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Full Discretisation of Second-order Nonlinear
Evolution Equations: Strong Convergence

and Applications

Etienne Emmrich · David Šǐska

Abstract — Recent results on convergence of fully discrete approximations combining
the Galerkin method with the explicit-implicit Euler scheme are extended to strong
convergence under additional monotonicity assumptions. It is shown that these ab-
stract results, formulated in the setting of evolution equations, apply, for example, to
the partial differential equation for vibrating membrane with nonlinear damping and
to another partial differential equation that is similar to one of the equations used to
describe martensitic transformations in shape-memory alloys. Numerical experiments
are performed for the vibrating membrane equation with nonlinear damping which
support the convergence results.

2010 Mathematical subject classification: 47J35; 65M12; 47H05; 47G20; 74K15; 74B20.

Keywords: evolution equation of second order; time discretisation; Galerkin method;
convergence; vibrating membrane; shape-memory alloys.

1. Introduction

Nonlinear partial differential equations of second order in time are being used to describe
a variety of problems in physical sciences. Explicit formulae for solutions to such partial
differential equations are rare. Hence there are many methods of solving such problems
numerically. This article focuses on conforming finite element methods in space and a par-
titioned explicit-implicit Euler method in time (generalising the well known Störmer–Verlet
or leap-frog method).

Recently, Emmrich and Thalhammer [8] have demonstrated convergence of time discrete
approximations for second-order doubly nonlinear evolution equations with damping. This
has been recently extended by Emmrich and Thalhammer [9] to more general second-order
doubly nonlinear evolution equations.

This paper has two main aims. The first is to improve the strong convergence results in
the case when stronger monotonicity of the damping term can be assumed. The second aim
is to demonstrate that the abstract results apply to the vibrating membrane equation with
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nonlinear damping as well as to another partial differential equation which resembles one of
the possible equations modelling transformations in shape-memory alloys. For the nonlinear
vibrating membrane equation with nonlinear damping, numerical experiments supporting
the theoretical convergence are presented. The two concrete nonlinear partial differential
equations considered are:

1. Vibrating membrane equation / wave equation with a nonlinear damping term:

utt + |ut|p−2ut −∆u = f,

where u is the displacement of the membrane on some bounded domain, p > 2 and
the initial displacement and initial velocity together with the right-hand side f are
given. The earliest reference is, to the authors knowledge, Andreassi and Torelli [1].
For further references, see Section 3.

2. An equation similar to an equation for martensitic transformations in shape-memory
alloys:

utt − µ∆ut − div (σ(∇u)) + λ∆2u = f, (1.1)

where σ : Rd → Rd is given. The equation corresponds to one of the equations for
martensitic transformations in shape-memory alloys and the function σ : Rd → Rd

determines the various phases in the so-called shape-memory alloy. The function σ
arises from the potential ϕ : R3 → R, the stored energy density, via σ := ϕ′. An
example of ϕ found in the literature is a fourth order polynomial. Hence σ should be
allowed to have at least cubic growth in applications. For an overview, see Plecháč
and Roub́ıček [18] and further references in Section 4. It is emphasised that this
paper does not cover the situation where σ has cubic growth. Only linear growth is
allowed. So the abstract framework of this article does not appear to be optimal for the
equation modelling martensitic transformations in shape-memory alloys. Nevertheless,
Roub́ıček [22, Chapter 11, p. 354] also considers (1.1) together with linear growth of σ.

The functional analytic formulation of the foregoing problems leads to initial value prob-
lems of the form

u′′ + Au′ +Bu = f in (0, T ) , u(0) = u0 , u
′(0) = v0 , (1.2)

where A and B are possibly nonlinear operators defined on appropriate, perhaps different,
function spaces.

The functional analytic setting for (1.2) is as follows. Let (VA, ‖ · ‖VA) be a reflexive
and separable Banach space that is dense and continuously embedded in a Hilbert space
(H, (·, ·), | · |) such that VA ⊂ H ⊂ V ∗A form a Gelfand triple. Let A be the Nemytskii
operator corresponding to a family of nonlinear operators {A(t)}t∈[0,T ]. It is assumed that
A(t) is composed of a principal part A0(t) : VA → V ∗A and a perturbation A1(t) : VA → V ∗A
such that A(t) = A0(t) + A1(t). The precise assumptions on A0 and A1 will be stated
in Section 2. For now it is sufficient to say that A0(t) shall be hemicontinous, monotone
and coercive (up to a shift) and satisfying a certain growth condition, uniformly in t. It is
required that A1(t) fulfils a certain lower semi-boundedness condition (so that A(t) remains
up to a shift coercive), a growth condition and a local Hölder-like continuity condition.

Now consider the setting for the operator B. Let (VB, ‖ · ‖B) be a separable Banach
space such that VB ⊂ H ⊂ V ∗B again form a Gelfand triple. Let B be the Nemytskii
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operator corresponding to a family of operators {B(t)}t∈[0,T ]. Again it is assumed that B(t)
is composed of a principal part B0 and a perturbation B1(t) such that B(t) = B0 + B1(t).
The principal part of B(t) is assumed to be time-independent (though this is not necessary,
see Lions and Strauss [15]), linear, bounded, symmetric and strongly positive. Observe that
this implies that B0 induces an inner product on VB thus making VB into a Hilbert space. As
such VB is reflexive. The time dependent perturbations B1(t) are assumed to be bounded and
locally continuous in a Hölder-like sense. The precise assumptions will be given in Section 2.

Furthermore let V := VA∩VB and assume that V is dense in both the spaces VA and VB.
Thus we have the following scale of spaces:

VA ∩ VB = V
d
↪→ VC

d
↪→ H = H∗

d
↪→ V ∗C

d
↪→ V ∗ = V ∗A + V ∗B, C ∈ {A,B},

where
d
↪→ denotes continuous and dense embedding.

Equivalently (1.2) can be written as the first-order system{
u′ − v = 0 in (0, T ), u(0) = u0,

v′ + Av +Bu = f in (0, T ), v(0) = v0.
(1.3)

In this situation, like in Lions and Strauss [15] and in Emmrich and Thalhammer [9], great
care needs to be taken with the integration by parts formulae, since, in general, the second
time derivative u′′(t) = v′(t) only takes values in V ∗ = V ∗A + V ∗B, whereas u′(t) = v(t) takes
values in VA. So the duality pairing between u′′(t) = v′(t) and u′(t) = v(t) is not defined.

