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Polynomial Approximation on Spheres –
Generalizing de la Vallée-Poussin

Ian H. Sloan

Abstract — For trigonometric polynomial approximation on a circle, the century-old
de la Vallée-Poussin construction has attractive features: it exhibits uniform conver-
gence for all continuous functions as the degree of the trigonometric polynomial goes
to infinity, yet it also has arbitrarily fast convergence for sufficiently smooth functions.
This paper presents an explicit generalization of the de la Vallée-Poussin construction
to higher dimensional spheres Sd ⊆ Rd+1. The generalization replaces the C∞ filter
introduced by Rustamov by a piecewise polynomial of minimal degree. For the case
of the circle the filter is piecewise linear, and recovers the de la Vallée-Poussin con-
struction, while for the general sphere Sd the filter is a piecewise polynomial of degree
d and smoothness Cd−1. In all cases the approximation converges uniformly for all
continuous functions, and has arbitrarily fast convergence for smooth functions.
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1. Introduction

We introduce in this paper a class of linear polynomial approximations on the unit sphere
Sd = {x ∈ Rd+1 : ‖x‖`2 = 1}, which in the uniform norm

‖f‖∞ := sup
x∈Sd
|f(x)|

have the property of converging to f for all continuous functions f , yet which exhibit arbi-
trarily fast convergence when f is smooth.

In more detail, letting PL(Sd) denote the space of (spherical) polynomials of degree 6 L
(that is, the restriction to Sd of the polynomials in Rd+1 of degree no more than L), for
f ∈ C(Sd) we construct linear approximations VLf = Vd,Lf in P2L−1(Sd) that satisfy

‖VLf − f‖∞ 6 cEL(f), (1.1)

with c independent of L and f , where EL(f) is the error of best uniform polynomial approx-
imation in PL(Sd),

EL(f) := inf
p∈PL(Sd)

‖f − p‖∞ . (1.2)

The approximation therefore inherits the best possible rates of uniform convergence, those
given by the Jackson theorem for Sd; see [1,10]. In particular, when f is smooth the rate of
convergence is arbitrarily fast.
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The construction used here relies on “delayed means”, first introduced and exploited, in
the context of 1-dimensional trigonometric series, by de la Vallée-Poussin. Stein [15] in 1957
showed, in a very general context, that uniformly bounded delayed means always exist if
the degree is high enough. For polynomials on the sphere Rustamov [14] in 1993 showed,
for all L, how to construct a uniformly bounded delayed-mean approximation. Rustamov’s
construction makes use of a C∞ function h = hd : R+ → R+ satisfying also

h(x) =

{
1 for x ∈ [0, 1],

0 for x ∈ [2,∞),
(1.3)

which is used to produce multipliers of the Fourier partial sum, in the sense that

L∑
`=0

Z(d,`)∑
k=1

f̂`,kY`,k(x)

is replaced by
2L∑
`=0

h( `
L

)

Z(d,`)∑
k=1

f̂`,kY`,k(x).

Following a lead from signal analysis, we shall call a real-valued function with the property
(1.3) a “filter function”.

Rustamov’s argument [14] relies on repeated summation by parts (see Lemma 4.1), to-
gether with the known positivity of the Cesàro means of order d. Related arguments have
since been used in [9] and many other papers.

In this paper we devise spline filters h for the sphere Sd of arbitrary dimension d, which
are such that (1.1) and (1.4) both hold. For d = 1 the construction recovers the de la
Vallée-Poussin piecewise-linear filter.

The construction given in this paper is explicit if the Fourier coefficients of f are available.
In another paper [13] we will develop a related approximation scheme for the case in which
only point values of f are available.

The convergence property (1.1) implies, via the Weierstrass theorem, that

lim
L→∞

‖VLf − f‖∞ = 0 for all f ∈ C(Sd) .

In turn this property implies, by the Banach-Steinhaus theorem (see, for example, [12]
Theorem 5.3), that there exists cd > 0 independent of L such that

‖VLf‖∞ 6 cd ‖f‖∞ . (1.4)

We know in advance that VL cannot be a projection onto the polynomial space PL(Sd),
since the optimal linear projection TL : C(Sd)→ PL(Sd), in the sense of having the smallest
value of the operator norm

‖TL‖ := sup {‖TLf‖∞ : ‖f‖∞ 6 1} ,

is the L2-orthogonal projection PL onto PL(Sd), that is, the partial sum of the Fourier or
Laplace series. This was proved for d = 1 by Berman [3] and for general d by Daugavet [4].
(For a lucid discussion see [12] Theorem 6.4.) Since the norm ‖PL‖ of the orthogonal
projection is known to grow unboundedly with L for all d > 1, it is clear that no projection
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operator can be consistent with the property (1.4). Moreover, the operator VL cannot be
positive, in the sense of mapping positive continuous functions to positive polynomials, since
by results of Korovkin [8] the best possible rate of convergence (the “saturation order”)
for polynomial approximation by a positive operator is L−2, which contradicts (1.1) for
sufficiently smooth f .

