensor Gauss-Legendre quadrature rules for the numerical approx-
imation of the arising integrals over the four-dimensional unit cube. Let n1, n2, n3, n4 ∈ N>0

be the number of Gauss quadrature points in the first/second/ third/fourth dimension with
nodes

(x1,i)
n1

i=1, (x2,j)
n2

j=1, (x3,k)
n3

k=1, (x4,l)
n4

l=1 ∈ [0, 1]

and weights

(w1,i)
n1

i=1, (w2,j)
n2

j=1, (w3,k)
n3

k=1, (w4,l)
n4

l=1 ∈ R.

Then,

∫

[0,1]4
f(ξx, ηx, ξy, ηy) dηydξydηxdξx ≈

n1∑

i=1

n2∑

j=1

n3∑

k=1

n4∑

l=1

w1,iw2,jw3,kw4,lf(x1,i, x2,j, x3,k, x4,l).

(2.11)

For simplicity and in order to test the QTT approximation we set n1 = n2 = n3 = n4 =: N
and assume that N is a power of 2. The evaluation of an approximation in the form (2.11) re-
quires O(N4) additions/multiplications and furthermore O(N4) function evaluations. Since
f , or more specifically ψi,k, contains itself an integral, such function evaluations might be
expensive. Due to the non-analyticity of f and the need to compute the integrals (2.10) ac-
curately in order to obtain stable solutions of the time-domain boundary integral equations,
we need a medium number of quadrature points in each direction. Thus, depending on the
required accuracy of the approximation, the quadrature problem can become costly. There-
fore the question arises if the right hand side in (2.11) can be evaluated more efficiently. For
this purpose we will investigate, in the following, the TT and QTT low rank approximations
to the fourth order tensor A = [A(i, j, k, l)] defined entrywise by

A(i, j, k, l) = f(x1,i, x2,j, x3,k, x4,l), (i, j, k, l) ∈ {1, ..., N}4. (2.12)

Note that for the singular case, where dist (τ, τ̃) = 0, regularizing coordinate transforms
have to be applied to remove the singularity of the kernel function (cf. [28], [25]). In this
case, the transformed integral is a sum of integrals over the four-dimensional unit cube and
our compression method can be applied also to these cases. For simplicity we restrict in this
paper to the approximation of the regular integrals.

3. Tensor Approximation of I
i,j
τ,τ̃ (ϕj, ϕl)

In the following we apply the matrix-product states (MPS) type tensor representations in the
form of tensor train (TT) and quantized-TT (QTT) formats to represent sparsely the fourth
order coefficients tensor arising in the quadrature approximation of the above integrals (see
(2.11)).

3.1. Matrix-product states (MPS) tensor formats

A tensor of order d is defined as an element of finite dimensional tensor-product Hilbert space
W

n
≡ W

n,d of the d-fold, N1 × ...×Nd real-valued arrays, and equipped with the Euclidean
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(Frobenius) scalar product 〈·, ·〉 : W
n
×W

n
→ R. Each tensor in W

n
, n = (N1, ..., Nd), can

be represented componentwise,

A = [A(i1, ..., id)] with iℓ ∈ Iℓ := {1, ..., Nℓ},

where for the ease of presentation, we mainly consider the equal-size tensors, i.e., Nℓ = N

(ℓ = 1, ..., d). We call the elements of W
n
= R

I1×...×Id as N -d tensors. The dimension of
the tensor-product Hilbert space W

n
scales exponentially in d, dim W

n,d = Nd implying
exponential storage cost for a general N -d tensor.

In our application the quadrature coefficients for approximating I
i,k
τ,τ̃ (ϕj , ϕl) constitute

the N × N × N × N tensor A of order 4 as in (2.12), requiring N4 storage size. Hence, in
the case of multiple computations of a tensor and high numerical cost of evaluation a single
entry, the calculations become nontractable already for N of order several tens.

