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DMRG Approach to Fast Linear Algebra in the
TT-Format
Ivan Oseledets

Abstract — In this paper, the concept of the DMRG minimization scheme is extended
to several important operations in the TT-format, like the matrix-by-vector product
and the conversion from the canonical format to the TT-format. Fast algorithms are
implemented and a stabilization scheme based on randomization is proposed. The
comparison with the direct method is performed on a sequence of matrices and vec-
tors coming as approximate solutions of linear systems in the TT-format. A generated
example is provided to show that randomization is really needed in some cases. The ma-
trices and vectors used are available from the author or at http://spring.inm.ras.ru/osel
2010 Mathematical subject classification: 15A23; 15A69; 65F99.
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1. Introduction

Tensors arise naturally in high-dimensional problems, for example, in quantum chemistry
[1, 2], financial mathematics [3, 4], and in many other areas. The treatment of d-dimensional
tensors is notoriously difficult due to the curse of dimensionality : the number of elements of
a tensor grows exponentially with the number of dimensions d, and so does the complexity
of working with fully populated tensors. Thus, in order to solve high-dimensional problems
(where even the storage of the full array is prohibitive), one has to use certain low-parametric
representations, or formats. These formats are related to the so-called tensor decomposi-
tions. Tensor decompositions in multilinear algebra and numerical analysis were originally
considered in the data analysis, in chemometrics and physometrics communities, and decom-
positions were related to certain features of the datasets. Since the dataset has to be stored,
this restricts the application of many approaches to problems of small sizes. The review [5]
contains a lot of information and references on this aspect of tensor decompositions. The
first successful attempt to use tensor decompositions (separated representation, or canonical
decomposition) was made by Beylkin and Mohlenkamp [6, 7], where they showed how to
perform basic operations with tensors in such format. The tensor A is said to be in the
canonical format if it is represented as

A(i1, . . . , id) =
r∑

α=1

U1(i1, α)U2(i2, α) . . . Ud(id, α).
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The number r is called the canonical rank, and nk×r matrices Uk are called canonical factors.
The canonical format is simple, and if r is small it has a small number of parameters. How-

ever, after each operation (such as addition, matrix-by-vector product, elementwise product)
the ranks increase, and one has to reapproximate the result back to a tensor of a smaller
rank. Such an approximation problem can be ill-posed for d > 3, and, moreover, there are
no algorithms that are guaranteed to compute the approximation even if it is known a priori
that it exists. Usually, approaches like alternating least squares (ALS) [8, 9] or special min-
imization methods [10] are used, but none of them is absolutely robust. Thus, some other
formats may be helpful.

In this paper, the tensor train format, or, in short, the TT-format is utilized. It can be
represented in a simple form and is closed under basic linear algebra operations. Moreover,
there exists a stable rounding procedure that approximates a given tensor in the TT-format
with a prescribed accuracy, using singular value decompositions (SVDs) of certain small
auxiliary matrices. This format is stable and the best approximation always exists [11]. For
more details on the tensor rounding and basic linear algebra operations, see [12, 13]. A
tensor A is said to be in the TT-format if its elements are defined by the formula

A(i1, . . . , id) = G1(i1) . . . Gd(id), (1.1)

where Gk(ik) is an rk−1 × rk matrix for each fixed ik, 1 6 ik 6 nk. To make the matrix-
by-matrix product in (1.1) a scalar, boundary conditions r0 = rd = 1 have to be imposed.
The numbers rk are called TT-ranks and Gk(ik) are the cores of the TT-decomposition of a
given tensor. If rk 6 r, nk 6 n, then the storage of the TT-representation requires 6 dnr2

memory cells. If r is small, then the storage is much smaller than the storage of the full
array, nd. In terms of the TT-ranks (if rk ≈ r) , the storage of an array in the TT-format
is O(dnr2) and the complexity of tensor rounding is O(dnr3) operations, i.e., it is linear in
the dimension. The TT-format has been known in other areas as the MPS (matrix product
states) representation for quite a long time [14, 15]. However, its importance in numerical
analysis and scientific computing together with several important mathematical properties
was realized only recently.