An approximation satisfying (1.1) has long been known for d = 1 : in that case the
century-old construction of de la Vallée-Poussin (see [5] Chapter 9, Section 3), meets the
requirements. That approximation is exact for polynomials of degree 6 L, a property that
leads to high accuracy for large L; and on the other hand has uniformly bounded norm by
virtue of being a simple linear combination of two different Cesàro means, which for d = 1
are separately positive. We sketch the de la Vallée-Poussin construction in Section 2.

A very different generalization of the de la Vallée-Poussin approximation that again satis-
fies both (1.1) and (1.4) was introduced by Filbir and Themistoclakis in [6]. The construction
in that paper relies on multiplication of two Fourier kernels, rather than of multiplication of
a Fourier kernel by a filter function.

Both the present approximation and that of [6] are different from the de la Vallée-Poussin
mean introduced by Berens and Li in [2]. The linear operator for that construction is a
positive operator, and is now known (see [17]) to have a saturation order of L−1. (The
kernel for the de la Vallée-Poussin mean, replacing HL(x,y) in (4.1) below, is a constant
times (1 + x · y)L.)

After preliminaries in Section 3, we describe in Section 4 Rustamov’s filtered approxima-
tion, taking care to keep separate the arguments that do not need high smoothness of the
filter function h. In Section 5 the piecewise-polynomial construction of minimal smoothness
and minimal degree is described, and shown to have the same properties as the C∞ version.

An interesting question not addressed in this paper is the dependence of sup ‖VL‖ on d.
For the operator constructed in [6] the supremum of the norm is of order O(3d). For the
operator constructed in Section 5 the corresponding question is at this time still open.

2. The de la Vallée-Poussin construction for d = 1

For an integrable function f on the unit circle T, the nth partial sum of the Fourier series
of f is

Snf(θ) :=
1

2
a0 + a1 cos(θ) + · · ·+ an cos(nθ)

+ b1 sin(θ) + · · ·+ bn sin(nθ) ,

with

aj =
1

π

∫ 2π

0

f(φ) cos(jφ) dφ , bj =
1

π

∫ 2π

0

f(φ) sin(jφ) dφ .

It can be written, with the aid of trigonometric identities, as

Snf(θ) =
1

π

∫ 2π

0

f(φ)

[
1

2
+ cos(θ − φ) + cos(2(θ − φ)) + · · ·+ cos(n(θ − φ))

]
dφ

=
1

π

∫ 2π

0

f(φ)Dn(θ − φ) dφ ,
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where Dn is the Dirichlet kernel (see [5], equation (1.9))

Dn(θ) :=
sin((2n+ 1)θ/2)

2 sin(θ/2)
, θ ∈ R .

The partial sum Snf is of course the L2-orthogonal projection of f on the space of trigono-
metric polynomials of degree 6 n.

The de la Vallée-Poussin approximation to f (see [5] Chapter 9, Section 3) is the “delayed”
mean of n successive partial sums,

Vnf(θ) =
1

n
[Snf(θ) + · · ·+ S2n−1f(θ)] (2.1)

=
1

π

∫ 2π

0

f(φ)

(
2n−1∑′

j=0

hn,j cos(j(θ − φ))

)
dφ , (2.2)

where the prime on the sum indicates that the first term is to be halved, and

hn,j =

{
1 for 0 6 j 6 n ,

1− j − n
n

for n+ 1 6 j 6 2n− 1 .