The MPS representation of a d-th order tensor reduces the complexity of storage to
O(dr2N), where r is the maximal mode rank [35, 30]. The MPS tensor approximation
was proved to be efficient in high-dimensional electronic/molecular structure calculations,
in quantum computing and in stochastic PDEs (see survey paper [16] for more details). In
the recent mathematical literature the various versions of MPS tensor decomposition were
discovered as the hierarchical Tucker [13], the tensor train (TT) [23] and the tensor chain
(TC) [17] formats. In the following we make use of the TT format applied to both the initial
N -d tensor and to its quantized representation (quantics-TT).

Definition 3.1. (Tensor chain/train format) For a given rank parameter r = (r0, ..., rd),
and the respective index sets Jℓ = {1, ..., rℓ} (ℓ = 0, 1, ..., d), with the periodicity constraints
J0 = Jd (i.e., r0 = rd), the rank-r TC format contains all elements A = [A(i1, ..., id)] ∈ W

n

which can be represented as the chain of contracted products of 3-tensors over the d-fold
product index set J := ×d

ℓ=1Jℓ,

A(i1, ..., id) =
∑

α1∈J1

· · ·
∑

αd∈Jd

A(1)(αd, i1, α1)A
(2)(α1, i2, α2) · · · A

(d)(αd−1, id, αd).

In the matrix form we have the entrywise MPS representation

A(i1, i2, . . . , id) = A
(1)
i1
A

(2)
i2
. . . A

(d)
id
, (3.1)

where each A
(ℓ)
iℓ

is rℓ−1× rℓ matrix. In the case J0 = Jd = {1}, the TC format coincides with
TT representation in [23].

The TC/TT format reduces the storage cost of a N -d tensor to O(dr2N), r = max rℓ.
The important multilinear algebraic operations with TT tensors can be implemented with
linear complexity scaling in d and N . In particular, for the Hadamard product we have

Z = X ◦Y : Z(k)(ik) = X(k)(ik)⊗ Y (k)(ik),

implying the formatted representation of the scalar product (in O(dr3N) ≪ Nd operations)

〈X,Y〉 = 〈X ◦Y, 1〉.

3.2. Quantized-TT (QTT) Approximation of N-d tensors

Further reduction of the asymptotic storage complexity can be based on the so-called quantized-
TT (QTT) representation obtained from the initial N ×N ×N ×N tensor by simple folding
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(reshaping) to a higher dimensional 2× ...× 2 array. It was shown in [17] that the computa-
tional gain of the QTT representation is due to the good separability properties of quantized
images on a large class of function related tensors. In our application we found numerically
the low rank TT/QTT approximations for arising 4th order tensors, indicating nearly the
same data compression for both formats. However, the important motivation to use the
QTT representation is due to the high efficiency of the QTT-cross approximation scheme
ensured by the small mode size (in fact, equals to 2) of the quantized tensors.

We suppose that N = 2L with some L = 1, 2, . . . . The next definition introduces
the folding of N -d tensors into the elements (quantized 2 × ... × 2 tensors) of an auxiliary
D-dimensional tensor space with D = d log2N .

Definition 3.2. ([17]) Introduce the binary folding transform of degree 2 6 L,

Fd,L : W
n,d → W

m,dL, m = (m1, ...,md), mℓ = (mℓ,1, ..., mℓ,L),

with mℓ,ν = 2 for ν = 1, ..., L, (ℓ = 1, ..., d), that reshapes the initial n-d tensor in W
n,d to

elements of the quantized space W
m,dL as follows:

(A) For d = 1 a vector X = [X(i)]i∈I ∈ WN,1, is reshaped to the element of W2,L by

F1,L : X → Y = [Y (j)] := [X(i)], j = {j1, ..., jL},

with jν ∈ {1, 2} for ν = 1, ..., L. For fixed i, jν = jν(i) is defined by jν − 1 = C−1+ν , where
the C−1+ν are found from the binary representation of i− 1,

i− 1 = C0 + C12
1 + · · ·+ CL−12

L−1 ≡
L∑

ν=1

(jν − 1)2ν−1.

(B) For d > 1 the construction is similar.