We are interested in computing certain basic linear algebra operations in the TT-format,
with a special focus on the matrix-by-vector product. Here comes the main problem. If
the results of [12, 13] are used, then the TT-ranks of the matrix-by-vector product are the
product of those for the matrix and for the vector. Suppose they are approximately equal:
Rk ≈ rk ≈ r. Then the product has TT-ranks r2. The complexity of rounding is then
O(dnr6). This complexity becomes prohibitive for r ∼ 30. There are typical cases where
TT-ranks are of the order of hundreds, for example in the solution of stochastic PDEs [16]
and in the solution of high-dimensional eigenvalue problems [17]. In the general case, the
exponent cannot be reduced. However, we assume that the ranks of the product are also
close to r. Can we reduce the number of arithmetic operations to compute the product
approximately? The answer is definitely yes, and it is possible to reduce the complexity to
O(dnr4). Note, that analogous results were first obtained in the series of papers by D.V.
Savostyanov et. al [18, 19, 20, 21, 22] and in the works of V. Khoromskaia and B. Khoromskij
[23, 24, 25, 26, 27] for the Tucker format, which also has nice stability properties, but cannot
be used in high dimensions due to the exponential dependence on the number of dimensions.
However, in this paper another approach employing special nice properties of the TT-format
is used. The algorithms are based on the so-called DMRG (Density Matrix Renormalization
Group) scheme, which was proposed in the solid state physics by White [15] for the solution
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of eigenvalue problems and has only recently attracted the attention of the mathematical
community [28, 29, 17]. The DMRG was found to be a special Block-Gauss-Seidel scheme
for the minimization in the TT-format, which can be applied to different problems that
can be formulated as minimization problems. Moreover, its convergence properties were
found experimentally to be much better than for the standard ALS-type approaches. It is
especially effective for small mode sizes, since it requires handling of vectors of size n2. Quite
surprisingly, such tensors appear routinely in the solution of high-dimensional problems with
the help of quantization (more generally, tensorization) of the solution. The QTT-format
(Quantized TT-format) is defined in the simplest case as follows. Consider a univariate
function f on a uniform grid with n = 2d points. Then the vector of values of this function
on this grid can be considered as a 2×2× . . .×2 d-dimensional tensor. Its TT-decomposition
gives the QTT-representation of f . This concept is naturally generalized to high-order
problems (see [30, 31, 32, 33, 31, 16, 34]). Thus, all of our numerical examples are for the
operations in the QTT-format, but the algorithms can be used for arbitrary mode sizes. For
large mode sizes, special modifications are possible, but they are not discussed here.

We focus on the approximate matrix-by-vector product, where the matrix and the vector
are in the TT-format, and the product is also sought in the TT-format. This problem can
be formulated as a minimization problem

||y − Ax|| → min (1.2)

for y ∈ S where S is a certain class of structured solutions. In our case, y is associated with a
tensor Y (i1, . . . , id) with small TT-ranks. Then, (1.2) becomes a nonquadratic minimization
problem, which has to be solved by a certain minimization method. In fact, any ŷ that
satisfies

||ŷ − Ax|| 6 ε||Ax||,

is good, but among these the solution with the smallest ranks is required. Why (1.2) can be
solved faster than the direct product combined with the tensor rounding? To see that, it is
sufficient to reformulate (1.2) as an equivalent minimization problem

||y||2 − 2(y, Ax)→ min . (1.3)

It appears that if TT-ranks of A, y, x are bounded by r, then the scalar product (Ax, y) can
be computed exactly in O(dnr4) operations. Thus, the functional to be minimized can be
computed cheaply, and it is an indicator that a fast method is possible.

The simplest method that makes use of the TT-structure is ALS-type methods. If all
cores except one are fixed, then it is easy to compute the remaining one. The value of
the functional will not increase at each iteration step. This method, however, requires the
knowledge of all TT-ranks. There are d − 1 TT-ranks, and if they are underestimated, the
solution will not be close to the true solution. If they are overestimated, then the complexity
may be too high. Usually, one can specify the accuracy ε, to which the solution is sought,
and the ALS method is non-adaptive in the sense that it requires all TT-ranks to be known
in advance. To avoid this problem, the DMRG method is used. The DMRG method is an
alternating least square method, but with one minor modification. Instead of minimizing over
one core, the functional is minimized over a pair of cores Gk(ik), Gk+1(ik+1). The resulting
problem still has to be solved. However, if a supercore W is introduced by contracting over
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αk:
W (ik, ik+1) = Gk(ik)Gk+1(ik+1), (1.4)

then this supercore can be found in a cheap way. The factors Gk, Gk+1 are then recovered by
the SVD or any suitable rank-revealing decomposition. The algorithm then proceeds with
the second pair of cores and so on.