It is easily seen that
Vnf(θ) = 2C2n−1f(θ)− Cn−1f(θ) , (2.3)

where Cmf for m > 0 is the (first) Cesàro mean of f ,

Cmf(θ) =
1

m+ 1
[S0f(θ) + · · ·+ Smf(θ)]

=
1

π

∫ 2π

0

f(φ)
1

m+ 1
[D0(θ − φ) +D1(θ − φ) + · · ·+Dm(θ − φ)] dφ

=
1

π

∫ 2π

0

f(φ)Fm(θ − φ) dφ , (2.4)

with Fm being the Fejér kernel (see [5], p. 3)

Fm(θ) =
1

2(m+ 1)

sin2((m+ 1)θ/2)

sin2(θ/2)
,

which is manifestly non-negative. It then follows from (2.3) and (2.4) and the non-negativity
of Fm that

|Vnf(θ)| =
∣∣∣∣ 1π
∫ 2π

0

f(φ) [2F2n−1(θ − φ)− Fn−1(θ − φ)] dφ

∣∣∣∣
6 ‖f‖∞

1

π

∫ 2π

0

[2F2n−1(θ − φ) + Fn−1(θ − φ)] dφ

= ‖f‖∞ (2 + 1) ,

giving the uniform bound
‖Vn‖ 6 3. (2.5)
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From (2.1), or from (2.2) and the fact that hn,j = 1 for 0 6 j 6 n, it follows that

Vnp = p for all p ∈ Pn(T) ,

where Pn(T) is the space of trigonometric polynomials of degree 6 n. In turn this leads to

‖Vnf − f‖∞ = ‖Vn(f − p)− (f − p)‖∞
6 (1 + ‖Vn‖) ‖f − p‖∞

for all p ∈ Pn(T), and hence by a judicious choice of p and the use of (2.5),

‖Vnf − f‖∞ 6 (1 + 3)En(f) = 4En(f) .

3. Preliminaries

The space L2 = L2(Sd) is the usual Hilbert space of square-integrable functions on Sd with
the inner product

(f, g)L2 :=

∫
Sd
f(x)g(x) dω(x),

and the norm ‖f‖L2 :=
√

(f, f)L2 . Here ω = ωd denotes the (Lebesgue) surface measure on
Sd. The space of continuous functions on Sd is denoted by C = C(Sd) and is a Banach space
with the supremum norm

‖f‖∞ := sup
x∈Sd
|f(x)|.

The space PL = PL(Sd) of all spherical polynomials on Sd of degree 6 L contains the
restrictions to Sd of all polynomials on Rd+1 of degree 6 L. The dimension of PL is given by

dL = dim
(
PL
)

=
(2L+ d)Γ(L+ d)

Γ(d+ 1)Γ(L+ 1)
.

A spherical harmonic of degree ` ∈ N0 is the restriction to Sd of a harmonic homogeneous
polynomial of degree ` on Rd+1. The space H` = H`(Sd) of spherical harmonics of degree
` ∈ N0 (together with the zero function) has the dimension Z(d, `) = dim(H`), given by

Z(d, 0) = 1; Z(d, `) =
(2`+ d− 1)Γ(`+ d− 1)

Γ(d)Γ(`+ 1)
, ` ∈ N.

In this paper, for any ` ∈ N0, the set

{Y`,k : k = 1, 2, . . . , Z(d, `)} (3.1)

denotes a real L2-orthonormal basis of H`. Furthermore, PL =
⊕L

`=0H`, and the union over
` = 0, 1, . . . , L of the sets (3.1) forms an L2-orthonormal basis of PL.

The spherical harmonics on Sd of degree ` satisfy the addition theorem: for any L2-
orthonormal basis (3.1) of H` we have, with τ = τd = d/2− 1,

Z(d,`)∑
k=1

Y`,k(x)Y`,k(y) =
Z(d, `)

|Sd|
P

(τ,τ)
` (x · y)

P
(τ,τ)
` (1)

, (3.2)
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where P
(α,β)
` is the Jacobi polynomial of degree `, and |Sd| is the total surface measure of Sd.

The kernel K` = Kd,` defined by

K`(x,y) = K`(x · y) =

Z(d,`)∑
k=1

Y`,k(x)Y`,k(y) =
Z(d, `)

|Sd|
P

(τ,τ)
` (x · y)

P
(τ,τ)
` (1)

(3.3)

is the reproducing kernel in the space H`, in the sense that

(p,K`(x, ·))L2 = p(x) for all p ∈ H`,x ∈ Sd.

It will play an important role in the following section.
The union over all ` ∈ N0 of the L2-orthonormal bases (3.1) of H` forms a complete

orthonormal system for L2. Thus any function f ∈ L2 can be expanded into a Fourier series
(or Laplace series) with respect to this orthonormal system: in the L2 sense

f =
∞∑
`=0

Z(d,`)∑
k=1

f̂`,kY`,k,

where the Fourier coefficients are given by

f̂`,k =
(
f, Y`,k

)
L2

=

∫
Sd
f(x)Y`,k(x) dω(x).