Notice that the folding transform Fd,L is the linear isometry between WN,d and W2,dL

(see [17]).

Remark 3.1. Every 2-dL tensor in the quantics space W2,dL can be represented (approx-
imated) in the low rank TT format. This leads to the so-called QTT representation of N -d
tensors. Assuming that rk 6 r, k = 1, ..., dL, the complexity of the QTT representation can
be estimated by O(dr2 logN), providing log-volume asymptotics compared with the volume
size of the initial tensor O(Nd).

3.3. Sketch of numerical TT/QTT approximation

The manifold [14] of rank-r TT tensors in W
n

is known to be closed in the Frobenius norm
[24].

From the computational point of view, one of the most attractive features of TT format is
the following: the numerical computation of rk−1×rk matrices A

(k)
ik

in the TT representation
(approximation) of a full format tensor A = [A(i1, ..., id)],

A(i1, i2, . . . , id) = A
(1)
i1
A

(2)
i2
. . . A

(d)
id
,

can be implemented by a stable SVD-based algorithm (MATLAB Toolbox http://spring.

inm.rus.ru/osel). For the completeness of presentation, we sketch the full-to-TT com-
pression algorithm [23], which will be applied in Section 4 to our particular fourth order
coefficients tensor.
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Input: a tensor A of size n1 × n2 · · · × nd and accuracy bound ε > 0.
1: First unfolding: Nr =

∏d
k=2 nk, M := reshape(A, [n1, Nr]).

2: Compute the truncated SVD of M ≈ UΛV , so that the approximate rank r ensures

min(n1,Nr)∑

k=r+1

σ2
k 6

(ε · ‖A‖F )
2

d− 1
.

3: Set A(1) = U , M := ΛV T , r1 = r, and process modes k = 2, ..., d− 1.
4: for k = 2 to d− 1 do
4a: Construct the next unfolding: Nr :=

Nr

nk
, M := reshape(M, [rnk, Nr]).

4b: Compute the truncated SVD of M ≈ UΛV , so that the approximate rank r ensures

min(nk,Nr)∑

k=r+1

σ2
k 6

(ε · ‖A‖F )
2

d− 1
.

4c: Set rk = r and reshape the matrix U into a tensor:

A(k) := reshape(U, [rk−1, nk, rk]).

4d: Recompute M := ΛV .
end for
5: Set A(d) =M .
Output: TT cores Ak, k = 1, . . . d, defining a TT ε-approximation to A.

The above algorithm has the numerical complexity O(nd+1). In the present paper we di-
rectly apply this algorithm to the fourth-order tensor of interest to demonstrate the efficient
rank decomposition in the TT format that reduces drastically the storage and computational
cost. Moreover, assuming the existence of low-rank TT representation the rank-r TT ap-
proximation can be computed by the heuristic algorithm called TT-cross approximation [24]
avoiding the “curse of dimensionality” (see the numerical example below). This algorithm
also applies to QTT format (QTT-cross approximation).

Remark 3.2. Notice that the QTT approximation of the target N × N × N × N tensor
A can be performed by the same decomposition algorithm but applied in the particular
setting nk = 2, d = 4 logN . The rank-r QTT-cross approximation takes the advantage of
low cost O(r4 logN) since, due to the main property of TT-cross algorithm, it calls only for
O(r2 logN) entries of the initial tensor A. In this way, the generation of the full tensor can
be avoided by using the rank-r QTT-cross approximation method that requires to compute
only few entries (chosen adaptively) of the target tensor. The numerical results show that the
compression is comparable with the complete QTT approximation method (see Section 4.6).