Let {Vm}m∈N be a Galerkin scheme for V (recall that V is the intersection of the separable
spaces VA and VB and hence a Galerkin basis exists). For a given m ∈ N and a variable time
grid

I : 0 = t0 < t1 < · · · < tN = T, τn = tn− tn−1 for n = 1, 2, . . . , N, τmax := max
n=1,...,N

τn, (1.4)

the aim is to find fully discrete approximations {un}Nn=1 ⊂ Vm with un ≈ u(tn) and {vn}N−1
n=1 ⊂

Vm with vn ≈ v(tn) = u′(tn) such that for all ϕ ∈ Vm
(un+1 − un, ϕ)

τn+1

− (vn, ϕ) = 0, n = 0, 1, . . . , N − 1,

(vn − vn−1, ϕ)
τn+1+τn

2

+ 〈A(tn)vn, ϕ〉+ 〈B(tn)un, ϕ〉 = 〈fn, ϕ〉, n = 1, . . . , N − 1.

(1.5)

Here u0 ≈ u0, v0 ≈ v0 and {fn}N−1
n=1 ≈ f are given. This scheme arises simply by applying

the explicit Euler scheme to the first equation in (1.3) and the implicit Euler scheme to
the second equation. This corresponds to the simplest partitioned Runge–Kutta method.
Observe that if A = 0 then the scheme would correspond to the leap-frog scheme or the well
known Störmer–Verlet method.

The existence of solutions to (1.2) goes back to Lions and Strauss, where in [15] they
prove existence and uniqueness in the case A1 = B1 = 0, but not assuming VA ↪→ VB.
Existence in the case with perturbations (but not uniqueness) is proved in Emmrich and
Thalhammer [9]. For the linear case, the time discretisation combined with a conforming
finite element method has been studied in Raviart and Thomas [20, Chapter 8]. More
recently Verwer [25] studied Runge–Kutta time integration methods for the wave equation
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with linear damping. Colli and Favini [7] have proved the convergence of the above time
discretisation with constant step sizes under the much more restrictive assumptions that
VA = VB, A0 is time independent and maximal monotone and A1 = B1 = 0. This also forces
VA to be a Hilbert space.

Emmrich and Thalhammer [8] have proved weak convergence of time discretisations (1.5)
under the assumption VA ↪→ VB. Later this has been extended, in Emmrich and Thalhammer
[9], where weak convergence has been proved in the case with no perturbations (A1 = B1 =
0), even if VA is not embedded in VB. Furthermore in the case of perturbations, under an
additional assumption on the space H and the Galerkin scheme, or under the assumption
VA ↪→ VB, strong convergence (of a subsequence in case (1.2) does not have a unique solution)
of the piecewise constant prolongations of the approximations {vn}N−1

n=0 of the first time
derivative of the solution has been proved in Lr(0, T ;H) for any r ∈ [1,∞). This article
extends this to strong convergence in Lq(0, T ;VA), with q ∈ [1, p) under the additional d-
monotonicity assumption and to q = p under a uniform monotonicity assumption on A0.
Here p > 2 comes from the coercivity assumption. Moreover, strong convergence of the
piecewise constant prolongations of the approximations {un}Nn=0 of the exact solution is
shown in Lr(0, T ;VA + VB) for any r ∈ [1,∞).

This paper is organised as follows. In Section 2 the strong convergence results are proved.
Sections 3 and 4 show that the convergence results apply to the vibrating membrane equation
with nonlinear damping and the equation (1.1) respectively. Finally in Section 5 numerical
results for discretising the vibrating membrane equation with nonlinear damping are presen-
ted.

2. Strong convergence

In what follows, the space of Bochner integrable (for r = ∞ Bochner measurable and es-
sentially bounded) abstract functions mapping [0, T ] into a (reflexive) Banach space X is
denoted by Lr(0, T ;X) (r ∈ [1,∞]) and equipped with the standard norm ‖ · ‖Lr(0,T ;X). Let
u′ and u′′ denote the first and second time derivative of the abstract function u = u(t) in
the distributional sense, respectively. Moreover, let c be a generic positive constant. For
p ∈ (1,∞), let p∗ := p

p−1
.

Let V = VA ∩ VB with norm ‖ · ‖ = ‖ · ‖VA + ‖ · ‖VB . The space V is assumed to be dense
in each of the spaces VA and VB. Obviously, V is also continuously embedded in each of the
spaces VA and VB. The dual V ∗ = V ∗A + V ∗B is equipped with the norm

‖f‖∗ = inf
{

max
(
‖fA‖V ∗A , ‖fB‖V ∗B

)
: f = fA + fB with fA ∈ V ∗A , fB ∈ V ∗B

}
.

Observe that V ⊂ H ⊂ V ∗ form a Gelfand triple. Beside V = VA∩VB, we also use the space
VA + VB equipped with the standard norm

‖w‖VA+VB = inf {max (‖wA‖VA , ‖wB‖VB) : w = wA + wB with wA ∈ VA, wB ∈ VB} .

Note that VC ↪→ VA + VB with ‖w‖VA+VB = ‖w‖VC if w ∈ VC (C ∈ {A,B}).
The following assumptions on the operators A0(t) : VA → V ∗A and B0 : VB → V ∗B will be

needed to prove the convergence results. The additional monotonicity assumptions will be
stated separately.

Assumption (A0). {A0(t)}t∈[0,T ] is a family of monotone and hemicontinuous operators
A0(t) : VA → V ∗A such that for all v ∈ VA the mapping t 7→ A0(t)v : [0, T ]→ V ∗A is continuous
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for almost all t ∈ [0, T ]. For a suitable p ∈ [2,∞), there are constants µA, c > 0, λ > 0 such
that for all t ∈ [0, T ] and v ∈ VA

〈A0(t)v, v〉 > µA‖v‖pVA − λ , ‖A0(t)v‖V ∗A 6 c
(
1 + ‖v‖p−1

VA

)
.

In fact it would be sufficient to require monotonicity and coercivity for A0(t) + κI, with
κ > 0. To simplify the presentation this is omitted, noting that the additional term can be
considered as a perturbation.

Assumption (B0). B0 : VB → V ∗B is a linear, bounded, symmetric, and strongly positive
operator: There are constants µB, cB > 0 such that for all v ∈ VB

〈B0v, v〉 > µB‖v‖2
VB
, ‖B0v‖V ∗B 6 cB‖v‖VB .

Due to [9, Theorem 2 and Theorem 7], the discrete problem (1.5) has a solution: if
A = A0, B = B0 and if Assumptions (A0) and (B0) are satisfied and u0, v0 ∈ Vm and
{fn}N−1

n=1 ⊂ V ∗ are given then (1.5) has a unique solution {un}Nn=0 ⊂ Vm.
Let {(Vm` , I`)}`∈N be a sequence of finite dimensional spaces Vm` ∈ {Vm}m∈N and time

grids I` of type (1.4) fulfilling the following assumption.