Finally, we recall the formula for summation by parts, or Abel transformation. Given
the series

m∑
i=0

aifi,

where ai and fi are real numbers, the summation by parts formula, easily verified, is

m∑
i=0

aifi = amFm −
m−1∑
i=0

∆aiFi, (3.4)

where

Fi =
i∑

j=0

fj

and ∆ai is the forward difference of the sequence (ai),

∆ai = ai+1 − ai, i = 0, · · · ,m− 1.

4. The filtered approximation scheme

Given f ∈ L2(Sd), the approximation takes the form

VLf(x) = (f,HL(x, ·))L2 =

∫
Sd
f(y)HL(x,y) dω(y), (4.1)

where HL(x,y) := HL(x · y) := Hd,L(x · y), and

HL(t) =
2L∑
`=0

h( `
L

) K`(t), t ∈ [−1, 1], (4.2)
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with K` the reproducing kernel in H` defined in (3.3); and h : R+ → R+ satisfies (1.3),
together with further properties to be developed below. It is useful to rewrite the approxi-
mation, using (4.2) and (3.3), as

VLf(x) =
2L∑
`=0

h( `
L

)

Z(d,`)∑
k=1

f̂`,kY`,k(x). (4.3)

In this form it is clear that VLf is a filtered version of the Fourier series partial sum

2L∑
`=0

Z(d,`)∑
k=1

f̂`,kY`,k(x).

It is also clear from (1.3) that VL reproduces polynomials of degree up to L, in the sense
that

VLp = p for all p ∈ PL. (4.4)

The properties of the polynomial approximation VL depend strongly on the nature of the
filter h. We recover the orthogonal approximation TLf by setting h(x) = 0 for x > 1, but
smoother filter functions have a certain advantage: namely that under certain conditions on
h, VL is uniformly bounded in the uniform norm. The following result is implied by [14],
Lemma 3.1.

Proposition 4.1. Let VL be the linear operator defined by (4.1) and (4.2), where h :
R+ → R+ satisfies (1.3). Assume there exist Ld > 0 and Cd > 0 such that for L > Ld we
have

2L−1∑
`=0

|∆d+1h( `
L

)| 6 Cd
Ld
, (4.5)

where ∆d+1h( `
L

) denotes the (d + 1)st forward difference of the sequence h(0/L), h(1/L),
h(2/L), . . .. Then

sup
L>0
‖VL‖ <∞. (4.6)

The proposition rests upon the following simple lemma.

Lemma 4.1. The kernel HL defined by (4.2) and (3.3) can be expressed as

HL(t) = (−1)d+1

2L−1∑
`=0

(
`+ d

d

)(
∆d+1h( `

L
)
)
M

(d)
` (t), t ∈ [−1, 1],

where M
(d)
` (t) is the dth Cesàro mean of the kernels K`(t), defined below by (4.7), (4.8),

(4.9) and (4.10).

Proof. Given the sequence K0(t), K1(t), . . ., the `th partial sum Z
(0)
` and the successive

Cesàro sums are defined, for t ∈ [−1, 1], by (see [12], Section 6.7)

Z
(0)
` (t) = K0(t) + . . .+K`(t), (4.7)

Z
(n)
` (t) = Z

(n−1)
0 (t) + . . .+ Z

(n−1)
` (t) for n > 1. (4.8)
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The corresponding Cesàro means are then given by

M
(n)
` (t) =

1

c
(n)
`

Z
(n)
` (t), n > 0, ` > 0, (4.9)

where

c
(n)
` =

(
`+ n

n

)
. (4.10)

It is clear that M
(n)
` (t) can be written as a linear combination of Ki(t) for 0 6 i 6 `. The

above choice of c
(n)
` ensures that the coefficient of K0(t) is always 1, that is

M
(n)
` (t) = K0(t) + a

(n)
`,1K1(t) + . . .+ a

(n)
`,`K`(t) for 0 6 ` 6 L (4.11)

for some positive numbers a
(n)
`,i .