3.4. Computation of I i,jτ,τ̃ (ϕj , ϕl) using TT/QTT approximation

Let us denote the TT and QTT representations of A, defined in (2.12), by ATT and AQTT .
An approximation of the integral in (2.11) using these representations instead of A can
be obtained by a simple tensor operation in the quantics space W2,dL, d = 4, L = logN ,
specifically as the scalar product of the rank-1 coefficients tensor W = w1 ⊗ w2 ⊗ w3 ⊗ w4
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with ATT or AQTT . Let

QG := 〈W,A〉 =
N∑

i=1

N∑

j=1

N∑

k=1

N∑

l=1

w1,iw2,jw3,kw4,lf(x1,i, x2,j , x3,k, x4,l), (3.2)

QTT := 〈W,ATT 〉, (3.3)

QQTT := 〈W,AQTT 〉, (3.4)

denote the quadrature formulas based on the different representations of A. As pointed out in
Section 3.1 the cost to evaluate the scalar products QTT or QQTT scales with O(4r3N), where
r is much smaller than N , compared to O(N4) for the exact evaluation of QG. Therefore
the approximations QTT and QQTT can be computed considerably faster, provided that A

has TT and QTT representations with low rank.
Since ATT and AQTT are only approximations of A, the formulas QTT and QQTT in-

troduce additional quadrature errors. An important question therefore is how accurate the
approximations ATT/QTT have to be, such that the relative errors

EG,TT :=
|QG −QTT |

|QG|
and EG,QTT :=

|QG −QQTT |

|QG|
(3.5)

are small and the additional error does not affect the accuracy of the quadrature QG.

4. Numerical Experiments

In the following, we investigate the compression properties of A and the accuracy of QTT

and QQTT using different triangles and time meshes in order to cover various cases, that
might occur during the solution of the discrete system (2.6). Therefore, let

τ := conv
{
(0, 0, 0)T, (1, 0, 0)T , (1, 1, 0)T

}
,

τ̃ := cshift + conv

{
(1, 0, 0)T, (1,

1

2
, 1)T , (0, 1,

1

2
)T

}
,

with cshift ∈ R. These triangles will be used for all numerical experiments. Only cshift ∈ R

is variable and will be set individually for each case. Furthermore we will define different
time grids for each case consisting of six points t1 6 . . . 6 t6 ∈ R>0. We then choose basis
functions b(t) and b̃(t) in time such that supp b = [t1, t3] and supp b̃ = [t4, t6]. More precisely,
b and b̃ will be the smooth bump functions as defined in Section 2 multiplied with properly
scaled Legendre polynomials of degree 1 (cf. [26]), i.e.,

b(t) = ρt1,t2,t3(t)

(
2
t− t1

t3 − t1
− 1

)
and b̃(t) = ρt4,t5,t6(t)

(
2
t− t4

t6 − t4
− 1

)
. (4.1)

Thus, the integrals we want to approximate are of the form

Iτ,τ̃ :=

∫

τ

∫

τ̃

ψ (‖x− y‖) dΓydΓx, (4.2)

with

ψ(s) :=

∫ T

0

ḃ(t− s)b̃(t)

4πs
dt, (4.3)
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Figure 4.1. ψ(s) for the time grid given in (4.4)

where s ∈ R>0. Note that
suppψ = [t4 − t3, t6 − t1].

We denote the domain of the spatial integration by

S =
{
z ∈ R

3 s.t. z = x− y, x ∈ τ, y ∈ τ̃
}

and define

Smin := min
z∈S

‖z‖ = dist(τ, τ̃ ), Smax := max
z∈S

‖z‖ = maxdist(τ, τ̃).

It can be easily seen that the position of triangle τ̃ , i.e. cshift, has to be chosen such that
[SminSmax]∩ [t4− t3, t6− t1] 6= ∅ in order to obtain Iτ,τ̃ 6= 0 (cf. Remark 2.1). In the following
we will perform numerical experiments for the following cases:

1. Smin < t4 − t3 and Smax < t6 − t1. Here, the domain S is only partially enlighted from
one side (cf. Fig. 4.2). The case Smin > t4 − t3 and Smax > t6 − t1 leads to similar
numerical results in our example and will not be treated separately.

