Computational Methods in Applied Mathematics

Vol. 11 (2011), No. 4, pp. 441-459
(c) 2011 Institute of Mathematics, National Academy of Sciences

Full Discretisation of Second-order Nonlinear Evolution Equations: Strong Convergence and Applications

Etienne Emmrich • David Šiška

Abstract

Recent results on convergence of fully discrete approximations combining the Galerkin method with the explicit-implicit Euler scheme are extended to strong convergence under additional monotonicity assumptions. It is shown that these abstract results, formulated in the setting of evolution equations, apply, for example, to the partial differential equation for vibrating membrane with nonlinear damping and to another partial differential equation that is similar to one of the equations used to describe martensitic transformations in shape-memory alloys. Numerical experiments are performed for the vibrating membrane equation with nonlinear damping which support the convergence results.

2010 Mathematical subject classification: 47J35; 65M12; 47H05; 47G20; 74K15; 74B20.
Keywords: evolution equation of second order; time discretisation; Galerkin method; convergence; vibrating membrane; shape-memory alloys.

1. Introduction

Nonlinear partial differential equations of second order in time are being used to describe a variety of problems in physical sciences. Explicit formulae for solutions to such partial differential equations are rare. Hence there are many methods of solving such problems numerically. This article focuses on conforming finite element methods in space and a partitioned explicit-implicit Euler method in time (generalising the well known Störmer-Verlet or leap-frog method).

Recently, Emmrich and Thalhammer [8] have demonstrated convergence of time discrete approximations for second-order doubly nonlinear evolution equations with damping. This has been recently extended by Emmrich and Thalhammer [9] to more general second-order doubly nonlinear evolution equations.

This paper has two main aims. The first is to improve the strong convergence results in the case when stronger monotonicity of the damping term can be assumed. The second aim is to demonstrate that the abstract results apply to the vibrating membrane equation with

[^0][^1]nonlinear damping as well as to another partial differential equation which resembles one of the possible equations modelling transformations in shape-memory alloys. For the nonlinear vibrating membrane equation with nonlinear damping, numerical experiments supporting the theoretical convergence are presented. The two concrete nonlinear partial differential equations considered are:

1. Vibrating membrane equation / wave equation with a nonlinear damping term:

$$
u_{t t}+\left|u_{t}\right|^{p-2} u_{t}-\Delta u=f
$$

where u is the displacement of the membrane on some bounded domain, $p \geqslant 2$ and the initial displacement and initial velocity together with the right-hand side f are given. The earliest reference is, to the authors knowledge, Andreassi and Torelli [1]. For further references, see Section 3.
2. An equation similar to an equation for martensitic transformations in shape-memory alloys:

$$
\begin{equation*}
u_{t t}-\mu \Delta u_{t}-\operatorname{div}(\sigma(\nabla u))+\lambda \Delta^{2} u=f \tag{1.1}
\end{equation*}
$$

where $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is given. The equation corresponds to one of the equations for martensitic transformations in shape-memory alloys and the function $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ determines the various phases in the so-called shape-memory alloy. The function σ arises from the potential $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the stored energy density, via $\sigma:=\varphi^{\prime}$. An example of φ found in the literature is a fourth order polynomial. Hence σ should be allowed to have at least cubic growth in applications. For an overview, see Plecháč and Roubíček [18] and further references in Section 4. It is emphasised that this paper does not cover the situation where σ has cubic growth. Only linear growth is allowed. So the abstract framework of this article does not appear to be optimal for the equation modelling martensitic transformations in shape-memory alloys. Nevertheless, Roubíček [22, Chapter 11, p. 354] also considers (1.1) together with linear growth of σ.

The functional analytic formulation of the foregoing problems leads to initial value problems of the form

$$
\begin{equation*}
u^{\prime \prime}+A u^{\prime}+B u=f \quad \text { in }(0, T), \quad u(0)=u_{0}, u^{\prime}(0)=v_{0} \tag{1.2}
\end{equation*}
$$

where A and B are possibly nonlinear operators defined on appropriate, perhaps different, function spaces.

The functional analytic setting for (1.2) is as follows. Let $\left(V_{A},\|\cdot\|_{V_{A}}\right)$ be a reflexive and separable Banach space that is dense and continuously embedded in a Hilbert space $(H,(\cdot, \cdot),|\cdot|)$ such that $V_{A} \subset H \subset V_{A}^{*}$ form a Gelfand triple. Let A be the Nemytskii operator corresponding to a family of nonlinear operators $\{A(t)\}_{t \in[0, T]}$. It is assumed that $A(t)$ is composed of a principal part $A_{0}(t): V_{A} \rightarrow V_{A}^{*}$ and a perturbation $A_{1}(t): V_{A} \rightarrow V_{A}^{*}$ such that $A(t)=A_{0}(t)+A_{1}(t)$. The precise assumptions on A_{0} and A_{1} will be stated in Section 2. For now it is sufficient to say that $A_{0}(t)$ shall be hemicontinous, monotone and coercive (up to a shift) and satisfying a certain growth condition, uniformly in t. It is required that $A_{1}(t)$ fulfils a certain lower semi-boundedness condition (so that $A(t)$ remains up to a shift coercive), a growth condition and a local Hölder-like continuity condition.

Now consider the setting for the operator B. Let $\left(V_{B},\|\cdot\|_{B}\right)$ be a separable Banach space such that $V_{B} \subset H \subset V_{B}^{*}$ again form a Gelfand triple. Let B be the Nemytskii
operator corresponding to a family of operators $\{B(t)\}_{t \in[0, T]}$. Again it is assumed that $B(t)$ is composed of a principal part B_{0} and a perturbation $B_{1}(t)$ such that $B(t)=B_{0}+B_{1}(t)$. The principal part of $B(t)$ is assumed to be time-independent (though this is not necessary, see Lions and Strauss [15]), linear, bounded, symmetric and strongly positive. Observe that this implies that B_{0} induces an inner product on V_{B} thus making V_{B} into a Hilbert space. As such V_{B} is reflexive. The time dependent perturbations $B_{1}(t)$ are assumed to be bounded and locally continuous in a Hölder-like sense. The precise assumptions will be given in Section 2.

Furthermore let $V:=V_{A} \cap V_{B}$ and assume that V is dense in both the spaces V_{A} and V_{B}. Thus we have the following scale of spaces:

$$
V_{A} \cap V_{B}=V \stackrel{d}{\hookrightarrow} V_{C} \stackrel{d}{\hookrightarrow} H=H^{*} \stackrel{d}{\hookrightarrow} V_{C}^{*} \stackrel{d}{\hookrightarrow} V^{*}=V_{A}^{*}+V_{B}^{*}, \quad C \in\{A, B\},
$$

where $\stackrel{d}{\hookrightarrow}$ denotes continuous and dense embedding.
Equivalently (1.2) can be written as the first-order system

$$
\left\{\begin{align*}
u^{\prime}-v=0 \quad \text { in } \quad(0, T), & u(0)=u_{0} \tag{1.3}\\
v^{\prime}+A v+B u=f \quad \text { in } \quad(0, T), & v(0)=v_{0}
\end{align*}\right.
$$

In this situation, like in Lions and Strauss [15] and in Emmrich and Thalhammer [9], great care needs to be taken with the integration by parts formulae, since, in general, the second time derivative $u^{\prime \prime}(t)=v^{\prime}(t)$ only takes values in $V^{*}=V_{A}^{*}+V_{B}^{*}$, whereas $u^{\prime}(t)=v(t)$ takes values in V_{A}. So the duality pairing between $u^{\prime \prime}(t)=v^{\prime}(t)$ and $u^{\prime}(t)=v(t)$ is not defined.

Let $\left\{V_{m}\right\}_{m \in \mathbb{N}}$ be a Galerkin scheme for V (recall that V is the intersection of the separable spaces V_{A} and V_{B} and hence a Galerkin basis exists). For a given $m \in \mathbb{N}$ and a variable time grid

$$
\begin{equation*}
\mathbb{I}: 0=t_{0}<t_{1}<\cdots<t_{N}=T, \tau_{n}=t_{n}-t_{n-1} \text { for } n=1,2, \ldots, N, \tau_{\max }:=\max _{n=1, \ldots, N} \tau_{n} \tag{1.4}
\end{equation*}
$$

the aim is to find fully discrete approximations $\left\{u^{n}\right\}_{n=1}^{N} \subset V_{m}$ with $u^{n} \approx u\left(t_{n}\right)$ and $\left\{v^{n}\right\}_{n=1}^{N-1} \subset$ V_{m} with $v^{n} \approx v\left(t_{n}\right)=u^{\prime}\left(t_{n}\right)$ such that for all $\varphi \in V_{m}$

$$
\begin{cases}\frac{\left(u^{n+1}-u^{n}, \varphi\right)}{\tau_{n+1}}-\left(v^{n}, \varphi\right)=0, & n=0,1, \ldots, N-1 \tag{1.5}\\ \frac{\left(v^{n}-v^{n-1}, \varphi\right)}{\frac{\tau_{n+1}+\tau_{n}}{2}}+\left\langle A\left(t_{n}\right) v^{n}, \varphi\right\rangle+\left\langle B\left(t_{n}\right) u^{n}, \varphi\right\rangle=\left\langle f^{n}, \varphi\right\rangle, & n=1, \ldots, N-1\end{cases}
$$

Here $u^{0} \approx u_{0}, v^{0} \approx v_{0}$ and $\left\{f^{n}\right\}_{n=1}^{N-1} \approx f$ are given. This scheme arises simply by applying the explicit Euler scheme to the first equation in (1.3) and the implicit Euler scheme to the second equation. This corresponds to the simplest partitioned Runge-Kutta method. Observe that if $A=0$ then the scheme would correspond to the leap-frog scheme or the well known Störmer-Verlet method.

The existence of solutions to (1.2) goes back to Lions and Strauss, where in [15] they prove existence and uniqueness in the case $A_{1}=B_{1}=0$, but not assuming $V_{A} \hookrightarrow V_{B}$. Existence in the case with perturbations (but not uniqueness) is proved in Emmrich and Thalhammer [9]. For the linear case, the time discretisation combined with a conforming finite element method has been studied in Raviart and Thomas [20, Chapter 8]. More recently Verwer [25] studied Runge-Kutta time integration methods for the wave equation
with linear damping. Colli and Favini [7] have proved the convergence of the above time discretisation with constant step sizes under the much more restrictive assumptions that $V_{A}=V_{B}, A_{0}$ is time independent and maximal monotone and $A_{1}=B_{1}=0$. This also forces V_{A} to be a Hilbert space.