The convergence of the DMRG algorithm (compute the supercore, decompose it and go
further) is typically very fast, and only a few sweeps (a sweep is the sequence of iterations
where all pairs (k, k+1) were optimized) are required. However, there are examples, where it
converges not to the right solution. The problem is that the functional (1.3) gives the same
stationary points as the functional (1.2), but the residual ||y − Ax|| cannot be computed
fast. Thus, certain random checking is required. Randomization was first used in [29] in the
context of linear system solutions. Here we propose a much simpler randomization scheme
that is incorporated into the DMRG scheme directly.

2. Introduction to the notation used

In this section, several basic facts and definitions are recollected. When dealing with the
TT-representations, it is convenient to work with parameter-dependent matrices, which are
denoted by, for example, Gk(ik). The size of these matrices should be clear from the context
(i.e, rk−1 × rk). The parameter-dependent matrices can be multiplied:

W (ik, ik+1) = Gk(ik)Gk+1(ik+1),

yielding a new matrix depending on a larger number of parameters. In this representation,
it is important to look at the order of the elements of the product. The row and column
indices of a parameter-dependent matrix can be considered as parameters. For example, for
an rk−1× rk parameter-dependent matrix Gk(ik) its elements (being scalars) are denoted by
Gk(αk−1, ik, αk). Again, the actual size of the parameter-dependent matrix is defined by the
context. For example, if Gk(ik) is an rk−1×rk matrix, then Gk(αk−1, ik) defines a row-vector
of length rk for each fixed αk−1 and ik. In this form, the TT-format is represented as

The TT-representation (1.1) is non-unique, since it is invariant under the transformation

G′k(ik) := Gk(ik)S, G′k+1(ik+1) := S−1Gk+1(ik+1)

for any nonsingular matrix S. Using such transformations, certain cores of the TT-representation
can be made orthogonal. There are two types of orthogonality of cores: left-orthogonality
and right-orthogonality. A core Gk(ik) is said to be left-orthogonal if∑

ik

Gk(ik)G
>
k (ik) = Irk−1

,

and right-orthogonal if ∑
ik

G>k (ik)Gk(ik) = Irk .

Another interpretation of the left-orthogonality is that the tensor Gk(αk−1, ik, αk), considered
as a matrix of size (rk−1nk) × rk, has orthonormal columns. The right-orthogonality of the
core means that Gk, considered as a matrix of size rk−1× (nkrk) has orthonormal rows. The
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cores Gk(ik), . . . Gp(ip), can be made left-orthogonal by equivalent transformations. Indeed,
Gk(ik) can be written as

Gk(ik) = Qk(ik)R,

where Qk(ik) is left-orthogonal by applying the QR-decomposition to a (rk−1nk)× rk matrix
obtained from Gk(ik) by reshaping. The corresponding matrix R is constant and can be
incorporated into the next core. Good news is that if the cores G1(i1) . . . Gk(ik) are left-
orthogonal, then their product

Q(i1, . . . , ik) = G1(i1) . . . Gk(ik),

considered as an Nk × rk matrix has orthonormal columns (Nk =
∏k

s=1 ns). The proof can
be found in [13].

3. DMRG algorithm for the matrix-by-vector product

3.1. Basic idea

In this paper, the DMRG algorithm is considered for the approximation of the matrix-by-
vector product y = Ax with both A and x in the TT-format. This is just a minimization of
the functional

z = arg min
z∈S
||y − z|| (3.1)

over all tensors z with “small” TT-ranks. The tensor y in this scheme is given implicitly.
Thus, first the equations are derived for some TT-tensor y with large ranks, and they are
then simplified for a special case.

Suppose z is in the TT-format with cores Zk. Then the DMRG algorithm is obtained by
minimizing (3.1) over a supercore W (ik, ik+1) = Gk(ik)Gk+1(ik+1). It is not difficult to see,
that this step is equivalent to an ALS step applied to a (d − 1)-dimensional tensor of size
n1 × . . . × nk−1 × (nknk+1) × . . . × nd, i.e., with modes k, (k + 1) treated as one long mode
of size nknk+1. Thus, it is sufficient to derive a formula for one iteration step of the ALS
method (and use it for the modified tensor).

Suppose that the kth core is varied (and all the others are fixed). This means that the
vector y is then restricted to a subspace

z(ik) = Qw(ik), (3.2)

where y(ik) is a vector of length Nk, Nk =
∏

s=1,s 6=k ns, and w(ik) is a vector of length rk−1rk
(just a part of the new core Yk(ik)) The matrix Q is an Nk × rk−1rk matrix. By equivalent
transformations of the TT-representation ofX the matrixQ can be made orthogonal. Indeed,
it can be treated as a tensor with elements

Q(i1, . . . , ik−1, ik+1, . . . , id, αk−1, αk) = G1(i1) . . . Gk−1(ik, αk−1)Gk+1(αk+1, ik+1) . . . Gd(id).