Application of the summation by parts formula (3.4) to the formally infinite series

HL(t) =
∞∑
`=0

h( `
L

)K`(t)

yields

HL(t) = −
∞∑
`=0

(
∆h( `

L
)
)
Z

(0)
` (t),

and summation by parts a further d times yields in turn

HL(t) = (−1)d+1

∞∑
`=0

(
∆d+1h( `

L
)
)
Z

(d)
` (t)

= (−1)d+1

2L−1∑
`=0

(
`+ d

d

)(
∆d+1h( `

L
)
)
M

(d)
` (t),

where in the last step we used (4.9) and (4.10) and the fact that all forward differences of
h( `

L
) vanish for ` > 2L.

Proof of Proposition 4.1. It is easily seen from (4.1) that

‖VL‖ = sup
x∈Sd

∫
Sd
|HL(x · y)| dω(y) =

∫
Sd
|HL(z · y)| dω(y), z ∈ Sd, (4.12)

where the second equality follows from the fact that the last integral is independent of z.
It follows from Lemma 4.1 that∫

Sd
|HL(z · y)| dω(y) =

∫
Sd

∣∣∣∣∣
2L−1∑
`=0

(
`+ d

d

)(
∆d+1h( `

L
)
)
M

(d)
` (z · y)

∣∣∣∣∣ dω(y)

6
∫
Sd

2L−1∑
`=0

(
`+ d

d

) ∣∣∆d+1h( `
L

)
∣∣M (d)

` (z · y) dω(y),
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where in the last step we used the crucial fact, due to Kogbetliantz [7], and subsequently
proved more simply by Reimer [11], that the dth Cesàro mean on Sd is non-negative. Now
we use, from (4.11),∫

Sd
M

(d)
` (z · y) dω(y) =

∫
Sd
K0(z · y) dω(y) = 1, z ∈ Sd, ` > 0.

It then follows, using (4.12), that

‖VL‖ =

∫
Sd
|HL(z · y)| dω(y) 6

2L−1∑
`=0

(`+ d) . . . (`+ 1)

d!

∣∣∆d+1h
(
`
L

)∣∣ ,
and for L > d that

‖VL‖ 6
(3L)d

d!

2L−1∑
`=0

∣∣∆d+1h
(
`
L

)∣∣ .
Using now the assumption (4.5), we obtain

‖VL‖ 6
3d

d!
Cd for L > d.

Since ‖VL‖ is finite also for the exceptional values L = 0, 1, . . . , d − 1, the desired bound
holds for all L. The proof of Proposition 4.1 is therefore complete. �

The following corollary ensures that, under the conditions in Proposition 4.1, VLf con-
verges to f with at least the rate EL(f).

Corollary 4.1. Let VL and Md be defined as in Proposition 4.1. If (4.5) holds, then for
f ∈ C(Sd) there holds

‖VLf − f‖∞ 6
(

sup
L>0
‖VL‖+ 1

)
EL(f),

where EL(f) is the error of best approximation defined by (1.2).

Proof. Because of the linearity of VL and the property (4.4), for all p ∈ PL(Sd) we have

VLf − f = VL(f − p)− (f − p),

and hence, on setting Md := supL>0 ‖VL‖,

‖VLf − f‖∞ 6 (‖VL‖+ 1)‖f − p‖∞ 6 (Md + 1)‖f − p‖∞.

By making an optimal choice of p we then obtain

‖VLf − f‖∞ 6 (Md + 1)EL(f),

completing the proof.

The next corollary is stated by Rustamov in Lemma 3.1 of [14] under the assumption
that h ∈ C∞.

Corollary 4.2. Let VL be defined as in Proposition 4.1. Assume h ∈ Cd+1(R+). Then
‖VL‖ is bounded uniformly in L.
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Proof. For a function g ∈ Cd+1(R+) a well known result in the theory of finite differences
(following from the mean value theorem) is∣∣∆d+1g(`)

∣∣ 6 sup
z∈R+

∣∣g(d+1)(z)
∣∣ , (4.13)

In the present application we set g(z) = h(z/L) and use the chain rule for differentiation to
obtain, for L > 1, ∣∣∆d+1h( `

L
)
∣∣ 6 1

Ld+1
max
x∈[0,2]

∣∣h(d+1)(x)
∣∣ ,

where we used also the fact that supph = [0, 2]. Thus for L > 1 we have

2L−1∑
`=0

∣∣∆d+1h( `
L

)
∣∣ 6 2L

Ld+1
‖h(d+1)‖∞ =

2‖h(d+1)‖∞
Ld

,

which satisfies the sufficient condition (4.5) with Cd = 2‖h(d+1)‖∞.