Emmrich and Thalhammer [8] have proved weak convergence of time discretisations (1.5) under the assumption $V_{A} \hookrightarrow V_{B}$. Later this has been extended, in Emmrich and Thalhammer [9], where weak convergence has been proved in the case with no perturbations $\left(A_{1}=B_{1}=\right.$ 0), even if V_{A} is not embedded in V_{B}. Furthermore in the case of perturbations, under an additional assumption on the space H and the Galerkin scheme, or under the assumption $V_{A} \hookrightarrow V_{B}$, strong convergence (of a subsequence in case (1.2) does not have a unique solution) of the piecewise constant prolongations of the approximations $\left\{v^{n}\right\}_{n=0}^{N-1}$ of the first time derivative of the solution has been proved in $L^{r}(0, T ; H)$ for any $r \in[1, \infty)$. This article extends this to strong convergence in $L^{q}\left(0, T ; V_{A}\right)$, with $q \in[1, p)$ under the additional dmonotonicity assumption and to $q=p$ under a uniform monotonicity assumption on A_{0}. Here $p \geqslant 2$ comes from the coercivity assumption. Moreover, strong convergence of the piecewise constant prolongations of the approximations $\left\{u^{n}\right\}_{n=0}^{N}$ of the exact solution is shown in $L^{r}\left(0, T ; V_{A}+V_{B}\right)$ for any $r \in[1, \infty)$.

This paper is organised as follows. In Section 2 the strong convergence results are proved. Sections 3 and 4 show that the convergence results apply to the vibrating membrane equation with nonlinear damping and the equation (1.1) respectively. Finally in Section 5 numerical results for discretising the vibrating membrane equation with nonlinear damping are presented.

2. Strong convergence

In what follows, the space of Bochner integrable (for $r=\infty$ Bochner measurable and essentially bounded) abstract functions mapping $[0, T]$ into a (reflexive) Banach space X is denoted by $L^{r}(0, T ; X)(r \in[1, \infty])$ and equipped with the standard norm $\|\cdot\|_{L^{r}(0, T ; X)}$. Let u^{\prime} and $u^{\prime \prime}$ denote the first and second time derivative of the abstract function $u=u(t)$ in the distributional sense, respectively. Moreover, let c be a generic positive constant. For $p \in(1, \infty)$, let $p^{*}:=\frac{p}{p-1}$.

Let $V=V_{A} \cap V_{B}$ with norm $\|\cdot\|=\|\cdot\|_{V_{A}}+\|\cdot\|_{V_{B}}$. The space V is assumed to be dense in each of the spaces V_{A} and V_{B}. Obviously, V is also continuously embedded in each of the spaces V_{A} and V_{B}. The dual $V^{*}=V_{A}^{*}+V_{B}^{*}$ is equipped with the norm

$$
\|f\|_{*}=\inf \left\{\max \left(\left\|f_{A}\right\|_{V_{A}^{*}},\left\|f_{B}\right\|_{V_{B}^{*}}\right): f=f_{A}+f_{B} \text { with } f_{A} \in V_{A}^{*}, f_{B} \in V_{B}^{*}\right\}
$$

Observe that $V \subset H \subset V^{*}$ form a Gelfand triple. Beside $V=V_{A} \cap V_{B}$, we also use the space $V_{A}+V_{B}$ equipped with the standard norm

$$
\|w\|_{V_{A}+V_{B}}=\inf \left\{\max \left(\left\|w_{A}\right\|_{V_{A}},\left\|w_{B}\right\|_{V_{B}}\right): w=w_{A}+w_{B} \text { with } w_{A} \in V_{A}, w_{B} \in V_{B}\right\} .
$$

Note that $V_{C} \hookrightarrow V_{A}+V_{B}$ with $\|w\|_{V_{A}+V_{B}}=\|w\|_{V_{C}}$ if $w \in V_{C}(C \in\{A, B\})$.
The following assumptions on the operators $A_{0}(t): V_{A} \rightarrow V_{A}^{*}$ and $B_{0}: V_{B} \rightarrow V_{B}^{*}$ will be needed to prove the convergence results. The additional monotonicity assumptions will be stated separately.

Assumption $\left(A_{0}\right) \cdot\left\{A_{0}(t)\right\}_{t \in[0, T]}$ is a family of monotone and hemicontinuous operators $A_{0}(t): V_{A} \rightarrow V_{A}^{*}$ such that for all $v \in V_{A}$ the mapping $t \mapsto A_{0}(t) v:[0, T] \rightarrow V_{A}^{*}$ is continuous
for almost all $t \in[0, T]$. For a suitable $p \in[2, \infty)$, there are constants $\mu_{A}, c>0, \lambda \geqslant 0$ such that for all $t \in[0, T]$ and $v \in V_{A}$

$$
\left\langle A_{0}(t) v, v\right\rangle \geqslant \mu_{A}\|v\|_{V_{A}}^{p}-\lambda, \quad\left\|A_{0}(t) v\right\|_{V_{A}^{*}} \leqslant c\left(1+\|v\|_{V_{A}}^{p-1}\right) .
$$

In fact it would be sufficient to require monotonicity and coercivity for $A_{0}(t)+\kappa I$, with $\kappa>0$. To simplify the presentation this is omitted, noting that the additional term can be considered as a perturbation.

Assumption (B_{0}). $B_{0}: V_{B} \rightarrow V_{B}^{*}$ is a linear, bounded, symmetric, and strongly positive operator: There are constants $\mu_{B}, c_{B}>0$ such that for all $v \in V_{B}$

$$
\left\langle B_{0} v, v\right\rangle \geqslant \mu_{B}\|v\|_{V_{B}}^{2}, \quad\left\|B_{0} v\right\|_{V_{B}^{*}} \leqslant c_{B}\|v\|_{V_{B}}
$$

Due to [9, Theorem 2 and Theorem 7], the discrete problem (1.5) has a solution: if $A=A_{0}, B=B_{0}$ and if Assumptions $\left(A_{0}\right)$ and $\left(B_{0}\right)$ are satisfied and $u^{0}, v^{0} \in V_{m}$ and $\left\{f^{n}\right\}_{n=1}^{N-1} \subset V^{*}$ are given then (1.5) has a unique solution $\left\{u^{n}\right\}_{n=0}^{N} \subset V_{m}$.

Let $\left\{\left(V_{m_{\ell}}, \mathbb{I}_{\ell}\right)\right\}_{\ell \in \mathbb{N}}$ be a sequence of finite dimensional spaces $V_{m_{\ell}} \in\left\{V_{m}\right\}_{m \in \mathbb{N}}$ and time grids \mathbb{I}_{ℓ} of type (1.4) fulfilling the following assumption.

Assumption $\left(V_{m}, \mathbb{I}\right)$. For each $m \in \mathbb{N}$, let $c_{V_{B} \leftarrow V_{A}}(m)$ be a positive constant such that

$$
\begin{equation*}
\|v\|_{V_{B}} \leqslant c_{V_{B} \leftarrow V_{A}}(m)\|v\|_{V_{A}} \quad \text { for all } v \in V_{m} \tag{2.1}
\end{equation*}
$$

Let $r_{n}:=\tau_{n} / \tau_{n-1}$ for $n=2, \ldots, N$. The sequence $\left\{\left(V_{m_{\ell}}, \mathbb{I}_{\ell}\right)\right\}_{\ell \in \mathbb{N}}$ satisfies

$$
\begin{aligned}
& m_{\ell} \rightarrow \infty \text { and } \tau_{\max }\left(\mathbb{I}_{\ell}\right) \rightarrow 0 \text { as } \ell \rightarrow \infty, \\
& \sup _{\ell \in \mathbb{N}}\left(c_{V_{B} \leftarrow V_{A}}\left(m_{\ell}\right)^{2} \tau_{\max }\left(\mathbb{I}_{\ell}\right)\right)<\min \left(1, \frac{\mu_{A}}{c_{B}}\right), \quad c_{V_{B} \leftarrow V_{A}}\left(m_{\ell}\right)^{2} \tau_{\max }\left(\mathbb{I}_{\ell}\right) \rightarrow 0 \text { as } \ell \rightarrow \infty, \\
& \sup _{\ell \in \mathbb{N}}\left(\max _{n=2, \ldots, N_{\ell}} r_{n}\left(\mathbb{I}_{\ell}\right)\right)<\infty, \quad \inf _{\ell \in \mathbb{N}}\left(\min _{n=2, \ldots, N_{\ell}} r_{n}\left(\mathbb{I}_{\ell}\right)\right)>0, \\
& \sup _{\ell \in \mathbb{N}}\left(\sum_{n=3}^{N_{\ell}} \max \left(0, \frac{1}{r_{n}\left(\mathbb{I}_{\ell}\right)}-\frac{1}{r_{n-1}\left(\mathbb{I}_{\ell}\right)}\right)\right)<\infty, \quad \sup _{\ell \in \mathbb{N}}\left(\sum_{n=2}^{N_{\ell}} \frac{\left(\tau_{n}\left(\mathbb{I}_{\ell}\right)-\tau_{n-1}\left(\mathbb{I}_{\ell}\right)\right)^{2}}{\left(\tau_{n}\left(\mathbb{I}_{\ell}\right)+\tau_{n-1}\left(\mathbb{I}_{\ell}\right)\right)^{3}}\right)<\infty .
\end{aligned}
$$

Relation (2.1) can always be satisfied as all norms on finite dimensional spaces are equivalent. The coupling of $c_{V_{B} \leftarrow V_{A}}\left(m_{\ell}\right)$ with $\tau_{\max }\left(\mathbb{I}_{\ell}\right)$ however does create a restriction, unless V_{A} is continuously embedded in V_{B}. The remainder of Assumption $\left(V_{m}, \mathbb{I}\right)$ is always fulfilled for equidistant time grids. It can also be satisfied for variable time grids with rather large deviations from some arbitrary equidistant time grid. With respect to the initial data it is required that the following holds.