Assumption (Vm, I). For each m ∈ N, let cVB←VA(m) be a positive constant such that

‖v‖VB 6 cVB←VA(m) ‖v‖VA for all v ∈ Vm . (2.1)

Let rn := τn/τn−1 for n = 2, . . . , N . The sequence {(Vm` , I`)}`∈N satisfies

m` →∞ and τmax(I`)→ 0 as `→∞ ,

sup
`∈N

(
cVB←VA(m`)

2τmax(I`)
)
< min

(
1,
µA
cB

)
, cVB←VA(m`)

2τmax(I`)→ 0 as `→∞ ,

sup
`∈N

(
max

n=2,...,N`
rn(I`)

)
<∞ , inf

`∈N

(
min

n=2,...,N`
rn(I`)

)
> 0 ,

sup
`∈N

(
N∑̀
n=3

max

(
0,

1

rn(I`)
− 1

rn−1(I`)

))
<∞ , sup

`∈N

(
N∑̀
n=2

(τn(I`)− τn−1(I`))2

(τn(I`) + τn−1(I`))3

)
<∞ .

Relation (2.1) can always be satisfied as all norms on finite dimensional spaces are equi-
valent. The coupling of cVB←VA(m`) with τmax(I`) however does create a restriction, unless
VA is continuously embedded in VB. The remainder of Assumption (Vm, I) is always fulfilled
for equidistant time grids. It can also be satisfied for variable time grids with rather large
deviations from some arbitrary equidistant time grid. With respect to the initial data it is
required that the following holds.

Assumption (IC). The initial values for (1.5) satisfy

u0(m`, I`), v0(m`, I`) ∈ Vm` (` ∈ N) , sup
`∈N

τmax(I`)‖v0(m`, I`)‖pVA <∞ ,

u0(m`, I`)→ u0 in VB and v0(m`, I`)→ v0 in H as `→∞ .
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In order to simplify notation, v0
` and u0

` will be used in place of v0(m`, I`) and u0(m`, I`).
Let

τn+1/2 :=
τn+1 + τn

2
, tn+1/2 := tn +

τn+1

2
.

Let χD denote the characteristic function of a set D. For the solution {un}N`n=0 ⊂ Vm`
and {vn}N`−1

n=1 ⊂ Vm` to (1.5) corresponding to a time grid I` define the following piecewise
constant prolongations

u`(t) :=
N−1∑
n=1

unχ(tn−1/2,tn+1/2](t), v`(t) :=
N−1∑
n=1

vnχ(tn−1/2,tn+1/2](t) (2.2)

and the piecewise linear prolongation

v̂`(t) := v0χ[0,t1/2](t) +
N−1∑
n=1

(
vn +

t− tn+1/2

τn+1/2

(vn − vn−1)

)
χ(tn−1/2,tn+1/2](t)

+ vN−1χ(tN−1/2,tN ](t).

Note that v̂` is piecewise linear and continuous in time, and thus differentiable in the weak
sense. For the right-hand side, given f ∈ Lp∗(0, T ;V ∗A), let

fn :=
1

τn+1/2

∫ tn+1/2

tn−1/2

f(t)dt and f`(t) :=
N−1∑
n=1

fnχ(tn−1/2,tn+1/2](t).

Finally, let A0,` be defined as a piecewise constant approximation of A0, i.e.,

A0,`(t) := A0(t1)χ[0,t1/2](t) +
N−1∑
n=1

A0(tn)χ(tn−1/2,tn+1/2](t) + A0(tN−1)χ(tN−1/2,tN ](t).

Let A1,` and B1,` be defined analogously.

Theorem 2.1. Let A1 = 0 and B1 = 0. Let Assumptions (Vm, I), (IC), (A0) and (B0)
be satisfied. Further assume that f ∈ Lp∗(0, T ;V ∗A).

If for all t ∈ [0, T ] the operator A0(t) : VA → V ∗A satisfies

〈A0(t)w − A0(t)w,w − w〉 > (α(‖w‖VA)− α(‖w‖VA)) (‖w‖VA − ‖w‖VA) ∀w,w ∈ VA (2.3)

for some monotonically increasing function α : [0,∞) → R, i.e., if it is d-monotone, and
if VA is uniformly convex, then v` converges towards the first time derivative v = u′ of the
exact solution u to (1.2) strongly in Lq(0, T ;VA) for any q ∈ [1, p) as `→∞. Furthermore,
if A0(t) : VA → V ∗A satisfies for all t ∈ [0, T ]

〈A0(t)w − A0(t)w,w − w〉 > µ‖w − w‖pVA ∀w,w ∈ VA, (2.4)

for some µ > 0 then v` converges towards v = u′ strongly in Lp(0, T ;VA) as `→∞.

In both cases, u` converges towards the exact solution u strongly in Lr(0, T ;VA + VB) for
any r ∈ [1,∞) as `→∞.
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Proof. Let A`(t) = A0,`(t). This makes sense since A1 = 0. Due to Assumption (B0), the
operator B = B0 is independent of time. If {un}N`n=0 ⊂ Vm` and {vn}N`−1

n=1 ⊂ Vm` is a solution
to (1.5) then the second equation of (1.5) is equivalent to

〈v̂′`(t), φ〉+ 〈A`(t)v`(t), φ〉+ 〈Bu`(t), φ〉 = 〈f`(t), φ〉 ∀φ ∈ Vm` , (2.5)

for almost all t in (0, T ). Furthermore the second equation in (1.3) is equivalent to∫ T

0

〈(v′+Bu)(t), w(t)〉dt+
∫ T

0

〈A(t)v(t), w(t)〉dt =

∫ T

0

〈f(t), w(t)〉dt ∀w ∈ Lp(0, T ;VA). (2.6)

Here v = u′ is the weak limit of v` and u is the unique solution to (1.2) as is shown in [9,
Theorem 4].

Consider first the simpler case when A0(t) : VA → V ∗A satisfies (2.4) for all t ∈ [0, T ].
From (2.4) it can be seen that

µ

∫ T

0

‖v`(t)− v(t)‖pVAdt 6
∫ T

0

〈A`(t)v`(t)− A`(t)v(t), v`(t)− v(t)〉dt. (2.7)

By adding zero to the right-hand side it can be obtained that∫ T

0

〈A`(t)v`(t)− A`(t)v(t), v`(t)− v(t)〉dt

=

∫ T

0

〈A`(t)v`(t)− A(t)v(t), v`(t)− v(t)〉dt+

∫ T

0

〈A(t)v(t)− A`(t)v(t), v`(t)− v(t)〉dt

=

∫ T

0

〈A`(t)v`(t), v`(t)〉dt−
∫ T

0

〈A`(t)v`(t), v(t)〉dt−
∫ T

0

〈A(t)v(t), v`(t)− v(t)〉dt

+

∫ T

0

〈A(t)v(t)− A`(t)v(t), v`(t)− v(t)〉dt.