2. Smin > t4 − t3 and Smax < t6 − t1. In this case the domain S is completely enlighted
(cf. Fig. 4.4).

3. Smin < t4 − t3 and Smax > t6 − t1. Here, the discrete light cone is a narrow strip (cf.
Fig. 4.6).

4. Smin small. In this case we examine how small distances between the triangles influence
the compression rates.

5. At last we consider the case of higher order basis functions in time and therefore a
more oscillatory function ψ.

Remark 4.1. The following numerical experiments were performed using MATLAB on
an Intel Q8200 processor, 4Gb RAM. The TT/QTT approximations of the tensor A were
computed using the TT-toolbox 1.0 for MATLAB written by I. Oseledets (http://spring.
inm.rus.ru/osel).
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Figure 4.3. Relative singular values of B: Non-zero

entries of B: ≈ 50%

4.1. Case 1: Partially enlighted integration domain

For this case we define the time grid

t1 = 0.6, t2 = 1.2, t3 = 1.7, t4 = 9.8, t5 = 10.5, t6 = 11.0 (4.4)

and cshift = 4.4 such that Smin ≈ 7.2 and Smax ≈ 9.6. This choice of the parameters leads to
a situation as illustrated in Fig. 4.2. The integration domain is only partially enlighted from
one side, which leads (depending of the choice of cshift) to many zero entries in the resulting
tensor A. In this example cshift was chosen such that approximately 50% of the entries of A
are nonzero.

Since we are mostly concerned with far field integrals we expect that a fixed number
of quadrature points leads to a sufficiently high accuracy of the approximations. For the
near field integrals we expect that the number of quadrature points has to be asymptotically
increased, e.g., in a logarithmic way. However a rigorous theoretical analysis of the influence
of the quadrature error on the total discretization error is still open. For the approximation
of Iτ,τ̃ we set N = 32, i.e., we use 32 Gauss quadrature points in each direction leading to a
tensor A with size(A) = 32× 32× 32× 32. In order to compute singular values we reshape
A to a matrix B of size 322×322. Note, that in many cases the number of quadrature points
can be chosen lower in order to obtain accurate approximations.

The table below shows the efficiency of the TT-approximation ATT and the QTT-
approximation AQTT of A. We listed the mean ranks of the corresponding cores for different
approximation accuracies. We additionally computed the singular value decomposition of
B and listed the number of relative singular values that are greater than the prescribed
accuracy. The decay of the singular values is shown in Fig. 4.3. It can be observed that the
ranks of the TT- and QTT-approximation are small, especially for low and medium accura-
cies. The low ranks in this case could be found also for other configurations of the numerical
experiment. In general it can be noticed that the compression in this case is better if many
entries of A are zero or in other words that the enlighted part of the integration domain is
small. (That a sparse A however does not necessarily lead to good compression rates can
be seen in Section 4.3).
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Accuracy Mean rank of ATT Mean rank of AQTT Rel. SV of B
10−2 5.7 8.0 7
10−3 9.4 15.2 12
10−4 13.0 23.1 18
10−5 18.7 33.4 28
10−6 25.4 45.5 41

Table 4.1.

In the next table we compare the time that is needed to compute the approximations
QG, QTT and QQTT for different accuracies of the TT- and QTT-approximation. We assume
that A, ATT , and AQTT are given in each case, so that only the different scalar products (3.2)-
(3.4) have to be evaluated. Furthermore we compute the relative errors EG,TT and EG,QTT

(cf. (3.5)) in order to see the effect of the additional approximation on the quadrature result.

Accuracy Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 2 · 10−3 9.8 2 · 10−4

10−3 100 1.3 4 · 10−5 10.1 1 · 10−4

10−4 100 1.4 2 · 10−6 10.3 6 · 10−6

10−5 100 1.5 1 · 10−7 10.8 2 · 10−7

10−6 100 1.6 7 · 10−8 11.2 4 · 10−8

Table 4.2.

It can be seen above that the evaluation of QTT and QQTT is considerably faster than
the evaluation of QG due to the low ranks of ATT and AQTT and the induced low num-
ber of arithmetic operations that are needed to compute the corresponding scalar products.
Furthermore it can be observed that the errors EG,TT and EG,QTT are small even for low
and medium accuracies of the TT- and QTT-approximation. In this case it is sufficient to
determine ATT and AQTT with relatively low accuracy in order to obtain accurate approx-
imations for QG. On the one hand this is advantageous since we benefit from low ranks in
this case and on the other hand the computation of ATT and AQTT directly via TT/QTT
cross approximation becomes cheaper as well (cf. Section 4.6).