Assumption (IC). The initial values for (1.5) satisfy

$$
\begin{gathered}
u^{0}\left(m_{\ell}, \mathbb{I}_{\ell}\right), v^{0}\left(m_{\ell}, \mathbb{I}_{\ell}\right) \in V_{m_{\ell}}(\ell \in \mathbb{N}), \quad \sup _{\ell \in \mathbb{N}} \tau_{\max }\left(\mathbb{I}_{\ell}\right)\left\|v^{0}\left(m_{\ell}, \mathbb{I}_{\ell}\right)\right\|_{V_{A}}^{p}<\infty, \\
u^{0}\left(m_{\ell}, \mathbb{I}_{\ell}\right) \rightarrow u_{0} \text { in } V_{B} \text { and } v^{0}\left(m_{\ell}, \mathbb{I}_{\ell}\right) \rightarrow v_{0} \text { in } H \text { as } \ell \rightarrow \infty
\end{gathered}
$$

In order to simplify notation, v_{ℓ}^{0} and u_{ℓ}^{0} will be used in place of $v^{0}\left(m_{\ell}, \mathbb{I}_{\ell}\right)$ and $u^{0}\left(m_{\ell}, \mathbb{I}_{\ell}\right)$. Let

$$
\tau_{n+1 / 2}:=\frac{\tau_{n+1}+\tau_{n}}{2}, \quad t_{n+1 / 2}:=t_{n}+\frac{\tau_{n+1}}{2} .
$$

Let χ_{D} denote the characteristic function of a set D. For the solution $\left\{u^{n}\right\}_{n=0}^{N_{\ell}} \subset V_{m_{\ell}}$ and $\left\{v^{n}\right\}_{n=1}^{N_{\ell}-1} \subset V_{m_{\ell}}$ to (1.5) corresponding to a time grid \mathbb{I}_{ℓ} define the following piecewise constant prolongations

$$
\begin{equation*}
u_{\ell}(t):=\sum_{n=1}^{N-1} u^{n} \chi_{\left(t_{n-1 / 2}, t_{n+1 / 2}\right]}(t), \quad v_{\ell}(t):=\sum_{n=1}^{N-1} v^{n} \chi_{\left(t_{n-1 / 2}, t_{n+1 / 2]}\right]}(t) \tag{2.2}
\end{equation*}
$$

and the piecewise linear prolongation

$$
\begin{aligned}
\hat{v}_{\ell}(t):=v^{0} \chi_{\left[0, t_{1 / 2}\right]}(t) & +\sum_{n=1}^{N-1}\left(v^{n}+\frac{t-t_{n+1 / 2}}{\tau_{n+1 / 2}}\left(v^{n}-v^{n-1}\right)\right) \chi_{\left(t_{n-1 / 2}, t_{n+1 / 2}\right]}(t) \\
& +v^{N-1} \chi_{\left(t_{N-1 / 2}, t_{N}\right]}(t) .
\end{aligned}
$$

Note that \hat{v}_{ℓ} is piecewise linear and continuous in time, and thus differentiable in the weak sense. For the right-hand side, given $f \in L^{p^{*}}\left(0, T ; V_{A}^{*}\right)$, let

$$
f^{n}:=\frac{1}{\tau_{n+1 / 2}} \int_{t_{n-1 / 2}}^{t_{n+1 / 2}} f(t) d t \quad \text { and } \quad f_{\ell}(t):=\sum_{n=1}^{N-1} f^{n} \chi_{\left(t_{n-1 / 2}, t_{n+1 / 2}\right]}(t)
$$

Finally, let $A_{0, \ell}$ be defined as a piecewise constant approximation of A_{0}, i.e.,

$$
A_{0, \ell}(t):=A_{0}\left(t_{1}\right) \chi_{\left[0, t_{1 / 2}\right]}(t)+\sum_{n=1}^{N-1} A_{0}\left(t_{n}\right) \chi_{\left(t_{n-1 / 2}, t_{n+1 / 2}\right]}(t)+A_{0}\left(t_{N-1}\right) \chi_{\left(t_{N-1 / 2}, t_{N}\right]}(t) .
$$

Let $A_{1, \ell}$ and $B_{1, \ell}$ be defined analogously.
Theorem 2.1. Let $A_{1}=0$ and $B_{1}=0$. Let Assumptions ($\left.V_{m}, \mathbb{I}\right),(I C),\left(A_{0}\right)$ and $\left(B_{0}\right)$ be satisfied. Further assume that $f \in L^{p^{*}}\left(0, T ; V_{A}^{*}\right)$.

If for all $t \in[0, T]$ the operator $A_{0}(t): V_{A} \rightarrow V_{A}^{*}$ satisfies

$$
\begin{equation*}
\left\langle A_{0}(t) w-A_{0}(t) \bar{w}, w-\bar{w}\right\rangle \geqslant\left(\alpha\left(\|w\|_{V_{A}}\right)-\alpha\left(\|\bar{w}\|_{V_{A}}\right)\right)\left(\|w\|_{V_{A}}-\|\bar{w}\|_{V_{A}}\right) \quad \forall w, \bar{w} \in V_{A} \tag{2.3}
\end{equation*}
$$

for some monotonically increasing function $\alpha:[0, \infty) \rightarrow \mathbb{R}$, i.e., if it is d-monotone, and if V_{A} is uniformly convex, then v_{ℓ} converges towards the first time derivative $v=u^{\prime}$ of the exact solution u to (1.2) strongly in $L^{q}\left(0, T ; V_{A}\right)$ for any $q \in[1, p)$ as $\ell \rightarrow \infty$. Furthermore, if $A_{0}(t): V_{A} \rightarrow V_{A}^{*}$ satisfies for all $t \in[0, T]$

$$
\begin{equation*}
\left\langle A_{0}(t) w-A_{0}(t) \bar{w}, w-\bar{w}\right\rangle \geqslant \mu\|w-\bar{w}\|_{V_{A}}^{p} \quad \forall w, \bar{w} \in V_{A}, \tag{2.4}
\end{equation*}
$$

for some $\mu>0$ then v_{ℓ} converges towards $v=u^{\prime}$ strongly in $L^{p}\left(0, T ; V_{A}\right)$ as $\ell \rightarrow \infty$.
In both cases, u_{ℓ} converges towards the exact solution u strongly in $L^{r}\left(0, T ; V_{A}+V_{B}\right)$ for any $r \in[1, \infty)$ as $\ell \rightarrow \infty$.

Proof. Let $A_{\ell}(t)=A_{0, \ell}(t)$. This makes sense since $A_{1}=0$. Due to Assumption $\left(B_{0}\right)$, the operator $B=B_{0}$ is independent of time. If $\left\{u^{n}\right\}_{n=0}^{N_{\ell}} \subset V_{m_{\ell}}$ and $\left\{v^{n}\right\}_{n=1}^{N_{\ell}-1} \subset V_{m_{\ell}}$ is a solution to (1.5) then the second equation of (1.5) is equivalent to

$$
\begin{equation*}
\left\langle\hat{v}_{\ell}^{\prime}(t), \phi\right\rangle+\left\langle A_{\ell}(t) v_{\ell}(t), \phi\right\rangle+\left\langle B u_{\ell}(t), \phi\right\rangle=\left\langle f_{\ell}(t), \phi\right\rangle \quad \forall \phi \in V_{m_{\ell}}, \tag{2.5}
\end{equation*}
$$

for almost all t in $(0, T)$. Furthermore the second equation in (1.3) is equivalent to

$$
\begin{equation*}
\int_{0}^{T}\left\langle\left(v^{\prime}+B u\right)(t), w(t)\right\rangle d t+\int_{0}^{T}\langle A(t) v(t), w(t)\rangle d t=\int_{0}^{T}\langle f(t), w(t)\rangle d t \quad \forall w \in L^{p}\left(0, T ; V_{A}\right) . \tag{2.6}
\end{equation*}
$$

Here $v=u^{\prime}$ is the weak limit of v_{ℓ} and u is the unique solution to (1.2) as is shown in [9, Theorem 4].

Consider first the simpler case when $A_{0}(t): V_{A} \rightarrow V_{A}^{*}$ satisfies (2.4) for all $t \in[0, T]$. From (2.4) it can be seen that

$$
\begin{equation*}
\mu \int_{0}^{T}\left\|v_{\ell}(t)-v(t)\right\|_{V_{A}}^{p} d t \leqslant \int_{0}^{T}\left\langle A_{\ell}(t) v_{\ell}(t)-A_{\ell}(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t . \tag{2.7}
\end{equation*}
$$

By adding zero to the right-hand side it can be obtained that

$$
\begin{aligned}
& \int_{0}^{T}\left\langle A_{\ell}(t) v_{\ell}(t)-A_{\ell}(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t \\
& =\int_{0}^{T}\left\langle A_{\ell}(t) v_{\ell}(t)-A(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t+\int_{0}^{T}\left\langle A(t) v(t)-A_{\ell}(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t \\
& =\int_{0}^{T}\left\langle A_{\ell}(t) v_{\ell}(t), v_{\ell}(t)\right\rangle d t-\int_{0}^{T}\left\langle A_{\ell}(t) v_{\ell}(t), v(t)\right\rangle d t-\int_{0}^{T}\left\langle A(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t \\
& \quad+\int_{0}^{T}\left\langle A(t) v(t)-A_{\ell}(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t .
\end{aligned}
$$

Testing with $v_{\ell}(t)$ in (2.5) and integrating leads to

$$
\int_{0}^{T}\left\langle A_{\ell}(t) v_{\ell}(t), v_{\ell}(t)\right\rangle d t=\int_{0}^{T}\left\langle f_{\ell}(t), v_{\ell}(t)\right\rangle d t-\int_{0}^{T}\left\langle\hat{v}_{\ell}^{\prime}(t), v_{\ell}(t)\right\rangle d t-\int_{0}^{T}\left\langle B u_{\ell}(t), v_{\ell}\right\rangle d t
$$

Hence the above inequality can be transformed to

$$
\mu \int_{0}^{T}\left\|v_{\ell}(t)-v(t)\right\|_{V_{A}}^{p} d t \leqslant P_{\ell}^{1}-P_{\ell}^{2}+P_{\ell}^{3}
$$

where

$$
\begin{aligned}
P_{\ell}^{1} & :=\int_{0}^{T}\left\langle f_{\ell}(t), v_{\ell}(t)\right\rangle d t-\int_{0}^{T}\left\langle A_{\ell}(t) v_{\ell}(t), v(t)\right\rangle d t-\int_{0}^{T}\left\langle A(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t \\
P_{\ell}^{2} & :=\int_{0}^{T}\left\langle\hat{v}_{\ell}^{\prime}(t), v_{\ell}(t)\right\rangle d t+\int_{0}^{T}\left\langle B u_{\ell}(t), v_{\ell}(t)\right\rangle d t \\
P_{\ell}^{3} & :=\int_{0}^{T}\left\langle A(t) v(t)-A_{\ell}(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t .
\end{aligned}
$$