Testing with v`(t) in (2.5) and integrating leads to∫ T

0

〈A`(t)v`(t), v`(t)〉dt =

∫ T

0

〈f`(t), v`(t)〉dt−
∫ T

0

〈v̂′`(t), v`(t)〉dt−
∫ T

0

〈Bu`(t), v`〉dt.

Hence the above inequality can be transformed to

µ

∫ T

0

‖v`(t)− v(t)‖pVAdt 6 P 1
` − P 2

` + P 3
` ,

where

P 1
` :=

∫ T

0

〈f`(t), v`(t)〉dt−
∫ T

0

〈A`(t)v`(t), v(t)〉dt−
∫ T

0

〈A(t)v(t), v`(t)− v(t)〉dt,

P 2
` :=

∫ T

0

〈v̂′`(t), v`(t)〉dt+

∫ T

0

〈Bu`(t), v`(t)〉 dt,

P 3
` :=

∫ T

0

〈A(t)v(t)− A`(t)v(t), v`(t)− v(t)〉dt.

Due to [9, proof of Theorem 4, (2.39)], it is known that for any w in Lp(0, T ;VA), the
sequence A`w converges strongly to Aw in Lp

∗
(0, T ;V ∗A) as ` → ∞. Also, due to the a
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priori estimates [9, Theorem 3], the sequence {v` − v}`∈N is bounded in Lp(0, T ;VA). Hence
P 3
` → 0 as ` → ∞. Consider now P 1

` . Recall that f ∈ Lp∗(0, T ;V ∗A) and f` → f strongly
in Lp

∗
(0, T ;V ∗A) as ` → ∞. Furthermore, due to the a priori estimates in [9, Theorem 3]

{v`}`∈N is a bounded sequence in Lp(0, T ;VA). Hence

lim
`→∞

∫ T

0

〈f`(t), v`(t)〉dt =

∫ T

0

〈f(t), v(t)〉dt.

Due to the weak convergence of v` to v in Lp(0, T ;VA), see [9, Lemma 5], we obtain

lim
`→∞

∫ T

0

〈A(t)v(t), v`(t)− v(t)〉dt = 0. (2.8)

Since A`v` ⇀ Av in Lp
∗
(0, T ;V ∗A), due to [9, proof of Theorem 4, (2.25) and (2.39)], it can

be concluded that

lim
`→∞

∫ T

0

〈A`(t)v`(t), v(t)〉dt =

∫ T

0

〈A(t)v(t), v(t)〉dt.

This together with (2.8) implies that

lim
`→∞

P 1
` =

∫ T

0

〈f(t), v(t)〉dt−
∫ T

0

〈A(t)v(t), v(t)〉dt.

For any Bochner integrable function w, let Kw(t) :=
∫ t

0
w(s)ds. Consider the second integral

in P 2
` . Due to [9, (2.38) in the proof of Theorem 4], it is known that∫ T

0

〈B(u`(t)− u0 −Kv`(t)), v`(t)〉dt→ 0 as `→∞.

In order to make a use of this, consider the identity∫ T

0

〈Bu`(t), v`(t)〉dt=
∫ T

0

〈B(u` − u0 −Kv`)(t), v`(t)〉dt+

∫ T

0

〈B(u0 +Kv`)(t), v`(t)〉dt.

Note that all the terms in the equation above are well defined, indeed u0 ∈ VB implies that
Bu0 ∈ V ∗B and v`(t) ∈ Vm` ⊂ V ⊂ VB implies BKv`(t) ∈ V ∗B for all t. Observe that VB with

((v, w)) := 〈Bw, v〉, ‖v‖2
B := ((v, v)) ∀v, w ∈ VB

is a Hilbert space and ‖ · ‖VB and ‖ · ‖B are equivalent norms. Thus the integration by parts
formula holds for any function w ∈ Lp(0, T ;VB) with w′ ∈ Lp∗(0, T ;V ∗B), see, e.g., Gajewski,
Gröger and Zacharias [12, Chapter 4, Theorem 1.17] or Roub́ıček [22, Lemma 7.3]. Hence∫ T

0

〈B(u0 +Kv`(t)), v`(t)〉dt =

∫ T

0

〈B(u0 +Kv`)(t), (u0 +Kv`)
′(t)〉dt

=

∫ T

0

1

2

d

dt
‖u0 +Kv`(t)‖2

Bdt =
1

2
‖u0 +Kv`(T )‖2

B −
1

2
‖u0‖2

B.

Due to [9, proof of Theorem 4, (2.35) and (2.37)], it is known that as `→∞

u0 +Kv`(T ) ⇀ u0 +Kv(T ) in VB.
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Hence, using the weak lower semi-continuity of the norm, it is seen that

‖u0 +Kv(T )‖B 6 lim inf
`→∞

‖u0 +Kv`(T )‖B.

Now consider the first integral in P 2
` . Since v̂` and v` are piecewise linear and piecewise

constant respectively, the formula (a− b)a = 1
2
a2− 1

2
b2 + 1

2
(a− b)2, which holds for a, b ∈ R,

can be used to rewrite the first integral in P 2
` as a telescoping sum. Hence∫ T

0

〈v̂′`(t), v`(t)〉dt >
1

2
|vN`−1
` |2 − 1

2
|v0
` |2.

Due to Assumption (IC), it is known that v0
` → v0 strongly in H as ` → ∞. Hence

|v0| = lim`→∞ |v0
` |. Furthermore due to [9, proof of Theorem 4, (2.24) and (2.30)] it is known

that vN`−1
` ⇀ v(T ) in H as ` → ∞. This, together with the weak lower semi-continuity of

the norm, implies that
|v(T )| 6 lim inf

`→∞
|vN`−1
` |.

Hence

lim sup
`→∞

(−P 2
` ) 6 −1

2
‖u0 +Kv(T )‖2

B +
1

2
‖u0‖2

B −
1

2
|v(T )|2 +

1

2
|v0|2.

Assume for now that T is a point for which [9, Lemma 6] holds. Then

lim sup
`→∞

(−P 2
` ) 6 −

∫ T

0

〈(v′ +B(u0 +Kv))(t), v(t)〉dt. (2.9)

In fact the above step is the crucial step in the proof as only the sum (v′+B(u0 +Kv))(t) is
in the appropriate dual space V ∗A . That the sum is in V ∗A is known since v = u′ satisfies (2.6).
An attempt to consider the terms separately fails as the duality pairings are not defined.
The case when T is a point at which [9, Lemma 6] does not hold is resolved by a limiting
argument as in [9, proof of Theorem 4], see also Lions and Strauss [15]. Furthermore, due
to (2.6) tested with v, which is known to be in Lp(0, T ;VA), it can be seen that

0 6 lim inf
`→∞

µ

∫ T

0

‖v`(t)− v(t)‖pVAdt 6 lim sup
`→∞

µ

∫ T

0

‖v`(t)− v(t)‖pVAdt

6
∫ T

0

〈f(t), v(t)〉dt−
∫ T

0

〈A(t)v(t), v(t)〉dt−
∫ T

0

〈(v′ +Bu)(t), v(t)〉dt = 0,

This concludes the proof of the strong convergence of {v`}`∈N under the assumption that A
satisfies (2.4).