4.2. Case 2: Completely enlighted integration domain

For this case we again use the time grid (4.4) and set cshift = 5.1 such that Smin ≈ 8.42
and Smax ≈ 10.28. We are therefore in the situation where the integration domain τ × τ̃

is completely enlighted (cf. Fig. 4.4). Thus, A is in general densely populated with no
vanishing entries. We set again N = 32 and compute the mean ranks of the TT- and QTT
approximation of A. The decay of the relative singular values of the reshaped matrix B is
shown in Fig. 4.5.

The results of the numerical experiments indicate that the compression rates in this case
are very similar to Case 1. Thus a fully populated tensor A does not have a severe negative
impact on the ranks of ATT and AQTT compared to a situation where the integration domain
ist only partially enlighted and similar basis functions in time are used. The next table shows
the time that is needed to compute the different approximations of Iτ,τ̃ . Thereby we again
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Figure 4.5. Relative singular values of B. Non-zero

entries of B: 100%

Accuracy Mean rank of ATT Mean rank of AQTT Rel. SV of B
10−2 6.7 10.4 9
10−3 9.8 18.2 14
10−4 13.4 29.1 20
10−5 18.4 40.5 29
10−6 25.0 53.3 42

Table 4.3.

Accuracy Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 7 · 10−3 10.0 5 · 10−2

10−3 100 1.4 1 · 10−3 10.3 4 · 10−4

10−4 100 1.4 8 · 10−5 10.6 4 · 10−5

10−5 100 1.5 3 · 10−6 10.8 3 · 10−6

10−6 100 1.7 4 · 10−8 11.3 1 · 10−8

Table 4.4.

assume that A,ATT and AQTT are given for each accuracy. As expected the evaluation of the
scalar product using the TT- and QTT approximation is considerably faster. Furthermore,
the relative errors EG,TT and EG,QTT are, as in the previous case, small for medium accuracies
of ATT and AQTT .

4.3. Case 3: Narrow discrete light cone

Here we want to examine how a narrow discrete light cone, i.e., the support of ψ is a small
interval, influences the compression rates. Therefore we consider the time mesh

t1 = 0.6, t2 = 0.8, t3 = 1.0, t4 = 10.3, t5 = 10.45, t6 = 10.7
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Figure 4.7. Relative singular values of B. Non-zero

entries of B: ≈ 64%

such that suppψ = [9.3, 10.1]. Choosing cshift = 5.4 leads to the case where Smin < 9.3 and
Smax > 10.1. We are thus in the situation illustrated in Fig. 4.6. We set again N = 32 and
compute the mean ranks of the TT- and QTT approximation of A which has approximately
64% nonzero entries. The decay of the relative singular values of the reshaped matrix B is
shown in Fig. 4.7.

Accuracy Mean rank of ATT Mean rank of AQTT Rel. SV of B
10−2 14.4 21.8 23
10−3 23.3 46.8 37
10−4 33.2 69.7 60
10−5 44.3 97.1 89
10−6 57.0 130.1 126

Table 4.5.

As one can see in the table above, the compression rates are worse than in the previous
cases. This is not surprising since ψ has the same oscillatory behavior as before but varies
on a smaller interval. The approximation of the tensor A, which is based on the evaluation
of ψ at different points in τ × τ̃ and not only in a narrow strip containing the discrete light
cone, is therefore clearly more difficult. This is confirmed by various numerical experiments.
The narrower the discrete light cone is, the higher are the mean ranks of the TT- and QTT
approximation of A in general. This case is therefore an example where a more sparse A

does not lead to better compression rates.
Although the mean ranks of ATT and AQTT are larger here than in the previous cases,

the compression is still good enough to reduce the computing times of the quadratures
considerably. Another effect that can be observed here is, that the errors EG,TT and EG,QTT

decay slower than before. The approximations of A have therefore to be computed with
higher accuracy in order to obtain good approximations of QG.
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Accuracy Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 4 · 10−1 9.0 6 · 10−1

10−3 100 1.4 1 · 10−2 9.5 2 · 10−2

10−4 100 1.6 1 · 10−4 10.2 1 · 10−3

10−5 100 1.8 5 · 10−5 11.1 5 · 10−5

10−6 100 2.1 1 · 10−6 12.4 1 · 10−6

Table 4.6.