Due to [9, proof of Theorem 4, (2.39)], it is known that for any w in $L^{p}\left(0, T ; V_{A}\right)$, the sequence $A_{\ell} w$ converges strongly to $A w$ in $L^{p^{*}}\left(0, T ; V_{A}^{*}\right)$ as $\ell \rightarrow \infty$. Also, due to the a
priori estimates [9, Theorem 3], the sequence $\left\{v_{\ell}-v\right\}_{\ell \in \mathbb{N}}$ is bounded in $L^{p}\left(0, T ; V_{A}\right)$. Hence $P_{\ell}^{3} \rightarrow 0$ as $\ell \rightarrow \infty$. Consider now P_{ℓ}^{1}. Recall that $f \in L^{p^{*}}\left(0, T ; V_{A}^{*}\right)$ and $f_{\ell} \rightarrow f$ strongly in $L^{p^{*}}\left(0, T ; V_{A}^{*}\right)$ as $\ell \rightarrow \infty$. Furthermore, due to the a priori estimates in [9, Theorem 3] $\left\{v_{\ell}\right\}_{\ell \in \mathbb{N}}$ is a bounded sequence in $L^{p}\left(0, T ; V_{A}\right)$. Hence

$$
\lim _{\ell \rightarrow \infty} \int_{0}^{T}\left\langle f_{\ell}(t), v_{\ell}(t)\right\rangle d t=\int_{0}^{T}\langle f(t), v(t)\rangle d t
$$

Due to the weak convergence of v_{ℓ} to v in $L^{p}\left(0, T ; V_{A}\right)$, see [9, Lemma 5], we obtain

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty} \int_{0}^{T}\left\langle A(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t=0 \tag{2.8}
\end{equation*}
$$

Since $A_{\ell} v_{\ell} \rightharpoonup A v$ in $L^{p^{*}}\left(0, T ; V_{A}^{*}\right)$, due to [9, proof of Theorem 4, (2.25) and (2.39)], it can be concluded that

$$
\lim _{\ell \rightarrow \infty} \int_{0}^{T}\left\langle A_{\ell}(t) v_{\ell}(t), v(t)\right\rangle d t=\int_{0}^{T}\langle A(t) v(t), v(t)\rangle d t
$$

This together with (2.8) implies that

$$
\lim _{\ell \rightarrow \infty} P_{\ell}^{1}=\int_{0}^{T}\langle f(t), v(t)\rangle d t-\int_{0}^{T}\langle A(t) v(t), v(t)\rangle d t
$$

For any Bochner integrable function w, let $K w(t):=\int_{0}^{t} w(s) d s$. Consider the second integral in P_{ℓ}^{2}. Due to [9, (2.38) in the proof of Theorem 4], it is known that

$$
\int_{0}^{T}\left\langle B\left(u_{\ell}(t)-u_{0}-K v_{\ell}(t)\right), v_{\ell}(t)\right\rangle d t \rightarrow 0 \quad \text { as } \quad \ell \rightarrow \infty
$$

In order to make a use of this, consider the identity

$$
\int_{0}^{T}\left\langle B u_{\ell}(t), v_{\ell}(t)\right\rangle d t=\int_{0}^{T}\left\langle B\left(u_{\ell}-u_{0}-K v_{\ell}\right)(t), v_{\ell}(t)\right\rangle d t+\int_{0}^{T}\left\langle B\left(u_{0}+K v_{\ell}\right)(t), v_{\ell}(t)\right\rangle d t
$$

Note that all the terms in the equation above are well defined, indeed $u_{0} \in V_{B}$ implies that $B u_{0} \in V_{B}^{*}$ and $v_{\ell}(t) \in V_{m_{\ell}} \subset V \subset V_{B}$ implies $B K v_{\ell}(t) \in V_{B}^{*}$ for all t. Observe that V_{B} with

$$
((v, w)):=\langle B w, v\rangle, \quad\|v\|_{B}^{2}:=((v, v)) \quad \forall v, w \in V_{B}
$$

is a Hilbert space and $\|\cdot\|_{V_{B}}$ and $\|\cdot\|_{B}$ are equivalent norms. Thus the integration by parts formula holds for any function $w \in L^{p}\left(0, T ; V_{B}\right)$ with $w^{\prime} \in L^{p^{*}}\left(0, T ; V_{B}^{*}\right)$, see, e.g., Gajewski, Gröger and Zacharias [12, Chapter 4, Theorem 1.17] or Roubíček [22, Lemma 7.3]. Hence

$$
\begin{aligned}
& \int_{0}^{T}\left\langle B\left(u_{0}+K v_{\ell}(t)\right), v_{\ell}(t)\right\rangle d t=\int_{0}^{T}\left\langle B\left(u_{0}+K v_{\ell}\right)(t),\left(u_{0}+K v_{\ell}\right)^{\prime}(t)\right\rangle d t \\
& =\int_{0}^{T} \frac{1}{2} \frac{d}{d t}\left\|u_{0}+K v_{\ell}(t)\right\|_{B}^{2} d t=\frac{1}{2}\left\|u_{0}+K v_{\ell}(T)\right\|_{B}^{2}-\frac{1}{2}\left\|u_{0}\right\|_{B}^{2}
\end{aligned}
$$

Due to [9, proof of Theorem 4, (2.35) and (2.37)], it is known that as $\ell \rightarrow \infty$

$$
u_{0}+K v_{\ell}(T) \rightharpoonup u_{0}+K v(T) \quad \text { in } \quad V_{B} .
$$

Hence, using the weak lower semi-continuity of the norm, it is seen that

$$
\left\|u_{0}+K v(T)\right\|_{B} \leqslant \liminf _{\ell \rightarrow \infty}\left\|u_{0}+K v_{\ell}(T)\right\|_{B}
$$

Now consider the first integral in P_{ℓ}^{2}. Since \hat{v}_{ℓ} and v_{ℓ} are piecewise linear and piecewise constant respectively, the formula $(a-b) a=\frac{1}{2} a^{2}-\frac{1}{2} b^{2}+\frac{1}{2}(a-b)^{2}$, which holds for $a, b \in \mathbb{R}$, can be used to rewrite the first integral in P_{ℓ}^{2} as a telescoping sum. Hence

$$
\int_{0}^{T}\left\langle\hat{v}_{\ell}^{\prime}(t), v_{\ell}(t)\right\rangle d t \geqslant \frac{1}{2}\left|v_{\ell}^{N_{\ell}-1}\right|^{2}-\frac{1}{2}\left|v_{\ell}^{0}\right|^{2}
$$

Due to Assumption (IC), it is known that $v_{\ell}^{0} \rightarrow v_{0}$ strongly in H as $\ell \rightarrow \infty$. Hence $\left|v_{0}\right|=\lim _{\ell \rightarrow \infty}\left|v_{\ell}^{0}\right|$. Furthermore due to [9, proof of Theorem 4, (2.24) and (2.30)] it is known that $v_{\ell}^{N_{\ell}-1} \rightharpoonup v(T)$ in H as $\ell \rightarrow \infty$. This, together with the weak lower semi-continuity of the norm, implies that

$$
|v(T)| \leqslant \liminf _{\ell \rightarrow \infty}\left|v_{\ell}^{N_{\ell}-1}\right|
$$

Hence

$$
\limsup _{\ell \rightarrow \infty}\left(-P_{\ell}^{2}\right) \leqslant-\frac{1}{2}\left\|u_{0}+K v(T)\right\|_{B}^{2}+\frac{1}{2}\left\|u_{0}\right\|_{B}^{2}-\frac{1}{2}|v(T)|^{2}+\frac{1}{2}\left|v_{0}\right|^{2} .
$$

Assume for now that T is a point for which [9, Lemma 6] holds. Then

$$
\begin{equation*}
\limsup _{\ell \rightarrow \infty}\left(-P_{\ell}^{2}\right) \leqslant-\int_{0}^{T}\left\langle\left(v^{\prime}+B\left(u_{0}+K v\right)\right)(t), v(t)\right\rangle d t \tag{2.9}
\end{equation*}
$$

In fact the above step is the crucial step in the proof as only the sum $\left(v^{\prime}+B\left(u_{0}+K v\right)\right)(t)$ is in the appropriate dual space V_{A}^{*}. That the sum is in V_{A}^{*} is known since $v=u^{\prime}$ satisfies (2.6). An attempt to consider the terms separately fails as the duality pairings are not defined. The case when T is a point at which [9, Lemma 6] does not hold is resolved by a limiting argument as in [9, proof of Theorem 4], see also Lions and Strauss [15]. Furthermore, due to (2.6) tested with v, which is known to be in $L^{p}\left(0, T ; V_{A}\right)$, it can be seen that

$$
\begin{aligned}
0 & \leqslant \liminf _{\ell \rightarrow \infty} \mu \int_{0}^{T}\left\|v_{\ell}(t)-v(t)\right\|_{V_{A}}^{p} d t \leqslant \limsup _{\ell \rightarrow \infty} \mu \int_{0}^{T}\left\|v_{\ell}(t)-v(t)\right\|_{V_{A}}^{p} d t \\
& \leqslant \int_{0}^{T}\langle f(t), v(t)\rangle d t-\int_{0}^{T}\langle A(t) v(t), v(t)\rangle d t-\int_{0}^{T}\left\langle\left(v^{\prime}+B u\right)(t), v(t)\right\rangle d t=0
\end{aligned}
$$

This concludes the proof of the strong convergence of $\left\{v_{\ell}\right\}_{\ell \in \mathbb{N}}$ under the assumption that A satisfies (2.4).

Consider now what happens under the d-monotonicity assumption, i.e., when A_{0} satisfies (2.3). Since α is monotonically increasing, the following inequality can be established:

$$
\begin{aligned}
0 & \leqslant \int_{0}^{T}\left(\alpha\left(\left\|v_{\ell}(t)\right\|_{V_{A}}\right)-\alpha\left(\|v(t)\|_{V_{A}}\right)\right)\left(\left\|v_{\ell}(t)\right\|_{V_{A}}-\|v(t)\|_{V_{A}}\right) d t \\
& \leqslant \int_{0}^{T}\left\langle A_{\ell}(t) v_{\ell}(t)-A_{\ell}(t) v(t), v_{\ell}(t)-v(t)\right\rangle d t
\end{aligned}
$$

The right-hand side of this inequality is then equal to the right-hand side of (2.7) and hence the above limiting argument can be repeated. As α is monotonically increasing, the integrand
in the first integral of the above expression is always non-negative. Hence the limes superior of the first integral in the above expression can only go to zero if $\left\|v_{\ell}(t)\right\|_{V_{A}}$ converges to $\|v(t)\|_{V_{A}}$ almost everywhere in $(0, T)$.