Consider now what happens under the d-monotonicity assumption, i.e., when A0 satisfies
(2.3). Since α is monotonically increasing, the following inequality can be established:

0 6
∫ T

0

(α(‖v`(t)‖VA)− α(‖v(t)‖VA)) (‖v`(t)‖VA − ‖v(t)‖VA)dt

6
∫ T

0

〈A`(t)v`(t)− A`(t)v(t), v`(t)− v(t)〉dt.

The right-hand side of this inequality is then equal to the right-hand side of (2.7) and hence
the above limiting argument can be repeated. As α is monotonically increasing, the integrand
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in the first integral of the above expression is always non-negative. Hence the limes superior
of the first integral in the above expression can only go to zero if ‖v`(t)‖VA converges to
‖v(t)‖VA almost everywhere in (0, T ).

Due to the a priori estimate [9, Theorem 3], the sequence
{
‖v`‖pVA

}
`∈N ⊂ L1(0, T ) is

bounded. Let 1 6 q < p. Let θ(s) := sp/q. Then lims→+∞ = θ(s)
s

= +∞ and

sup
`∈N

∫ T

0

θ(‖v`(t)‖qVA)dt < c.

Hence, by the De La Vallée–Poussin theorem (see e.g. [3, Theorem 2.4.4]), the sequence{
‖v`‖qVA

}
`∈N is uniformly integrable. Thus by the Vitali theorem (see e.g. [6, Chapter 4]

or [23]) ∫ T

0

∣∣‖v`(t)‖qVA − ‖v(t)‖qVA
∣∣ dt→ 0 as `→∞.

But this means that

‖v`‖Lq(0,T ;VA) → ‖v‖Lq(0,T ;VA) as `→∞.

Here VA is assumed to be uniformly convex. Hence Lq(0, T ;VA) is uniformly convex due to
[12, Theorem 1.15]. Furthermore, since v` already converges weakly towards v in Lp(0, T ;VA)
and hence in Lq(0, T ;VA) as q < p, it can be concluded (see, e.g., Brézis [6, Proposition 3.32])
that in fact v` → v strongly in Lq(0, T ;VA) as `→∞.

We now come to the strong convergence of u` towards the exact solution u. Without loss
of generality let r > 2. Since u = u0 +Kv, we immediately find

‖u` − u‖Lr(0,T ;VA+VB)

6 ‖u` − u0 −Kv`‖Lr(0,T ;VA+VB) + ‖Kv` −Kv‖Lr(0,T ;VA+VB)

6 ‖u` − u0 −Kv`‖2/r

L2(0,T ;VB)‖u` − u0 −Kv`‖1−2/r
L∞(0,T ;VA+VB) + ‖Kv` −Kv‖Lr(0,T ;VA) .

In view of [9, Lemma 5], we already know that

‖u` − u0 −Kv`‖L2(0,T ;VB) → 0

as `→∞. Moreover,

‖u` − u0 −Kv`‖L∞(0,T ;VA+VB) 6 ‖u` − u0‖L∞(0,T ;VB) + ‖Kv`‖L∞(0,T ;VA)

is uniformly bounded since {u`}`∈N is a bounded sequence in L∞(0, T ;VB), {v`}`∈N is a
bounded sequence in Lp(0, T ;VA), and K is a linear bounded mapping of L1(0, T ;VA) into
L∞(0, T ;VA). Finally, we have v` → v in Lq(0, T ;VA) at least for q < p (see the first part of
the proof) and hence

‖Kv` −Kv‖Lr(0,T ;VA) → 0

as `→∞.

If A = A0 +A1 and B = B0 +B1 then (1.2) does not necessarily have a unique solution.
From the sequence of approximations v`, a subsequence can be chosen that converges weakly
to v, see [9, Theorem 12]. The techniques of Theorem 2.1 can still be used to prove the same
strong convergence results but only for a subsequence of v`.
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It is either needed that VA ↪→ VB or that H is an intermediate space of class Kη(V ∗, VA)
for some η ∈ (0, 1) in the sense of Lions and Peetre (see [14, 16, 24]), which just means
that an interpolatory inequality holds for VA ↪→ H ↪→ V ∗. The following assumptions on
A1(t) : VA → V ∗A and B1(t) : VB → V ∗A will be required. Notice that B1 is indeed assumed
to map into V ∗A .

Assumption (A1). {A1(t)}t∈[0,T ] is a family of operators A1(t) : VA → V ∗A such that
for all v ∈ VA the mapping t 7→ A1(t)v : [0, T ] → V ∗A is continuous for almost all t ∈ [0, T ].
There are constants ε ∈ [0, 1/4), κ > 0, λ1 > 0, c > 0 such that for all t ∈ [0, T ] and all
v ∈ VA

〈A1(t)v, v〉 > −εµA‖v‖pVA − κ|v|
2 − λ1 , ‖A1(t)v‖V ∗A 6 c

(
1 + ‖v‖p−1

VA

)
.

Moreover, there is a constant δA ∈ (0, p − 1] such that for any R > 0 there is a constant
αA = αA(R) > 0 and for all t ∈ [0, T ] and all v, w ∈ VA with |v|, |w| 6 R there holds

‖A1(t)v − A1(t)w‖V ∗A 6 αA(R)
(

1 + ‖v‖p−1−δA
VA

+ ‖w‖p−1−δA
VA

)
|v − w|δA/p .

Assumption (B1). {B1(t)}t∈[0,T ] is a family of operators B1(t) : VB → V ∗A such that
for all v ∈ VB the mapping t 7→ B1(t)v : [0, T ] → V ∗A is continuous for almost all t ∈ [0, T ].
There is a constant c > 0 such that for all t ∈ [0, T ] and all v ∈ VB

‖B1(t)v‖V ∗A 6 c
(

1 + ‖v‖2(p−1)/p
VB

)
.

Moreover, for any R > 0 there is a constant αB = αB(R) > 0 and for all t ∈ [0, T ] and all
v, w ∈ VB with ‖v‖VB , ‖w‖VB 6 R there holds

‖B1(t)v −B1(t)w‖V ∗A 6 αB(R)|v − w|1−1/p .