4.4. Case 4: Near field integrals

We now want to test the compression rates in the case where the triangles in (4.2) are close
to each other. Since the integrand in (4.2) is weakly singular for x = y, the convergence
rates of standard quadrature rules deteriorate for dist(τ, τ̃) → 0. We examine if low distances
between the triangles also have a negative influence on the compression rates of the TT- and
QTT-approximation. In order to test this numerically we use the triangles τ, τ̃ as before and
set cshift = 1. In this case we have

dist(τ, τ̃ ) ≈ 1.44 and maxdist(τ, τ̃) ≈ 3.20.

As time grid we choose

t1 = 0.6, t2 = 1.2, t3 = 1.9, t4 = 4.2, t5 = 4.7, t6 = 5.7,

such that suppψ = [2.3, 5.1]. Thus, we are in the case of a partially enlighted integration
domain as in Case 1. Setting again N = 32, we obtain the following mean ranks for ATT and
AQTT . As we can see above small distances between the triangles τ and τ̃ do not have an

Accuracy Mean rank of ATT EG,TT Mean rank of AQTT EG,QTT

10−2 5.5 4 · 10−3 7.4 1 · 10−3

10−3 9.1 2 · 10−4 13.6 6 · 10−4

10−4 13.8 2 · 10−6 22.1 4 · 10−5

10−5 20.0 9 · 10−7 33.2 5 · 10−7

10−6 27.4 1 · 10−8 46.0 3 · 10−8

Table 4.7.

influence on the compression rates of the TT- and QTT approximation and that the ranks
are comparable to those in Case 1. Note however that the number of Gauss points N usually
has to be chosen larger for such near field integrals in order to preserve a certain accuracy
of the quadrature rule (cf. [25]).

As in Case 1, EG,TT and EG,QTT are quickly decreasing such that a relatively low accuracy
of ATT and AQTT is sufficient for the quadrature. The computing times for QTT and QQTT

are very similar to those in Case 1 and we therefore refrain from listing them here.

4.5. Case 5: Higher order basis functions in time

At last we examine the case of a higher order of the basis functions than considered before.
Therefore we adopt the setting in Case 1, i.e., we use the time grid (4.4) and set cshift=4.4.
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Figure 4.9. Plot of ψhigh,2

Instead of using the basis function in (4.1) we first set

b(t) = ρt1,t2,t3(t)P2

(
2
t− t1

t3 − t1
− 1

)
and b̃(t) = ρt4,t5,t6(t)P3

(
2
t− t4

t6 − t4
− 1

)
,

where Pp denotes Legendre polynomials of degree p. We denote the corresponding function
ψ in (4.3) by ψhigh,1 (cf. Fig. 4.8). As a second example we choose

b(t) = ρt1,t2,t3(t)P5

(
2
t− t1

t3 − t1
− 1

)
and b̃(t) = ρt4,t5,t6(t)P5

(
2
t− t4

t6 − t4
− 1

)
.

As above we denote the corresponding ψ in (4.3) by ψhigh,2 (cf. Fig. 4.9). In the following
we list the mean ranks and the relative errors for both settings.

Accuracy Mean rank of ATT EG,TT Mean rank of AQTT EG,QTT

10−2 4.7 4 · 10−3 7.0 3 · 10−3

10−3 8.5 6 · 10−5 13.3 2 · 10−4

10−4 12.5 4 · 10−5 22.1 6 · 10−5

10−5 18.3 6 · 10−6 32.2 1 · 10−5

10−6 24.7 6 · 10−7 44.6 1 · 10−6

Table 4.8.