Due to the a priori estimate [9, Theorem 3], the sequence $\left\{\left\|v_{\ell}\right\|_{V_{A}}^{p}\right\}_{\ell \in \mathbb{N}} \subset L^{1}(0, T)$ is bounded. Let $1 \leqslant q<p$. Let $\theta(s):=s^{p / q}$. Then $\lim _{s \rightarrow+\infty}=\frac{\theta(s)}{s}=+\infty$ and

$$
\sup _{\ell \in \mathbb{N}} \int_{0}^{T} \theta\left(\left\|v_{\ell}(t)\right\|_{V_{A}}^{q}\right) d t<c
$$

Hence, by the De La Vallée-Poussin theorem (see e.g. [3, Theorem 2.4.4]), the sequence $\left\{\left\|v_{\ell}\right\|_{V_{A}}^{q}\right\}_{\ell \in \mathbb{N}}$ is uniformly integrable. Thus by the Vitali theorem (see e.g. [6, Chapter 4] or [23])

$$
\int_{0}^{T}\left|\left\|v_{\ell}(t)\right\|_{V_{A}}^{q}-\|v(t)\|_{V_{A}}^{q}\right| d t \rightarrow 0 \quad \text { as } \quad \ell \rightarrow \infty
$$

But this means that

$$
\left\|v_{\ell}\right\|_{L^{q}\left(0, T ; V_{A}\right)} \rightarrow\|v\|_{L^{q}\left(0, T ; V_{A}\right)} \quad \text { as } \quad \ell \rightarrow \infty .
$$

Here V_{A} is assumed to be uniformly convex. Hence $L^{q}\left(0, T ; V_{A}\right)$ is uniformly convex due to [12, Theorem 1.15]. Furthermore, since v_{ℓ} already converges weakly towards v in $L^{p}\left(0, T ; V_{A}\right)$ and hence in $L^{q}\left(0, T ; V_{A}\right)$ as $q<p$, it can be concluded (see, e.g., Brézis [6, Proposition 3.32]) that in fact $v_{\ell} \rightarrow v$ strongly in $L^{q}\left(0, T ; V_{A}\right)$ as $\ell \rightarrow \infty$.

We now come to the strong convergence of u_{ℓ} towards the exact solution u. Without loss of generality let $r \geqslant 2$. Since $u=u_{0}+K v$, we immediately find

$$
\begin{aligned}
& \left\|u_{\ell}-u\right\|_{L^{r}\left(0, T ; V_{A}+V_{B}\right)} \\
& \leqslant\left\|u_{\ell}-u_{0}-K v_{\ell}\right\|_{L^{r}\left(0, T ; V_{A}+V_{B}\right)}+\left\|K v_{\ell}-K v\right\|_{L^{r}\left(0, T ; V_{A}+V_{B}\right)} \\
& \leqslant\left\|u_{\ell}-u_{0}-K v_{\ell}\right\|_{L^{2}\left(0, T ; V_{B}\right)}^{2 / r}\left\|u_{\ell}-u_{0}-K v_{\ell}\right\|_{L^{\infty}\left(0, T ; T_{A}+V_{B}\right)}^{1-2 / r}+\left\|K v_{\ell}-K v\right\|_{L^{r}\left(0, T ; V_{A}\right)} .
\end{aligned}
$$

In view of [9, Lemma 5], we already know that

$$
\left\|u_{\ell}-u_{0}-K v_{\ell}\right\|_{L^{2}\left(0, T ; V_{B}\right)} \rightarrow 0
$$

as $\ell \rightarrow \infty$. Moreover,

$$
\left\|u_{\ell}-u_{0}-K v_{\ell}\right\|_{L^{\infty}\left(0, T ; V_{A}+V_{B}\right)} \leqslant\left\|u_{\ell}-u_{0}\right\|_{L^{\infty}\left(0, T ; V_{B}\right)}+\left\|K v_{\ell}\right\|_{L^{\infty}\left(0, T ; V_{A}\right)}
$$

is uniformly bounded since $\left\{u_{\ell}\right\}_{\ell \in \mathbb{N}}$ is a bounded sequence in $L^{\infty}\left(0, T ; V_{B}\right),\left\{v_{\ell}\right\}_{\ell \in \mathbb{N}}$ is a bounded sequence in $L^{p}\left(0, T ; V_{A}\right)$, and K is a linear bounded mapping of $L^{1}\left(0, T ; V_{A}\right)$ into $L^{\infty}\left(0, T ; V_{A}\right)$. Finally, we have $v_{\ell} \rightarrow v$ in $L^{q}\left(0, T ; V_{A}\right)$ at least for $q<p$ (see the first part of the proof) and hence

$$
\left\|K v_{\ell}-K v\right\|_{L^{r}\left(0, T ; V_{A}\right)} \rightarrow 0
$$

as $\ell \rightarrow \infty$.
If $A=A_{0}+A_{1}$ and $B=B_{0}+B_{1}$ then (1.2) does not necessarily have a unique solution. From the sequence of approximations v_{ℓ}, a subsequence can be chosen that converges weakly to v, see [9, Theorem 12]. The techniques of Theorem 2.1 can still be used to prove the same strong convergence results but only for a subsequence of v_{ℓ}.

It is either needed that $V_{A} \hookrightarrow V_{B}$ or that H is an intermediate space of class $\underline{\mathcal{K}}_{\eta}\left(V^{*}, V_{A}\right)$ for some $\eta \in(0,1)$ in the sense of Lions and Peetre (see [14, 16, 24]), which just means that an interpolatory inequality holds for $V_{A} \hookrightarrow H \hookrightarrow V^{*}$. The following assumptions on $A_{1}(t): V_{A} \rightarrow V_{A}^{*}$ and $B_{1}(t): V_{B} \rightarrow V_{A}^{*}$ will be required. Notice that B_{1} is indeed assumed to map into V_{A}^{*}.

Assumption $\left(A_{1}\right) . \quad\left\{A_{1}(t)\right\}_{t \in[0, T]}$ is a family of operators $A_{1}(t): V_{A} \rightarrow V_{A}^{*}$ such that for all $v \in V_{A}$ the mapping $t \mapsto A_{1}(t) v:[0, T] \rightarrow V_{A}^{*}$ is continuous for almost all $t \in[0, T]$. There are constants $\varepsilon \in[0,1 / 4), \kappa \geqslant 0, \lambda_{1} \geqslant 0, c>0$ such that for all $t \in[0, T]$ and all $v \in V_{A}$

$$
\left\langle A_{1}(t) v, v\right\rangle \geqslant-\varepsilon \mu_{A}\|v\|_{V_{A}}^{p}-\kappa|v|^{2}-\lambda_{1}, \quad\left\|A_{1}(t) v\right\|_{V_{A}^{*}} \leqslant c\left(1+\|v\|_{V_{A}}^{p-1}\right) .
$$

Moreover, there is a constant $\delta_{A} \in(0, p-1]$ such that for any $R>0$ there is a constant $\alpha_{A}=\alpha_{A}(R)>0$ and for all $t \in[0, T]$ and all $v, w \in V_{A}$ with $|v|,|w| \leqslant R$ there holds

$$
\left\|A_{1}(t) v-A_{1}(t) w\right\|_{V_{A}^{*}} \leqslant \alpha_{A}(R)\left(1+\|v\|_{V_{A}}^{p-1-\delta_{A}}+\|w\|_{V_{A}}^{p-1-\delta_{A}}\right)|v-w|^{\delta_{A} / p}
$$

Assumption ($\left.B_{1}\right) . \quad\left\{B_{1}(t)\right\}_{t \in[0, T]}$ is a family of operators $B_{1}(t): V_{B} \rightarrow V_{A}^{*}$ such that for all $v \in V_{B}$ the mapping $t \mapsto B_{1}(t) v:[0, T] \rightarrow V_{A}^{*}$ is continuous for almost all $t \in[0, T]$. There is a constant $c>0$ such that for all $t \in[0, T]$ and all $v \in V_{B}$

$$
\left\|B_{1}(t) v\right\|_{V_{A}^{*}} \leqslant c\left(1+\|v\|_{V_{B}}^{2(p-1) / p}\right)
$$

Moreover, for any $R>0$ there is a constant $\alpha_{B}=\alpha_{B}(R)>0$ and for all $t \in[0, T]$ and all $v, w \in V_{B}$ with $\|v\|_{V_{B}},\|w\|_{V_{B}} \leqslant R$ there holds

$$
\left\|B_{1}(t) v-B_{1}(t) w\right\|_{V_{A}^{*}} \leqslant \alpha_{B}(R)|v-w|^{1-1 / p}
$$

If $A=A_{0}+A_{1}$ and $B=B_{0}+B_{1}$ and Assumptions $\left(A_{1}\right)$ and $\left(B_{1}\right)$ are satisfied and if $\tau_{\max }$ is sufficiently small, then (1.5) has a solution $\left\{u^{n}\right\}_{n=0}^{N},\left\{v^{n}\right\}_{n=0}^{N-1} \subset V_{m}$, due to [9, Theorem 7].

Theorem 2.2. In addition to the assumptions of Theorem 2.1, let Assumptions (A_{1}) and $\left(B_{1}\right)$ be satisfied, let $\tau_{m a x, \ell}$ be sufficiently small and assume V_{A} is compactly embedded in H. Moreover either let $H \in \underline{\mathcal{K}}_{\eta}\left(V^{*}, V_{A}\right)$ for some $\eta \in(0,1)$ and assume that the Galerkin scheme can be chosen in such a way that the operator norm in V of the corresponding orthogonal projection of H onto the finite dimensional subspaces is uniformly bounded or let $V_{A} \hookrightarrow V_{B}$.