If A = A0 +A1 and B = B0 +B1 and Assumptions (A1) and (B1) are satisfied and if τmax

is sufficiently small, then (1.5) has a solution {un}Nn=0, {vn}N−1
n=0 ⊂ Vm, due to [9, Theorem 7].

Theorem 2.2. In addition to the assumptions of Theorem 2.1, let Assumptions (A1) and
(B1) be satisfied, let τmax,` be sufficiently small and assume VA is compactly embedded in H.
Moreover either let H ∈ Kη(V ∗, VA) for some η ∈ (0, 1) and assume that the Galerkin scheme
can be chosen in such a way that the operator norm in V of the corresponding orthogonal
projection of H onto the finite dimensional subspaces is uniformly bounded or let VA ↪→ VB.

Then, passing to a subsequence if necessary, the conclusions of Theorem 2.1 hold even if
A1 and B1 are different from zero.

Proof. The discrete problem now is

〈v̂′`(t), φ〉+ 〈A0,`(t)v`(t), φ〉+ 〈A1,`(t)v`(t), φ〉
+ 〈B0u`(t), φ〉+ 〈B1,`(t)u`(t), φ〉 = 〈f`(t), φ〉 ∀φ ∈ Vm` ,

(2.10)

for almost all t ∈ (0, T ). Furthermore, the second equation in (1.3) is equivalent to∫ T

0

〈v′(t) +B0u(t), w(t)〉dt+

∫ T

0

〈A0(t)v(t), w(t)〉dt+

∫ T

0

〈A1(t)v(t), w(t)〉dt

+

∫ T

0

〈B1u(t), w(t)〉dt =

∫ T

0

〈f(t), w(t)〉dt ∀w ∈ Lp(0, T ;VA).

(2.11)
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Here v = u′ and u is a solution to (1.2), which is known to exist due to [9, Theorem 12],
and {v`′} is a subsequence of {v`}`∈N that converges weakly to v in Lp(0, T ;VA) as ` → ∞.
The subsequence exists due to [9, Theorem 12]. Then the argument proceeds exactly as
in the proof of Theorem 2.1 except that after testing (2.10) by v`′(t) and integrating from

0 to T the term P 1
`′ contains additionally −

∫ T
0
〈A1,`′(t)v`′(t), v`′(t)〉dt. But this converges to

−
∫ T

0
〈A1(t)v(t), v(t)〉dt as `′ →∞ due to [9, (3.15) in the proof of Theorem 12]. Furthermore

P 2
`′ additionally contains

∫ T
0
〈B1,`′(t)u`′(t), v`′(t)〉dt. This converges to

∫ T
0
〈B1(t)u(t), v(t)〉dt

as `′ →∞ due to [9, (3.16) in the proof of Theorem 12]. Finally, P 3
`′ contains additionally the

term
∫ T

0
〈A1(t)v(t)− A1,`′(t)v(t), v`′(t)− v(t)〉dt. But this goes to zero as `′ →∞ since due

to Assumption (A1) together with Lebesgue’s theorem it can be shown that A1,`′v → Av in
Lp
∗
(0, T ;V ∗A) as `′ →∞. Now testing (2.11) by v ∈ Lp(0, T ;VA), the relevant limes superiors

are seen to be zero and the rest of the proof is as before.

3. Vibrating membrane with nonlinear damping

The wave equation with a nonlinear damping term comes from Andreassi and Torelli [1],
Fattorini [10, p. 165], and Lions [13, pp. 38ff., 62ff., 222ff.].

Let Ω be a bounded domain in Rd with Lipschitz boundary ∂Ω. Consider the following
equation for some real number p > 2,

utt + |ut|p−2 ut −∆u = f in Ω× (0, T ), (3.1)

where −∆ denotes the Laplace operator and |ut| =
∣∣∂u
∂t

(x, t)
∣∣ is the absolute value of the

partial derivative of u with respect to t evaluated at the point (x, t). Let

u = 0 on ∂Ω× (0, T ) (3.2)

and consider the initial conditions

u(0, ·) = u0 in Ω,

ut(0, ·) = v0 in Ω.
(3.3)

It will be shown that piecewise constant prolongations of numerical approximations (1.5)
converge strongly to the weak solutions to (3.1) by employing Theorem 2.1. The aim is to
choose spaces VA ⊂ H ⊂ V ∗A and VB ⊂ H ⊂ V ∗B and define operators A and B such that
(3.1) can be interpreted as (1.2). Let H = L2(Ω),

VA = Lp(Ω)
d
↪→ H = L2(Ω)

d
↪→ V ∗A = Lp

∗
(Ω)

and

VB = H1
0 (Ω)

d
↪→ H = L2(Ω)

d
↪→ V ∗B = H−1(Ω).

This gives the two required Gelfand triples and we have V = VA ∩ VB = Lp(Ω)∩H1
0 (Ω). To

obtain the weak formulation of (3.1) corresponding to the abstract formulation (1.2), let A
and B be defined as follows:

〈Av,w〉 :=

∫
Ω

|v|p−2vwdx ∀v, w ∈ VA, (3.4)

〈Bv,w〉 :=

∫
Ω

∇v · ∇wdx ∀v, w ∈ VB. (3.5)
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Note that A and B are independent of time. For v in Lp(Ω) it can be seen that∫
Ω

∣∣|v|p−2v
∣∣p∗ dx =

∫
Ω

(
|v|p−1

)p∗
dx =

∫
Ω

|v|pdx <∞,

where, as before, p∗ = p
p−1

. Hence, |v|p−2v is in Lp
∗
(Ω).

Lemma 3.1. The operator A defined by (3.4) satisfies Assumption (A0).

Proof. Since

〈Av, v〉 =

∫
Ω

|v|p−2vvdx = ‖v‖pVA ,

A is coercive. Observe that for any y, z ∈ R and p > 2,

(|y|p−2y − |z|p−2z)(y − z) > µ|y − z|p,

with µ = 2−(p−2). Hence

〈Au− Av, u− v〉 =

∫
Ω

(|u|p−2u− |v|p−2v)(u− v)dx > µ

∫
Ω

|u− v|pdx = µ‖u− v‖pVA .

Thus A satisfies (2.4) and so is uniformly monotone. Using Hölder’s inequality, we obtain
the growth estimate

‖Av‖V ∗A = sup
w∈VA,w 6=0

(
1

‖w‖VA

∫
Ω

∣∣|v|p−2vw
∣∣ dx) 6

(∫
Ω

∣∣|v|p−2v
∣∣p∗ dx) 1

p∗

= ‖v‖p−1
VA

.

It still remains to prove that the operator A is hemicontinuous. But this is an immediate
consequence of the continuity of the function y 7→ |y|p−2y mapping R into R and the Lebesgue
dominated convergence theorem.

Lemma 3.2. The operator B defined by (3.5) satisfies Assumption (B0).