If the cores Gs(is), s = 1, . . . , k−1 are orthogonalized from the left, and the cores Gs(is), s =
k + 1, . . . , d are orthogonalized from the right, then the matrix Q will have orthonormal
columns.

Under the restriction (3.2) the minimization of the functional∑
ik

||y(ik)−Qw(ik)||
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leads to a simple solution

w(ik) = Q>y(ik). (3.3)

The vectors w(ik) form a new core Zk. Substituting the TT-representations for Q and y, we
obtain a simple formula

Zk(ik) = ΨkYk(ik)Φk, (3.4)

where Ψk−1 is an rk−1 ×Rk−1 matrix, and Φk is an Rk × rk matrix (Rk are the TT-ranks of
the given representation of y, whereas rk are the TT-ranks of the current approximation to
the solution). Matrices Ψk are computed recursively via the simple formula

Ψk =
∑
ik−1

Zk−1(ik−1)Ψk−1,

with a starting condition Ψ0 = 1. A similar representation holds for the right matrices Φk.
Using (3.4) is not very useful if the tensor is only given in some TT-representation. The
TT-rounding procedure is much simpler, requires only one sweep through all the cores, and
is guaranteed to compute the result. If the cores Yk(ik) possess an additional structure,
then the DMRG/ALS algorithm may become very useful, as it will be shown in the next
subsection.

3.2. Compact expression for an ALS step

Now, suppose that y = Ax, with both A and x in the TT-format. Then, recall the represen-
tation of the matrix-by-vector product in the TT-format [13]. Let

A(i1, . . . , id, j1, . . . , jd) = A1(i1, j1) . . . Ad(id, jd)

be a TT-representation of A, and

X(j1, . . . , jd) = X1(j1) . . . Xd(Jd)

be a TT-representation of X. Then, the cores Yk of the product are given as

Yk(ik) =
∑
jk

Ak(ik, jk)⊗Xk(jk). (3.5)

Thus, the evaluation of (3.4) for a core of form (3.5) requires nk multiplications of a Kro-
necker rank-1 matrix by a matrix from the left and a matrix from the right. It is easy to
implement these operations using standard matrix-by-matrix multiplications, reshape and
permute operations. For more details on such a kind of operations, see [29] where the case
of the linear system solution is considered in detail. Here we give only the final estimate to
avoid technical details. The cost of computing Ψk can be estimated as

O(dn2r2R2 + dn2r3R),

and the total sum in (3.4) can be computed in O(nRr3 + n2R2r2) operations.
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3.3. Randomization

After the supercore W (ik, ik+1) is computed at the step k, it is approximated back

W (ik, ik+1) ≈ Gk(ik)Gk+1(ik+1).

This can be done by the truncated SVD of a matrix P of size (rk−1nk) × (nk+1rk+1). For
small mode sizes (for the QTT-format nk = 2):

P ≈ UV >, (3.6)

which gives a new (approximate) rank rk and a new left basis U that turns into a kth core.
Note that the k+1 th core Gk+1(ik+1) (obtained from V ) will be recalculated immediately at
the next step of the sweep, so it may not even be stored. However, it is useful to keep it to
monitor the convergence of the process. The stabilization of the supercore (compared to the
previous approximant) is the only viable stopping criterion in the method. This stopping
criterion, however, does not guarantee anything in terms of the global residue. The method,
in principle, can get stuck in the local minima. And this fact is not very easy to detect!
However, simple randomization can serve as the stabilization of the method. In order to check
the appropriate equality Ax ≈ f without computing the product Ax directly, we select some
random tensor q and compare scalar proucts (Ax, q) and (f, q). We propose a similar but a
different approach that fits into the iteration scheme directly. After decomposition (3.6) has
been computed, the basis spanned by the columns of U is randomly enlarged by k columns.
This number is an heuristic parameter; however, we found out that even k = 1 is enough (at
least in our examples). The matrix Uadd is generated at random, and then its columns are
orthogonalized to the columns of U by the Golub-Kahan reorthogonalization. In the end,
the new U matrix is (we use the MATLAB notation for block matrices)

U := [U,Uadd],

it still has orthonormal columns, and the new matrix V is just

V := [V,N ],

where N is a zero matrix with k columns. Such an operation, of course, does not change
P and the value of the functional. Why do we do that? The explanation is that on the
next step of the sweep the projection will also be performed on the space spanned by those
randomly added columns, and this is equivalent to performing a randomized check of the
current approximant by taking scalar product with a low-rank random tensor. Unfortunately,
we have no theoretical justification for this approach. The following Hypothesis may be very
helpful to estimate the probability of detecting a "good" approximation in the case where
the approximation is far from the true solution.