Then, passing to a subsequence if necessary, the conclusions of Theorem 2.1 hold even if A_{1} and B_{1} are different from zero.
Proof. The discrete problem now is

$$
\begin{align*}
\left\langle\hat{v}_{\ell}^{\prime}(t), \phi\right\rangle & +\left\langle A_{0, \ell}(t) v_{\ell}(t), \phi\right\rangle+\left\langle A_{1, \ell}(t) v_{\ell}(t), \phi\right\rangle \tag{2.10}\\
& +\left\langle B_{0} u_{\ell}(t), \phi\right\rangle+\left\langle B_{1, \ell}(t) u_{\ell}(t), \phi\right\rangle=\left\langle f_{\ell}(t), \phi\right\rangle \quad \forall \phi \in V_{m_{\ell}}
\end{align*}
$$

for almost all $t \in(0, T)$. Furthermore, the second equation in (1.3) is equivalent to

$$
\begin{align*}
& \int_{0}^{T}\left\langle v^{\prime}(t)+B_{0} u(t), w(t)\right\rangle d t+\int_{0}^{T}\left\langle A_{0}(t) v(t), w(t)\right\rangle d t+\int_{0}^{T}\left\langle A_{1}(t) v(t), w(t)\right\rangle d t \tag{2.11}\\
& \quad+\int_{0}^{T}\left\langle B_{1} u(t), w(t)\right\rangle d t=\int_{0}^{T}\langle f(t), w(t)\rangle d t \quad \forall w \in L^{p}\left(0, T ; V_{A}\right)
\end{align*}
$$

Here $v=u^{\prime}$ and u is a solution to (1.2), which is known to exist due to [9, Theorem 12], and $\left\{v_{\ell^{\prime}}\right\}$ is a subsequence of $\left\{v_{\ell}\right\}_{\ell \in \mathbb{N}}$ that converges weakly to v in $L^{p}\left(0, T ; V_{A}\right)$ as $\ell \rightarrow \infty$. The subsequence exists due to [9, Theorem 12]. Then the argument proceeds exactly as in the proof of Theorem 2.1 except that after testing (2.10) by $v_{\ell^{\prime}}(t)$ and integrating from 0 to T the term $P_{\ell^{\prime}}^{1}$ contains additionally $-\int_{0}^{T}\left\langle A_{1, \ell^{\prime}}(t) v_{\ell^{\prime}}(t), v_{\ell^{\prime}}(t)\right\rangle d t$. But this converges to $-\int_{0}^{T}\left\langle A_{1}(t) v(t), v(t)\right\rangle d t$ as $\ell^{\prime} \rightarrow \infty$ due to [9, (3.15) in the proof of Theorem 12]. Furthermore $P_{\ell^{\prime}}^{2}$ additionally contains $\int_{0}^{T}\left\langle B_{1, \ell^{\prime}}(t) u_{\ell^{\prime}}(t), v_{\ell^{\prime}}(t)\right\rangle d t$. This converges to $\int_{0}^{T}\left\langle B_{1}(t) u(t), v(t)\right\rangle d t$ as $\ell^{\prime} \rightarrow \infty$ due to [9, (3.16) in the proof of Theorem 12]. Finally, $P_{\ell^{\prime}}^{3}$ contains additionally the term $\int_{0}^{T}\left\langle A_{1}(t) v(t)-A_{1, \ell^{\prime}}(t) v(t), v_{\ell^{\prime}}(t)-v(t)\right\rangle d t$. But this goes to zero as $\ell^{\prime} \rightarrow \infty$ since due to Assumption $\left(A_{1}\right)$ together with Lebesgue's theorem it can be shown that $A_{1, \ell^{\prime}} v \rightarrow A v$ in $L^{p^{*}}\left(0, T ; V_{A}^{*}\right)$ as $\ell^{\prime} \rightarrow \infty$. Now testing (2.11) by $v \in L^{p}\left(0, T ; V_{A}\right)$, the relevant limes superiors are seen to be zero and the rest of the proof is as before.

3. Vibrating membrane with nonlinear damping

The wave equation with a nonlinear damping term comes from Andreassi and Torelli [1], Fattorini [10, p. 165], and Lions [13, pp. 38ff., 62ff., 222ff.].

Let Ω be a bounded domain in \mathbb{R}^{d} with Lipschitz boundary $\partial \Omega$. Consider the following equation for some real number $p \geqslant 2$,

$$
\begin{equation*}
u_{t t}+\left|u_{t}\right|^{p-2} u_{t}-\Delta u=f \quad \text { in } \quad \Omega \times(0, T), \tag{3.1}
\end{equation*}
$$

where $-\Delta$ denotes the Laplace operator and $\left|u_{t}\right|=\left|\frac{\partial u}{\partial t}(x, t)\right|$ is the absolute value of the partial derivative of u with respect to t evaluated at the point (x, t). Let

$$
\begin{equation*}
u=0 \quad \text { on } \quad \partial \Omega \times(0, T) \tag{3.2}
\end{equation*}
$$

and consider the initial conditions

$$
\begin{array}{lll}
u(0, \cdot)=u_{0} & \text { in } & \Omega, \tag{3.3}\\
u_{t}(0, \cdot)=v_{0} & \text { in } & \Omega .
\end{array}
$$

It will be shown that piecewise constant prolongations of numerical approximations (1.5) converge strongly to the weak solutions to (3.1) by employing Theorem 2.1. The aim is to choose spaces $V_{A} \subset H \subset V_{A}^{*}$ and $V_{B} \subset H \subset V_{B}^{*}$ and define operators A and B such that (3.1) can be interpreted as (1.2). Let $H=L^{2}(\Omega)$,

$$
V_{A}=L^{p}(\Omega) \stackrel{d}{\hookrightarrow} H=L^{2}(\Omega) \stackrel{d}{\hookrightarrow} V_{A}^{*}=L^{p^{*}}(\Omega)
$$

and

$$
V_{B}=H_{0}^{1}(\Omega) \stackrel{d}{\hookrightarrow} H=L^{2}(\Omega) \stackrel{d}{\hookrightarrow} V_{B}^{*}=H^{-1}(\Omega) .
$$

This gives the two required Gelfand triples and we have $V=V_{A} \cap V_{B}=L^{p}(\Omega) \cap H_{0}^{1}(\Omega)$. To obtain the weak formulation of (3.1) corresponding to the abstract formulation (1.2), let A and B be defined as follows:

$$
\begin{array}{ll}
\langle A v, w\rangle:=\int_{\Omega}|v|^{p-2} v w d x & \forall v, w \in V_{A} \\
\langle B v, w\rangle:=\int_{\Omega} \nabla v \cdot \nabla w d x & \forall v, w \in V_{B} \tag{3.5}
\end{array}
$$

Note that A and B are independent of time. For v in $L^{p}(\Omega)$ it can be seen that

$$
\left.\left.\int_{\Omega}| | v\right|^{p-2} v\right|^{p^{*}} d x=\int_{\Omega}\left(|v|^{p-1}\right)^{p^{*}} d x=\int_{\Omega}|v|^{p} d x<\infty
$$

where, as before, $p^{*}=\frac{p}{p-1}$. Hence, $|v|^{p-2} v$ is in $L^{p^{*}}(\Omega)$.
Lemma 3.1. The operator A defined by (3.4) satisfies Assumption $\left(A_{0}\right)$.
Proof. Since

$$
\langle A v, v\rangle=\int_{\Omega}|v|^{p-2} v v d x=\|v\|_{V_{A}}^{p}
$$

A is coercive. Observe that for any $y, z \in \mathbb{R}$ and $p \geqslant 2$,

$$
\left(|y|^{p-2} y-|z|^{p-2} z\right)(y-z) \geqslant \mu|y-z|^{p}
$$

with $\mu=2^{-(p-2)}$. Hence

$$
\langle A u-A v, u-v\rangle=\int_{\Omega}\left(|u|^{p-2} u-|v|^{p-2} v\right)(u-v) d x \geqslant \mu \int_{\Omega}|u-v|^{p} d x=\mu\|u-v\|_{V_{A}}^{p} .
$$

Thus A satisfies (2.4) and so is uniformly monotone. Using Hölder's inequality, we obtain the growth estimate

$$
\|A v\|_{V_{A}^{*}}=\sup _{w \in V_{A}, w \neq 0}\left(\left.\left.\frac{1}{\|w\|_{V_{A}}} \int_{\Omega}| | v\right|^{p-2} v w \right\rvert\, d x\right) \leqslant\left(\left.\left.\int_{\Omega}| | v\right|^{p-2} v\right|^{p^{*}} d x\right)^{\frac{1}{p^{*}}}=\|v\|_{V_{A}}^{p-1}
$$

It still remains to prove that the operator A is hemicontinuous. But this is an immediate consequence of the continuity of the function $y \mapsto|y|^{p-2} y$ mapping \mathbb{R} into \mathbb{R} and the Lebesgue dominated convergence theorem.

Lemma 3.2. The operator B defined by (3.5) satisfies Assumption $\left(B_{0}\right)$.

Proof. Clearly B is bounded, linear and symmetric. Furthermore $\langle B v, v\rangle=\|v\|_{V_{B}}^{2}$. So $B: V_{B} \rightarrow V_{B}^{*}$ is strongly positive. Thus Assumption $\left(B_{0}\right)$ is also satisfied with $\mu_{B}=1$ and $c_{B}=1$.

It has been demonstrated that Assumptions $\left(A_{0}\right)$ and $\left(B_{0}\right)$ are satisfied. Assumption (IC) can easily be fulfilled. But since $L^{p}(\Omega)$ is not continuously embedded in $H_{0}^{1}(\Omega)$, fulfilling Assumption $\left(V_{m}, \mathbb{I}\right)$ requires coupling of maximum time step size and spatial discretisation parameter. Hence the conclusions of Emmrich and Thalhammer [9, Theorem 4] apply, in particular there is a unique solution to (1.2) with A given by (3.4) and B given by (3.5). Furthermore by Theorem 2.1, the piecewise constant prolongations v_{ℓ} converge, as $\ell \rightarrow \infty$, to the first time derivative of the weak solution u to (3.1) with initial data (3.2) and boundary values (3.3) in $L^{p}\left(0, T ; L^{p}(\Omega)\right)=L^{p}(\Omega \times(0, T))$, since A_{0} satisfies the required additional monotonicity assumption. Moreover, u_{ℓ} converges to u in $L^{r}\left(0, T ; L^{p}(\Omega)+H_{0}^{1}(\Omega)\right)$ for any $r \in[1, \infty)$. Note that, e.g., in the one- and two-dimensional case $L^{p}(\Omega)+H_{0}^{1}(\Omega)=L^{p}(\Omega)$.