Proof. Clearly B is bounded, linear and symmetric. Furthermore 〈Bv, v〉 = ‖v‖2
VB

. So
B : VB → V ∗B is strongly positive. Thus Assumption (B0) is also satisfied with µB = 1 and
cB = 1.

It has been demonstrated that Assumptions (A0) and (B0) are satisfied. Assumption (IC)
can easily be fulfilled. But since Lp(Ω) is not continuously embedded in H1

0 (Ω), fulfilling
Assumption (Vm, I) requires coupling of maximum time step size and spatial discretisation
parameter. Hence the conclusions of Emmrich and Thalhammer [9, Theorem 4] apply, in
particular there is a unique solution to (1.2) with A given by (3.4) and B given by (3.5).
Furthermore by Theorem 2.1, the piecewise constant prolongations v` converge, as `→∞, to
the first time derivative of the weak solution u to (3.1) with initial data (3.2) and boundary
values (3.3) in Lp(0, T ;Lp(Ω)) = Lp(Ω × (0, T )), since A0 satisfies the required additional
monotonicity assumption. Moreover, u` converges to u in Lr(0, T ;Lp(Ω) + H1

0 (Ω)) for any
r ∈ [1,∞). Note that, e.g., in the one- and two-dimensional case Lp(Ω) +H1

0 (Ω) = Lp(Ω).
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4. Another example

Let Ω be a bounded domain in Rd with the boundary ∂Ω of class C2 or let Ω be a convex
polygonal domain in R2. Let ν be the outward unit normal vector for the domain Ω. Let µ
and λ be positive constants. We consider the equation

utt − µ∆ut − div (σ(∇u)) + λ∆2u = g in Ω× (0, T ) (4.1)

together with the initial and boundary data

u(·, 0) = u0, ut(·, 0) = v0 in Ω

u = 0, ν · ∇u = 0 on ∂Ω× (0, T ).
(4.2)

We note that the equation above corresponds to a model for shape-memory alloys that
has been developed and studied by Pego [17], Friesecke and McLeod [11], Ball et al. [4],
Roub́ıček [21], Rajagopal and Roub́ıček [19], Arndt, Griebel and Roub́ıček [2] and others.
The list of references is far from complete. There are other mathematical models for trans-
formations in shape-memory alloys which are not considered by this article, see Plecháč and
Roub́ıček [18] and the references to other models cited therein. When modelling martensitic
transformations, σ : Rd → Rd will arise as the Gâteaux derivative of a double-well potential,
that is itself a fourth order polynomial. Hence σ should be allowed to grow as a polynomial
of third degree. As mentioned in the introduction, the framework of [9] and hence of this
article does not cover this situation.

Assume that there exists K > 0 such that for all y, z ∈ Rd

|σ(y)| 6 K(1 + |y|) and |σ(y)− σ(z)| 6 K|y − z|. (4.3)

As before, suitable choices of VA, VB and H need to be made and Assumptions (A0),
(B0) and (B1) need to be verified. Let

VA = H1
0 (Ω), VB = H2

0 (Ω), H = L2(Ω).

To obtain the weak formulation of (4.1), let A = A0 (hence A1 = 0) and B = B0 + B1 and
define A0, B0 and B1 as follows: for any v, w ∈ VA, let

〈A0v, w〉 := µ

∫
Ω

∇v · ∇wdx. (4.4)

For any v, w ∈ VB, let

〈B0v, w〉 := λ

∫
Ω

∆v∆wdx (4.5)

and

〈B1v, w〉 :=

∫
Ω

σ(∇v) · ∇wdx. (4.6)

It can be seen by standard arguments that A0 fulfils Assumption (A0) with p = 2. At this
point it is important to note that since the boundary of Ω is of class C2 or that since Ω
is a convex polygonal domain in R2, the H2(Ω) norm is on H2

0 (Ω) equivalent to the norm
‖∆·‖L2(Ω). Indeed, in the case when the boundary is of class C2, this follows from the classical
regularity results of Agmon, Douglis and Nirenberg. In the case of convex polygonal Ω, this is
a consequence of results by Grisvard (see, e.g., Attouch et al. [3, p. 277] and the references
cited therein). We therefore equip VB with the norm ‖ · ‖VB := ‖∆ · ‖L2(Ω). Hence B0

poses no difficulties as it is clearly symmetric, linear, bounded and strongly positive. Thus
Assumption (B0) is also satisfied. It only remains to verify Assumption (B1).
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Lemma 4.1. The operator B1 satisfies Assumption (B1), provided that σ satisfies (4.3).

Proof. The definition of B1 and the embedding H2
0 (Ω) ↪→ H1

0 (Ω) immediately imply

‖B1v‖V ∗A 6

(∫
Ω

|σ(∇v)|2dx
)1/2

6 c

(
1 +

∫
Ω

|∇v|2dx
)1/2

6 c(1 + ‖v‖VB),

where assumption (4.3) has been used and where the constant c depends on K, d and Ω.
Thus the first estimate of Assumption (B1) is satisfied. Similarly, we find

‖B1v −B1w‖V ∗A 6

(∫
Ω

|σ(∇v)− σ(∇w)|2dx
)1/2

6 K

(∫
Ω

|∇v −∇w|2dx
)1/2

.

Since
‖∇v‖2

L2(Ω) 6 c‖∆v‖L2(Ω)‖v‖L2(Ω) ∀v ∈ H2
0 (Ω),

we obtain
‖B1v −B1w‖V ∗A 6 cmax(‖v‖VB , ‖w‖VB)1/2|v − w|1/2,

which is the second estimate in Assumption (B1).

It has been demonstrated that Assumptions (A0), (B0) and (B1) are satisfied (and As-
sumption (A1) is not needed as A1 = 0). Assumption (IC) is easily satisfied and if Assump-
tion (Vm, I) is taken into account then all the conclusions of Emmrich and Thalhammer [9,
Theorem 12] apply. In particular there is a weak solution to (4.1) in the sense that (1.2)
holds in L2(0, T ;V ∗) with A = A0 and B = B0 +B1 given by (4.4), (4.5), (4.6) respectively
and V = VA ∩ VB = H2

0 (Ω). Furthermore, by Theorem 2.2, a subsequence of the piecewise
constant prolongations {v`}`∈N converges strongly, as `′ →∞, to the first time derivative of a
weak solution u to (4.1) with the initial and boundary data (4.2) in L2(0, T ;H1

0 (Ω)) since A0

is strongly monotone, since L2(Ω) ∈ K1/2(H−1(Ω), H1
0 (Ω)), H−1(Ω) ∈ K1/2(H−2(Ω), L2(Ω))

and thus L2(Ω) ∈ K2/3(H−2(Ω), H1
0 (Ω)), and if the L2(Ω)-orthogonal projection onto the

Galerkin spaces is H2
0 (Ω)-stable. Furthermore, the approximations u` converge strongly

towards u in Lr(0, T ;H1
0 (Ω)) for any r ∈ [1,∞) as `→∞.