Hypothesis 3.1. Suppose Y, Z are d-dimensional tensors such that

||Y − Z||F > ε||Y ||F .

Take a tensor Q at random with TT-ranks k and ||Q||F = 1. Then, with a high probability

|〈Y − Z,Q〉|F > c1ε||Z||F ,

with a constant c1.
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The point of the hypothesis is as follows. The residue ||Ax − f || cannot be computed
cheaply. However, one can compute scalar products (Ax, z) and (f, z) cheaply for any low-
rank tensor z. The randomization criterion is based on the computation of such scalar
products for a certain low-tensor z. The hypothesis postulates that if the residue is large,
then, with a high probability for a general low-rank tensor, the scalar products will differ,
which is good justification for the convergence of the method.

4. Extension to other TT-approximation problems

The approach proposed in this paper can be extended to other approximate operations in
the TT-format, like the elementwise (Hadamard) product and the matrix-by-matrix product.
This is in fact a DMRG scheme for the approximation of a given tensor, but the computation
of the supercores, i.e., products Q>y(ik), is performed efficiently utilizing the structure.
Among the important problems where a DMRG-type scheme is very helpful is the reduction
of a given suboptimal canonical representation to the TT-format. It is known that the
canonical rank-R tensor is also in the TT-format with ranks 6 R, just by forming cores Gk

as diagonal matrices from the columns of the factors of the canonical decomposition (see
[13]). However, this is not a practical approach for the case of large ranks, say thousands:
the storage even of a single core with such a rank is large. A simple approach is the add-and-
compress algorithm proposed in [31]. Each individual rank-1 component is transformed into
the TT-format, and they are added using the TT-arithmetic, and compression is performed
after each addition. If, hopefully, during the whole process the TT-ranks stay bounded by
r, the complexity is then O(dnr3R).

For the DMRG algorithm, the computation of a new core is reduced to

Wk(ik) = ΨkYk(ik)Φk, (4.1)

where now Ψk is an rk−1×R matrix and Φk is an R×rk matrix. The core Yk(ik) corresponds
to the formal conversion of a rank-R tensor to the TT-format:

Yk(ik) = diag(Λk(ik)),

and is of size R × R (for each fixed ik). A new core can be then computed in O(nRr2)
operations, and the total complexity of one sweep is O(dnRr2 + dnr3) (provided that n is
small).

5. Numerical experiments

5.1. Comparison with the direct method

Our implementation is included in the TT-Toolbox (for the recent version see http://spring.
inm.ras.ru/osel or contact the author) as a subroutine mvk2. The minimal input is a ma-
trix A in the TT-format, a vector x in the TT-format, and a required relative accuracy ε.
Optionally, the initial guess can be specified, as well as the maximal TT-rank during the it-
erations and the maximum number of sweeps. As benchmarking matrices, we took examples
from [29]. The matrices are available at the webpage http://spring.inm.ras.ru/osel in the
Section "Benchmarks and Data". They are provided as .mat files with the matrix A in the
TT-format and the right-hand size and the approximate solution in the TT-format. There
are six example matrices and vectors there now. Some statistics is given in Table 5.1
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Matrix N rank(A) rank(x)
tt-solve_ex2.1_6-8 224 3.7 23.3
tt-solve_ex2_6-10 220 3.7 19.0

tt-solve_ex3 264 5.1 40.5
tt-solve_ex4 2512 3.7 27.4
tt-solve_ex5 248 4.6 48.0
tt-solve_ex6 220 5.1 24.8

Table 5.1. Different test matrices

The following simple MATLAB code was used for testing (A stores the matrix, x the
vector)

eps=1e-6; %Set up the accuracy
tic; x1=a*x; x1=round(x1 ,eps); toc;
tic; x2=mvk2(a,x,eps ,6); toc;
fprintf('Error: %3.2e \n',norm(x2 -x1)/norm(x1));

The number of DMRG sweeps is limited by 6. It appears that DMRG produces a fairly good
approximation; however, it is not always possible to design a good stopping criterion for the
method. The timings for different matrices are given in Table 5.2. The accuracy is set to
10−6.