4. Another example

Let Ω be a bounded domain in \mathbb{R}^{d} with the boundary $\partial \Omega$ of class \mathcal{C}^{2} or let Ω be a convex polygonal domain in \mathbb{R}^{2}. Let ν be the outward unit normal vector for the domain Ω. Let μ and λ be positive constants. We consider the equation

$$
\begin{equation*}
u_{t t}-\mu \Delta u_{t}-\operatorname{div}(\sigma(\nabla u))+\lambda \Delta^{2} u=g \quad \text { in } \quad \Omega \times(0, T) \tag{4.1}
\end{equation*}
$$

together with the initial and boundary data

$$
\begin{array}{lll}
u(\cdot, 0)=u_{0}, & u_{t}(\cdot, 0)=v_{0} & \text { in } \Omega \tag{4.2}\\
u=0, & \nu \cdot \nabla u=0 & \text { on } \partial \Omega \times(0, T) .
\end{array}
$$

We note that the equation above corresponds to a model for shape-memory alloys that has been developed and studied by Pego [17], Friesecke and McLeod [11], Ball et al. [4], Roubíček [21], Rajagopal and Roubíček [19], Arndt, Griebel and Roubíček [2] and others. The list of references is far from complete. There are other mathematical models for transformations in shape-memory alloys which are not considered by this article, see Plecháč and Roubíček [18] and the references to other models cited therein. When modelling martensitic transformations, $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ will arise as the Gâteaux derivative of a double-well potential, that is itself a fourth order polynomial. Hence σ should be allowed to grow as a polynomial of third degree. As mentioned in the introduction, the framework of [9] and hence of this article does not cover this situation.

Assume that there exists $K>0$ such that for all $y, z \in \mathbb{R}^{d}$

$$
\begin{equation*}
|\sigma(y)| \leqslant K(1+|y|) \quad \text { and } \quad|\sigma(y)-\sigma(z)| \leqslant K|y-z| . \tag{4.3}
\end{equation*}
$$

As before, suitable choices of V_{A}, V_{B} and H need to be made and Assumptions $\left(A_{0}\right)$, $\left(B_{0}\right)$ and $\left(B_{1}\right)$ need to be verified. Let

$$
V_{A}=H_{0}^{1}(\Omega), \quad V_{B}=H_{0}^{2}(\Omega), \quad H=L^{2}(\Omega)
$$

To obtain the weak formulation of (4.1), let $A=A_{0}$ (hence $A_{1}=0$) and $B=B_{0}+B_{1}$ and define A_{0}, B_{0} and B_{1} as follows: for any $v, w \in V_{A}$, let

$$
\begin{equation*}
\left\langle A_{0} v, w\right\rangle:=\mu \int_{\Omega} \nabla v \cdot \nabla w d x . \tag{4.4}
\end{equation*}
$$

For any $v, w \in V_{B}$, let

$$
\begin{equation*}
\left\langle B_{0} v, w\right\rangle:=\lambda \int_{\Omega} \Delta v \Delta w d x \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle B_{1} v, w\right\rangle:=\int_{\Omega} \sigma(\nabla v) \cdot \nabla w d x \tag{4.6}
\end{equation*}
$$

It can be seen by standard arguments that A_{0} fulfils Assumption $\left(A_{0}\right)$ with $p=2$. At this point it is important to note that since the boundary of Ω is of class \mathcal{C}^{2} or that since Ω is a convex polygonal domain in \mathbb{R}^{2}, the $H^{2}(\Omega)$ norm is on $H_{0}^{2}(\Omega)$ equivalent to the norm $\|\Delta \cdot\|_{L^{2}(\Omega)}$. Indeed, in the case when the boundary is of class \mathcal{C}^{2}, this follows from the classical regularity results of Agmon, Douglis and Nirenberg. In the case of convex polygonal Ω, this is a consequence of results by Grisvard (see, e.g., Attouch et al. [3, p. 277] and the references cited therein). We therefore equip V_{B} with the norm $\|\cdot\|_{V_{B}}:=\|\Delta \cdot\|_{L^{2}(\Omega)}$. Hence B_{0} poses no difficulties as it is clearly symmetric, linear, bounded and strongly positive. Thus Assumption $\left(B_{0}\right)$ is also satisfied. It only remains to verify Assumption $\left(B_{1}\right)$.

Lemma 4.1. The operator B_{1} satisfies Assumption $\left(B_{1}\right)$, provided that σ satisfies (4.3).
Proof. The definition of B_{1} and the embedding $H_{0}^{2}(\Omega) \hookrightarrow H_{0}^{1}(\Omega)$ immediately imply

$$
\left\|B_{1} v\right\|_{V_{A}^{*}} \leqslant\left(\int_{\Omega}|\sigma(\nabla v)|^{2} d x\right)^{1 / 2} \leqslant c\left(1+\int_{\Omega}|\nabla v|^{2} d x\right)^{1 / 2} \leqslant c\left(1+\|v\|_{V_{B}}\right)
$$

where assumption (4.3) has been used and where the constant c depends on K, d and Ω. Thus the first estimate of Assumption (B_{1}) is satisfied. Similarly, we find

$$
\left\|B_{1} v-B_{1} w\right\|_{V_{A}^{*}} \leqslant\left(\int_{\Omega}|\sigma(\nabla v)-\sigma(\nabla w)|^{2} d x\right)^{1 / 2} \leqslant K\left(\int_{\Omega}|\nabla v-\nabla w|^{2} d x\right)^{1 / 2}
$$

Since

$$
\|\nabla v\|_{L^{2}(\Omega)}^{2} \leqslant c\|\Delta v\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)} \quad \forall v \in H_{0}^{2}(\Omega)
$$

we obtain

$$
\left\|B_{1} v-B_{1} w\right\|_{V_{A}^{*}} \leqslant c \max \left(\|v\|_{V_{B}},\|w\|_{V_{B}}\right)^{1 / 2}|v-w|^{1 / 2}
$$

which is the second estimate in Assumption $\left(B_{1}\right)$.
It has been demonstrated that Assumptions $\left(A_{0}\right),\left(B_{0}\right)$ and $\left(B_{1}\right)$ are satisfied (and Assumption $\left(A_{1}\right)$ is not needed as $A_{1}=0$). Assumption $(I C)$ is easily satisfied and if Assumption $\left(V_{m}, \mathbb{I}\right)$ is taken into account then all the conclusions of Emmrich and Thalhammer [9, Theorem 12] apply. In particular there is a weak solution to (4.1) in the sense that (1.2) holds in $L^{2}\left(0, T ; V^{*}\right)$ with $A=A_{0}$ and $B=B_{0}+B_{1}$ given by (4.4), (4.5), (4.6) respectively and $V=V_{A} \cap V_{B}=H_{0}^{2}(\Omega)$. Furthermore, by Theorem 2.2, a subsequence of the piecewise constant prolongations $\left\{v_{\ell}\right\}_{\ell \in \mathbb{N}}$ converges strongly, as $\ell^{\prime} \rightarrow \infty$, to the first time derivative of a weak solution u to (4.1) with the initial and boundary data (4.2) in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ since A_{0} is strongly monotone, since $L^{2}(\Omega) \in \underline{\mathcal{K}}_{1 / 2}\left(H^{-1}(\Omega), H_{0}^{1}(\Omega)\right), H^{-1}(\Omega) \in \underline{\mathcal{K}}_{1 / 2}\left(H^{-2}(\Omega), L^{2}(\Omega)\right)$ and thus $L^{2}(\Omega) \in \underline{\mathcal{K}}_{2 / 3}\left(H^{-2}(\Omega), H_{0}^{1}(\Omega)\right)$, and if the $L^{2}(\Omega)$-orthogonal projection onto the Galerkin spaces is $H_{0}^{2}(\Omega)$-stable. Furthermore, the approximations u_{ℓ} converge strongly towards u in $L^{r}\left(0, T ; H_{0}^{1}(\Omega)\right)$ for any $r \in[1, \infty)$ as $\ell \rightarrow \infty$.

5. Numerical results

In this section, convergence of numerical approximations to solutions of the vibrating membrane equation with nonlinear damping (3.1) is presented. The numerical computations have been performed using the deal.II finite element library [5].

The square domain $\Omega=(-L, L) \times(-L, L) \subset \mathbb{R}^{2}$ is considered together with the initial conditions

$$
\begin{equation*}
u_{0}(x)=\cos \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right) \chi_{\left\{|x| \leqslant \frac{1}{2}\right\}}, \quad v_{0}(x)=0 \tag{5.1}
\end{equation*}
$$

The finite element spaces V_{m} that form a Galerkin scheme for the space $V=V_{A} \cap V_{B}=$ $L^{p}(\Omega) \cap H_{0}^{1}(\Omega)$ are defined as follows: the sides of the domain are subdivided into 2^{m} equal intervals (thus covering the domain with $2^{2 m}$ non-overlapping squares with sides $2 L /\left(2^{m}\right)$ long). The basis functions are the \mathcal{Q}^{1} finite elements (functions that are continuous and piecewise linear in each of the two spatial variables). Taking four squares, of the squares into which the domain is subdivided, and forming a larger square gives the support of each of the basis functions. All the basis functions are zero on the boundary of Ω. There are

Figure 5.1. Numerical solution, $p=3$

Figure 5.2. Numerical solution, $p=10$
$M_{m}=\left(2^{m}+1\right)^{2}-2^{m+2}$ vertices in the interior of the domain and hence M_{m} basis functions $\left\{\varphi_{i}\right\}_{i=1}^{M_{m}}$.

Constant time step τ is used. Let m be fixed (hence M is used instead of M_{m} to simplify notation). For $n=0, \ldots, N-1$ let $u^{n}, v^{n} \in V^{m}$ be given by

$$
u^{n}=\sum_{i=1}^{M} u_{i}^{n} \varphi_{i} \quad \text { and } \quad v^{n}=\sum_{i=1}^{M} v_{i}^{n} \varphi_{i}
$$

Let $\boldsymbol{u}^{n}:=\left[u_{1}^{n}, \ldots, u_{M}^{n}\right]^{T}$ and $\boldsymbol{v}^{n}:=\left[v_{1}^{n}, \ldots, v_{M}^{n}\right]^{T}$. The first equation in (1.5) gives

$$
\frac{1}{\tau} \boldsymbol{G}\left(\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n}\right)-\boldsymbol{G} \boldsymbol{v}^{n}=\mathbf{0}, \quad n=0,1, \ldots, N-1
$$

where

$$
G_{i j}=\int_{\Omega} \varphi_{i} \varphi_{j} d x, \quad \text { for } \quad i, j=1, \ldots, M
$$

Due to linear independence of φ_{i} the matrix \boldsymbol{G} is invertible. This implies that

$$
\boldsymbol{u}^{n+1}=\boldsymbol{v}^{n}+\tau \boldsymbol{u}^{n}, \quad n=0,1, \ldots, N-1 .
$$