5. Numerical results

In this section, convergence of numerical approximations to solutions of the vibrating mem-
brane equation with nonlinear damping (3.1) is presented. The numerical computations have
been performed using the deal.II finite element library [5].

The square domain Ω = (−L,L) × (−L,L) ⊂ R2 is considered together with the initial
conditions

u0(x) = cos(πx1) cos(πx2)χ{|x|6 1
2
}, v0(x) = 0. (5.1)

The finite element spaces Vm that form a Galerkin scheme for the space V = VA ∩ VB =
Lp(Ω) ∩H1

0 (Ω) are defined as follows: the sides of the domain are subdivided into 2m equal
intervals (thus covering the domain with 22m non-overlapping squares with sides 2L/(2m)
long). The basis functions are the Q1 finite elements (functions that are continuous and
piecewise linear in each of the two spatial variables). Taking four squares, of the squares
into which the domain is subdivided, and forming a larger square gives the support of each
of the basis functions. All the basis functions are zero on the boundary of Ω. There are
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Figure 5.1. Numerical solution, p = 3
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Figure 5.2. Numerical solution, p = 10

Mm = (2m + 1)2− 2m+2 vertices in the interior of the domain and hence Mm basis functions
{ϕi}Mm

i=1 .
Constant time step τ is used. Let m be fixed (hence M is used instead of Mm to simplify

notation). For n = 0, . . . , N − 1 let un, vn ∈ V m be given by

un =
M∑
i=1

uni ϕi and vn =
M∑
i=1

vni ϕi.

Let un := [un1 , . . . , u
n
M ]T and vn := [vn1 , . . . , v

n
M ]T . The first equation in (1.5) gives

1

τ
G(un+1 − un)−Gvn = 0, n = 0, 1, . . . , N − 1,

where

Gij =

∫
Ω

ϕiϕjdx, for i, j = 1, . . . ,M.
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Due to linear independence of ϕi the matrix G is invertible. This implies that

un+1 = vn + τun, n = 0, 1, . . . , N − 1.

Thus at each step, un+1 can easily be obtained from vn and un. Calculating vn from vn−1

and un (both known) is the harder part where a nonlinear system must be solved. The
second equation in (1.5) gives

1

τ
G(vn − vn−1) + A(vn) + Sun = fn, n = 1, . . . , N, (5.2)

where the vectors fn are defined by

fn := [fn1 , . . . , f
n
M ]T with fni :=

∫
Ω

fnϕidx,

the system matrix S is

Sij :=

∫
Ω

∇ϕi∇ϕjdx, where i, j = 1, . . . ,M,

and the (nonlinear) vector-valued function A : RM → RM is defined as

A(vn) = [α1(vn), . . . , αM(vn)]T

with

αj(v
n) :=

∫
Ω

∣∣∣∣∣
M∑
i=1

vni ϕi

∣∣∣∣∣
p−2 M∑

i=1

vni ϕiϕjdx.

Finally, let
F (vn) := Gvn + τA(vn)− τfn + τSun −Gvn−1.

Then solving (5.2) is equivalent to solving F (vn) = 0. Due to Emmrich and Thalhammer [9,
Theorem 2] it is known that the system has a unique solution. The Newton method is now
used iteratively, starting with an initial guess vn,0 (which can be chosen to be, for example,
vn−1). Each step amounts to solving

J(vn,k)(vn,k+1 − vn,k) = −F (vn,k) for k = 0, 1, . . . , kε ,

where J(vn,k) is the Jacobian matrix of F (vn,k), and where kε is such that F (vn,kε) is
sufficiently close to zero in a suitable norm. Observe that while in general the Jacobian
matrix J can be approximated using finite difference method, this is very computationally
intensive. Here J(x) can be calculated for x ∈ RM :

Jij(x) :=
∂Fi
∂xj

= Gij + τ

∫
Ω

(p− 1)

∣∣∣∣∣
M∑
k=1

xkϕk

∣∣∣∣∣
p−2

ϕiϕjdx, where i, j = 1, . . . ,M.

Hence, starting with given u0 and v0, the numerical approximations {un}Nn=0 ⊂ V m and
{vn}N−1

n=0 ⊂ V m are obtained. The time steps have to be chosen such that Assumption (Vm, I)
is satisfied. In particular we need cVB←VA(m`)

2τmax(I`) → 0 as ` → ∞, where cVB←VA(m`)
comes from (2.1). In our particular case, where VA = Lp(Ω), VB = H1

0 (Ω) and Vm are the Q1

finite element spaces, the constant can be estimated as cVB←VA(m) 6 c2m. Thus we require
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that 2−2m`τ` → 0 as ` → ∞. The convergence results of Section 3 then apply to v` and u`.
Note that VA + VB = Lp(Ω) in the two-dimensional case considered here.

The calculations have been performed with the initial data (5.1) and f = 0. The numer-
ical solutions obtained can be seen in Figures 5.1 and 5.2 for p = 3 and p = 10 respectively.
The initial condition is in the top left corner of the figures. As expected, different behaviour
can be observed depending on p. This is best seen by comparing the plots in top right corner
of the two figures.

10−4

10−3

10−2

10−1

2−52−42−32−22−120

D
iff
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en

ce

Size of the side of the squares making up the grid

Figure 5.3. Difference between the numerical solution u` calculated with a given grid and a solution on a

very fine grid measured in the Lp(Ω× (0, T )) norm, calculated with p = 10. Dashed line and small squares

correspond to calculation where τ` was chosen such that 22m`τ` → 0 as ` → ∞ is satisfied. Large squares

and solid line correspond to τ` proportional to 2−m

Convergence can also be observed. Figure 5.3 displays the difference between the nu-
merical solution calculated on a very fine grid and the numerical solutions on coarser grids
(while decreasing τ proportionally with grid refinement). The difference is measured in the
Lp(Ω×(0, T )) norm. We note that convergence is observed even if the condition 2−2m`τ` → 0
as ` → ∞ is not satisfied. The solid line in Fig. 5.3 corresponds to τ proportional to 2−m

and convergence can still be observed.
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1969.

[14] J.L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Etudes, 19 (1964), no. 1,
pp. 5–68.

[15] J.L. Lions and W.A. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France, 93 (1965),
pp. 43–96.

[16] A. Lunardi, Interpolation theory , Lecture Notes, Scuola Normale Superiore, Pisa, 2009.

[17] R.L. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability ,
Archive for Rational Mechanics and Analysis, 97 (1987), no. 4, pp. 353–394.
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