Matrix a*x mvk2 Relative error
tt-solve_ex2.1_6-8 0.19 0.1 2.39e-06
tt-solve_ex2_6-10 0.08 0.06 1.49e-06

tt-solve_ex3 4.72 0.40 8.15e-06
tt-solve_ex4 6.99 6.19 5.22e-05
tt-solve_ex5 5.08 0.28 1.32e-05
tt-solve_ex6 1.17 4.67 7.59e-07

Table 5.2. Comparison of timings (in seconds) of direct and mvk matrix-by-vector products

Table 5.2 shows, that usually the mvk2 method is faster on this type of problems, but
there are two cases where it is not: tt-solve_ex4 and tt-solve_ex6. What is the reason?
First of all, these problems are rather “hard”, since the rank of the matrix is small. mvk2 is
especially suited for the case where both the rank of the matrix and the rank of the vector
are big. For example, if in the example tt-solve_ex6 an artificial computation of x.2 (i.e.,
elementwise square) is considered, then mvk2 can be applied to the computation of the
product diag(x) ∗ x. It finishes in approximately 10 seconds, whereas the full computation
was not able to finish due to the lack of memory on the used machine (4 Gb). The second
reason is that the TT-ranks of the product are not very small. Consider again the worst
example in Table 5.2, tt-solve_ex6. For an accuracy of 10−6 the maximal TT-rank of the
product is 165. That is too much and comes from the fact that x has already incorporated
some “noise”. Indeed, it is a solution of a linear system with the matrix A, and the accuracy
of the solution can be computed:

>> norm(A*x-rhs)/norm(rhs)
ans = 3.1202e-04
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It is only 10−4. What happens if the truncation is performed at the right level?

>> tic; x1=A*x; x1=round(x1,1e-4); toc;
Elapsed time is 0.655725 seconds.
>> tic; x2=mvk2(A,x,1e-4); toc;
Elapsed time is 0.227166 seconds.
>> norm(x1-x2)/norm(x1)
ans = 1.5845e-04

Now the situation is clear: the approximate multiplication should be done only on the right
threshold, adapted for the problem. In this case, mvk2 is significantly faster. Moreover, it
uses much less memory, since for the direct method one has to store dn(Rr)2 memory cells,
and even for moderate values of R and r (around 20-30) this can be of the order of several
gigabytes.

5.2. Effect of randomization

In the end, let us study the effect of randomization. It rarely appears that DMRG without
random kicks do not work well. However, in our experiments we were able to find such an ex-
ample. This matrix came from the stochastic PDE and is contained in the file big_mat.mat.
It is a 51-dimensional matrix. If we run mvk2 without random stabilization with a high
accuracy parameter:

>> load big_mat; w=mvk2(A,x,1e-9);

the program reports a good “local” convergence:

swp=10 er=3.39e-10

However, the real error is not that small:

>> norm(A*x-w)/norm(w)
ans = 5.7768e-04

Thus, this is an important example of a local minimum If the kick rank is set to 1, then
everything is fine, but the convergence requires many more sweeps:

swp=28 er=5.63e-10

and

>> norm(A*x-w)/norm(w)
ans = 3.6758e-09

Thus, to avoid such pathological cases, one has to use the random stabilization all the time,
especially for the cases of large ranks.
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6. Conclusion and future work

In this paper, a DMRG-based algorithm for the computation of the matrix-by-vector product
is proposed. It is compared to the direct method (multiply and compress) on a set of test
matrices. These subroutines are used in the TT-Toolbox 2.1 for the computation of matrix-
by-vector products, and have already used, for example, in a recent paper [34] to compute the
convolutions of two vectors in the QTT-format. From the algorithmic point of view, there are
still places where the algorithm can be improved, at least in two parts. The first part is the
selection of a cheap initial guess for the method to decrease the number of sweeps. The second
part is to make use of the Wedderburn-type techniques [21] to compute approximations by
reusing the information from previous sweeps and computing only low-rank updates.

The experimental facts presented in this paper require theoretical investigation. Even
the local convergence properties of the DMRG scheme (it is believed to converge fast) are
still not clearly understood (however, the recent work [28] is a huge step forward in this
direction). The randomization scheme is a separate topic and is related, to our belief, to
the geometry of low-rank tensors. It has to be investigated. And the last (but not least)
objective for the future work are the applications of the TT-format. They include Fokker-
Planck and multiparametric equations, and quantum chemistry, where the TT-format has
good perspectives.
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