Thus at each step, \boldsymbol{u}^{n+1} can easily be obtained from \boldsymbol{v}^{n} and \boldsymbol{u}^{n}. Calculating \boldsymbol{v}^{n} from \boldsymbol{v}^{n-1} and \boldsymbol{u}^{n} (both known) is the harder part where a nonlinear system must be solved. The second equation in (1.5) gives

$$
\begin{equation*}
\frac{1}{\tau} \boldsymbol{G}\left(\boldsymbol{v}^{n}-\boldsymbol{v}^{n-1}\right)+\boldsymbol{A}\left(\boldsymbol{v}^{n}\right)+\boldsymbol{S} \boldsymbol{u}^{n}=\boldsymbol{f}^{n}, \quad n=1, \ldots, N \tag{5.2}
\end{equation*}
$$

where the vectors \boldsymbol{f}^{n} are defined by

$$
\boldsymbol{f}^{n}:=\left[f_{1}^{n}, \ldots, f_{M}^{n}\right]^{T} \quad \text { with } \quad f_{i}^{n}:=\int_{\Omega} f^{n} \varphi_{i} d x
$$

the system matrix \boldsymbol{S} is

$$
S_{i j}:=\int_{\Omega} \nabla \varphi_{i} \nabla \varphi_{j} d x, \quad \text { where } \quad i, j=1, \ldots, M
$$

and the (nonlinear) vector-valued function $\boldsymbol{A}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{M}$ is defined as

$$
\boldsymbol{A}\left(\boldsymbol{v}^{n}\right)=\left[\alpha_{1}\left(\boldsymbol{v}^{n}\right), \ldots, \alpha_{M}\left(\boldsymbol{v}^{n}\right)\right]^{T}
$$

with

$$
\alpha_{j}\left(\boldsymbol{v}^{n}\right):=\int_{\Omega}\left|\sum_{i=1}^{M} v_{i}^{n} \varphi_{i}\right|^{p-2} \sum_{i=1}^{M} v_{i}^{n} \varphi_{i} \varphi_{j} d x
$$

Finally, let

$$
\boldsymbol{F}\left(\boldsymbol{v}^{n}\right):=\boldsymbol{G} \boldsymbol{v}^{n}+\tau \boldsymbol{A}\left(\boldsymbol{v}^{n}\right)-\tau \boldsymbol{f}^{n}+\tau \boldsymbol{S} \boldsymbol{u}^{n}-\boldsymbol{G} \boldsymbol{v}^{n-1}
$$

Then solving (5.2) is equivalent to solving $\boldsymbol{F}\left(\boldsymbol{v}^{n}\right)=\mathbf{0}$. Due to Emmrich and Thalhammer [9, Theorem 2] it is known that the system has a unique solution. The Newton method is now used iteratively, starting with an initial guess $\boldsymbol{v}^{n, 0}$ (which can be chosen to be, for example, $\left.\boldsymbol{v}^{n-1}\right)$. Each step amounts to solving

$$
\boldsymbol{J}\left(\boldsymbol{v}^{n, k}\right)\left(\boldsymbol{v}^{n, k+1}-\boldsymbol{v}^{n, k}\right)=-\boldsymbol{F}\left(\boldsymbol{v}^{n, k}\right) \quad \text { for } \quad k=0,1, \ldots, k_{\epsilon}
$$

where $\boldsymbol{J}\left(\boldsymbol{v}^{n, k}\right)$ is the Jacobian matrix of $\boldsymbol{F}\left(\boldsymbol{v}^{n, k}\right)$, and where k_{ϵ} is such that $\boldsymbol{F}\left(\boldsymbol{v}^{n, k_{\epsilon}}\right)$ is sufficiently close to zero in a suitable norm. Observe that while in general the Jacobian matrix \boldsymbol{J} can be approximated using finite difference method, this is very computationally intensive. Here $\boldsymbol{J}(\boldsymbol{x})$ can be calculated for $\boldsymbol{x} \in \mathbb{R}^{M}$:

$$
J_{i j}(\boldsymbol{x}):=\frac{\partial F_{i}}{\partial x_{j}}=G_{i j}+\tau \int_{\Omega}(p-1)\left|\sum_{k=1}^{M} x_{k} \varphi_{k}\right|^{p-2} \varphi_{i} \varphi_{j} d x, \quad \text { where } \quad i, j=1, \ldots, M
$$

Hence, starting with given u^{0} and v^{0}, the numerical approximations $\left\{u^{n}\right\}_{n=0}^{N} \subset V^{m}$ and $\left\{v^{n}\right\}_{n=0}^{N-1} \subset V^{m}$ are obtained. The time steps have to be chosen such that Assumption $\left(V_{m}, \mathbb{I}\right)$ is satisfied. In particular we need $c_{V_{B} \leftarrow V_{A}}\left(m_{\ell}\right)^{2} \tau_{\max }\left(\mathbb{I}_{\ell}\right) \rightarrow 0$ as $\ell \rightarrow \infty$, where $c_{V_{B} \leftarrow V_{A}}\left(m_{\ell}\right)$ comes from (2.1). In our particular case, where $V_{A}=L^{p}(\Omega), V_{B}=H_{0}^{1}(\Omega)$ and V_{m} are the \mathcal{Q}^{1} finite element spaces, the constant can be estimated as $c_{V_{B} \leftarrow V_{A}}(m) \leqslant c 2^{m}$. Thus we require
that $2^{-2 m_{\ell}} \tau_{\ell} \rightarrow 0$ as $\ell \rightarrow \infty$. The convergence results of Section 3 then apply to v_{ℓ} and u_{ℓ}. Note that $V_{A}+V_{B}=L^{p}(\Omega)$ in the two-dimensional case considered here.

The calculations have been performed with the initial data (5.1) and $f=0$. The numerical solutions obtained can be seen in Figures 5.1 and 5.2 for $p=3$ and $p=10$ respectively. The initial condition is in the top left corner of the figures. As expected, different behaviour can be observed depending on p. This is best seen by comparing the plots in top right corner of the two figures.

Size of the side of the squares making up the grid

Figure 5.3. Difference between the numerical solution u_{ℓ} calculated with a given grid and a solution on a very fine grid measured in the $L^{p}(\Omega \times(0, T))$ norm, calculated with $p=10$. Dashed line and small squares correspond to calculation where τ_{ℓ} was chosen such that $2^{2 m_{\ell}} \tau_{\ell} \rightarrow 0$ as $\ell \rightarrow \infty$ is satisfied. Large squares and solid line correspond to τ_{ℓ} proportional to 2^{-m}

Convergence can also be observed. Figure 5.3 displays the difference between the numerical solution calculated on a very fine grid and the numerical solutions on coarser grids (while decreasing τ proportionally with grid refinement). The difference is measured in the $L^{p}(\Omega \times(0, T))$ norm. We note that convergence is observed even if the condition $2^{-2 m_{\ell}} \tau_{\ell} \rightarrow 0$ as $\ell \rightarrow \infty$ is not satisfied. The solid line in Fig. 5.3 corresponds to τ proportional to 2^{-m} and convergence can still be observed.

References

[1] G. Andreassi and G. Torelli, Su una equazione di tipo iperbolico non lineare, Rendiconti del Seminario Matematico della Università di Padova, 35 (1965), no. 1, pp. 134-147.
[2] M. Arndt, M. Griebel, and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys, Continuum Mechanics and Thermodynamics, 15 (2003), no. 5, pp. 463-485.
[3] H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, MPS-SIAM series on optimization, Society for Industrial and Applied Mathematics, 2006.
[4] J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego, and P.J. Swart, On the dynamics of fine structure, Journal of Nonlinear Science, 1 (1991), no. 1, pp. 17-70.
[5] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II - a general purpose object oriented finite element library, ACM Trans. Math. Softw., 33 (2007), no. 4, pp. 24/1-24/27.
[6] H. Brezis, Functional analysis, Sobolev Spaces and partial differential equations, Springer, New York, 2010.
[7] P. Colli and A. Favini, Time discretization of nonlinear Cauchy problems applying to mixed hyperbolicparabolic equations, International Journal of Mathematics and Mathematical Sciences, 19 (1996), no. 3, pp. 481-494.
[8] E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order, Foundations of Computational Mathematics, 10 (2010), no. 2, pp. 171-190.
[9] E. Emmrich and M. Thalhammer, Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation, Journal of Differential Equations, 251 (2011), pp. 82 - 118.
[10] H.O. Fattorini, Second order linear differential equations in Banach spaces, Notas de matemática, North-Holland, 1985.
[11] G. Friesecke and J.B. McLeod, Dynamics as a mechanism preventing the formation of finer and finer microstructure, Archive for Rational Mechanics and Analysis, 133 (1996), no. 3, pp. 199-247.
[12] H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und OperatordifferentialGleichungen, Akademie-Verlag, Berlin, 1974.
[13] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthier-Villars, 1969.
[14] J.L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Etudes, 19 (1964), no. 1, pp. 5-68.
[15] J.L. Lions and W.A. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France, 93 (1965), pp. 43-96.
[16] A. Lunardi, Interpolation theory, Lecture Notes, Scuola Normale Superiore, Pisa, 2009.
[17] R.L. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability, Archive for Rational Mechanics and Analysis, 97 (1987), no. 4, pp. 353-394.
[18] P. Plecháč and T. Roubíček, Visco-elasto-plastic model for martensitic phase transformation in shapememory alloys, Mathematical Methods in the Applied Sciences, 25 (2002), no. 15, pp. 1281-1298.
[19] K. Rajagopal and T. Roubíček, On the effect of dissipation in shape-memory alloys, Nonlinear Analysis: Real World Applications, 4 (2003), no. 4, pp. 581-597.
[20] P.-A. Raviart and J.-M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles, Masson, 1983.
[21] T. Roubíček, Dissipative evolution of microstructure in shape memory alloys, in: Lectures on applied mathematics: proceedings of the symposium organized by the Sonderforschungsbereich 438 on the occasion of Karl-Heinz Hoffmann's 60th birthday, Munich, June 30-July 1, 1999, Springer Verlag, 2000, p. 45 .
[22] T. Roubíček, Nonlinear partial differential equations with applications, Birkhäuser Verlag, Basel, 2005.
[23] W. Rudin, Real and complex analysis, McGraw-Hill, 1987.
[24] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, Springer, 2007.
[25] J. G. Verwer, Runge-Kutta methods and viscous wave equations, Numer. Math., 112 (2009), pp. 485-507.

[^0]: This work is partially funded by CRC 701: Spectral Structures and Topological Methods in Mathematics of the German Science Foundation.

[^1]: Etienne Emmrich
 Universität Bielefeld, Fakultät für Mathematik, Universitätsstraße 25, 33615 Bielefeld, Germany
 E-mail: emmrich@math.uni-bielefeld.de.
 David Šiška
 Universität Bielefeld, Fakultät für Mathematik, Universitätsstraße 25, 33615 Bielefeld, Germany
 E-mail: dsiska@math.uni-bielefeld.de.