The table above shows the results for case ψhigh,1. As we can see the mean ranks are
not affected by the higher order of the basis functions in this example. They are even
slightly lower than in Case 1. This is due to the fact that ψhigh,1 is not considerably more
oscillating than ψ in Case 1 even though Legendre polynomials of higher order are involved.
In order to see a negative effect of higher order basis function we have to consider Legendre
polynomials of degree 5, i.e. ψhigh,2, as the next table shows. Also here we can see that the
compression rates are not considerably worse than before or in Case 1 even though ψhigh,2

is more oscillatory now. A negative aspect that becomes evident, however, is the slower
decrease of EG,TT and EG,QTT .
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Accuracy Mean rank of ATT EG,TT Mean rank of AQTT EG,QTT

10−2 5.5 5 · 10−1 9.1 6 · 10−1

10−3 10.7 1 · 10−2 16.8 3 · 10−3

10−4 14.3 1 · 10−3 26.8 7 · 10−5

10−5 20.8 4 · 10−5 37.7 2 · 10−5

10−6 27.5 1 · 10−5 50.9 2 · 10−5

10−7 44.3 5 · 10−7 77.6 1 · 10−6

Table 4.9.

4.6. Example on QTT-cross approximation

As it was mentioned in Remark 3.2 the rank-r QTT-cross approximation takes the advantage
of the log-volume cost O(r4 logN) requiring an evaluation of only O(r2 logN) ≪ N4 entries.
In the following we give the numerical illustration on QTT-cross approximation for Case
1 above. The next table presents the results of ε-QTT-cross approximation of the target
tensor A of size 32 × 32 × 32 × 32. We give the CPU time (sec.), QTT and TT ε-ranks
and the relative storage size for the obtained TT and QTT approximations. In all cases
the storage cost of QTT representation is lower than those for the TT-format. Finally we

ε 10−6 10−5 10−4

Time (sec.) 10.4 6.3 3.1
QTT-rank 31 21 14
TT-rank 18 13 9

stor(TT)/stor(QTT) 1.14 1.17 1.24

Table 4.10.

notice that the numerical evaluation of the full tensor A amounts to 321 seconds. For the
evaluation of the tensor entries we approximated ψ in (4.3) using Gauss quadrature with 100
points. This high order of approximation is necessary in order to maintain the smoothness of
the integrand which is crucial for the good compression rates observed above. Note that an
accurate approximation of the 1-dimensional function ψ(s) on a suitable interval by simpler
functions, e.g., (piecewise) polynomials, could lead to a further reduction of the computing
times.

5. Conclusion

In this paper, we have presented a new method for the efficient evaluation of the integrals
which arise from the direct discretization of retarded potential integral operators. Since
the integrands are C∞ but, in general, not analytic the number of quadrature points is
relatively large while the total number of such integrals is huge during the generation of
the system matrix. We have introduced the TT and the QTT representations for the four-
dimensional quadrature tensors arising from the evaluation of the (transformed) integrands
at the quadrature points in the four-dimensional unit cube. We have systematically tested
the sensitivity of the algorithm with respect a) to different cases how the smeared discrete



360 Boris Khoromskij et al.

light cone intersects the spatial mesh, b) to the distance of the surface panels inducing
different nearly-singular behaviors of the integrands, and c) to the polynomial degree of the
temporal approximation. In all cases the compression by the TT and QTT representation
is impressive.

Since both, the TT and the QTT formats require as input the full tensor it is important to
substitute the corresponding full-to-TT and full-to-QTT approximation algorithms by their
adaptive cross versions. We have performed numerical experiments which show that the
compression rates by the adaptive TT-cross and QTT-cross representations are comparable
with the original ones while the generation of the full tensor can be avoided.

Acknowledgements. The authors are thankful to Dr. I. Oseledets (INM RAS, Moscow)
for the assistance with the QTT-cross-approximation MATLAB routine.
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