The smoothness requirement in this corollary for d = 1, namely h ∈ C2, excludes by a
wide margin the merely C0 filter function used by de la Vallée-Poussin for d = 1. In the
next section we construct and justify a less smooth piecewise-polynomial filter, which may
be reasonably regarded as the natural extension of the de la Vallée-Poussin construction to
general d.

5. Generalizing de la Vallée-Poussin

Here we show how to construct spline filters h for use in VLf , filters that satisfy the condi-
tion in Proposition 4.1 but not the condition in Corollary 4.2. These filters belong not to
Cd+1(R+), but rather to Cd−1(R+). The construction reduces to the de la Vallée-Poussin
filter for d = 1.
The construction
Partition the interval [1,2] into d equal subintervals. Define h ∈ Cd−1(R+) to be the unique
piecewise polynomial of degree no less than d that satisfies (1.3) and in addition

h|[1+ j−1
d
,1+ j

d
] ∈ Pd, j = 1, . . . , d, (5.1)

where Pd is the space of polynomials on the real line of degree at most d. (Existence and
uniqueness follow from the well known properties of polynomial splines with simple boundary
conditions.)

Theorem 5.1. For d > 1, let h ∈ Cd−1(R+) be the unique piecewise polynomial con-
structed as above, and let VL be the linear operator defined by (4.1) and (4.2). Then

sup
L>0
‖VL‖ <∞,

and there exists c > 0 such that

‖VLf − f‖∞ 6 cEL(f), for f ∈ C(Sd).

The result follows from Proposition 4.1 and Corollary 4.1. It would be perhaps tedious
to prove the general case. More usefully, in the following we demonstrate the proof of the
theorem for d = 1, for which the construction is exactly that of de la Vallée-Poussin, and
d = 2, which is undoubtedly the most important extension. After that we comment on the
the general case, whose truth will by then be clear.
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5.1. The case d = 1

For d = 1 we have

h(x) =


1 for x ∈ [0, 1],

2− x for x ∈ [1, 2],

0 for x ∈ [2,∞).

We easily find

∆h( `
L

) =

{
0 for 0 6 ` 6 L− 1,

− 1
L

for L 6 ` 6 2L− 1,

and hence

∆2h( `
L

) =


0 for 0 6 ` 6 L− 2,

− 1
L

for ` = L− 1,

0 for L 6 ` 6 2L− 2,

+ 1
L

for ` = 2L− 1,

giving
2L−1∑
`=0

∣∣∆2h( `
L

)
∣∣ =

2

L
,

which satisfies (4.5) for d = 1 with C1 = 2. Thus for this construction of h the condition in
Proposition 4.1 is satisfied.

5.2. The case d = 2

In this case we have explicitly

h(x) =


1 for x ∈ [0, 1],

1− 2(x− 1)2 for x ∈ [1, 3
2
],

2(2− x)2 for x ∈ [3
2
, 2],

0 for x ∈ [2,∞).

We easily find, for L even and L > 2,

∆2h( `
L

) =



0 for 0 6 ` 6 L− 2,

− 2
L2 for ` = L− 1,

− 4
L2 for L 6 ` 6 3

2
L− 2,

0 for ` = 3
2
L− 1,

4
L2 for 3

2
L 6 ` 6 2L− 2,

2
L2 for ` = 2L− 1,

and hence

∆3h( `
L

) =



0 for 0 6 ` 6 L− 3,

− 2
L2 for L− 2 6 ` 6 L− 1,

0 for L 6 ` 6 3
2
L− 3,

4
L2 for 3

2
L− 2 6 ` 6 3

2
L− 1,

0 for 3
2
L 6 ` 6 2L− 3,

− 2
L2 for 2L− 2 6 ` 6 2L− 1,
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giving
2L−1∑
`=0

∣∣∆3h( `
L

)
∣∣ =

16

L2
,

which satisfies (4.5) for d = 2 with C2 = 16. A similar calculation holds also for L odd.
Thus in both cases this choice of h satisfies the conditions of Proposition 4.1.

5.3. Higher values of d

The principle used above can be extended to any value of d: for sufficiently large L the
(d + 1)st finite differences of h( `

L
) vanish by virtue of (4.13) and (5.1), except at d points

before each breakpoint, and at each such exceptional point the absolute value of the (d+1)st
finite difference is a bounded multiple of L−d. Because the number of exceptional points is
bounded independently of L, it is then clear that (4.5) is satisfied for large L, completing
the argument. It is only a matter of detail to construct the spline filters for particular values
of d greater than 2.
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