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Abstract

In this work we consider preconditioned iterative solutimethods for numerical sim-

ulations of multiphase flow problems, modelled by the Calilhartd equation. We focus
on diphasic flows and the construction and efficiency of aqmditioner for the algebraic
systems arising from finite element discretizations in spaued the?-method in time. The
preconditioner utilizes to a full extent the algebraic stawe of the underlying matrices and
exhibits optimal convergence and computational compigribperties. Large scale umerical
experiments are included as well as performance comparisidh other solution methods.
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Introduction

The diffuse-interface phase-field approach has emergedawerful mathematical model for
simulating the creation and evolution of various morphalabpatterns and interface motion. A
brief account of the phenomena, treated using this modéaomn

coarsening kinetics of two- or three-phase microstr@ssuch as binary or multicompo-
nent alloys, polymer systems, crystal growth and spinodabthposition (cf. [36]);
capillary phenomena, wetting (cf. [14])

evolution of two components of intergalactic materidi® tlynamics of two populations;
modelling the dynamics of the biomass and the solvent comapis of a bacterial or other
thin films (cf. [34];

phase separation in presence of elastic interaction®.g422];

phase transition with memory, for instance, delayed respof a system to thermal gra-
dients [37];

impainting the binary images (cf. [8]);



- river bed formation (cf. [34]);
- galaxy formation (cf. [34]), etc.

A relevant question is what are the features of the diffuserface phase-field model, which
make it so broadly applicable. The main reason is that theemigdbased on the so-called
total free energyof the physical system, which can be adapted to the partisylstem under
consideration. In this way, based on one and the same tiedriztndament, we obtain the
corresponding equations for a large variety of models, sipgfrom micro to macro scales.

As a consequence of the complexity and mutual coupling ofntleelelled physical phe-
nomena, the arising numerical models are, in general, of Nagge size, may have complex
geometries and require adaptive discretization methodsdorately track the dynamics of inter-
face movement. This, in its turn, poses extra demands onsheetization techniques as well as
on the numerical solution techniques with respect to rotesst, fast convergence, efficient usage
of computer resources and parallelization aspects.

To meet the latter requirements, we use as a discretizatidmique the Finite Element
method (FEM), exploiting its flexibility with respect to hadling both complex geometries and
adaptively refined meshes.

The general applicability, high robustness and the auailefficient implementations of
sparse direct solution methods, makes these to be the y@efehoice in many reported nu-
merical simulations of complex coupled phenomena. Howewvieen very large scale, in space
and/or in time, simulations have to be performed, these reqyire several days or even weeks
when direct solvers are used. Therefore, due to their letmmiands for computer resources,
iterative solution methods become a necessity. As is wahkn the utilization of iterative me-
thods brings concurrently the additional task to constaunat apply computationally efficient
and robust preconditioners. In the research literaturaljrgwith the same physical problem,
most often the numerical solution method is not even meatpin this work, where iterative
techniques are allied, it appears, that most often a nanligeometric multigrid is used, applied
to the whole system of CH equations, using regular refinesreamd a hierarchy of meshes (see,
e.g. [28, 41, 13] for two-phase flow problems). In some stsidldJ-preconditioning techniques
are used (cf. [42], for example). In almost all papers théaustcame across, no performance
(timing) information has been revealed. One exceptioni$ [dowever, no comparison with any
other solution method is given in order to judge the efficjeoicthe solution procedure.

We consider here the task to construct preconditionersodiscrete systems of equations,
arising in numerical simulations of multiphase problemsdeiled by the Cahn-Hilliard equa-
tion, with emphasize to binary flows. All aspects of the pretiboners are considered - ease of
construction, numerical efficiency, robustness with resfmeproblem, discretization and method
parameters, implementation and suitability for HPC platfe. The preconditioner, described
here, satisfies all of the above criteria. It does not requéavy construction phase and unnec-
essary hierarchy of meshes; for constant meshes it doesavetd be recomputed; it allows for
relatively large timesteps (of order of the space discatitn parameter) without degrading the
convergence rate; all its ingredients are standard malwokb and general parallelization tech-
niques, as well as adaptive mesh refinement techniquegaighstorwardly applicable; it could
make use of any of-the-shelf generally applicable Algebkéultigrid type of method, applied to



a matrix of size, twice smaller than the original system matWe also compare the suggested
technique to other methods and include timing results fangarison.

This paper is organized as follows. Section 2 briefly dessribhe mathematical model used
to simulate the physical processes, related to phase siepaaad interface tracking, as well as
some particular formulations and properties. In Sectione3pnesent the space and time dis-
cretization schemes, outline the treatment of the nonlityeasing Newton’s method and the
structure of the matrices in the so-arising linear systeimsection 4 we discuss suitable pre-
conditioners for solving the discrete Cahn-Hilliard egoiaiand analyze their convergence prop-
erties, computational complexity and suitability for gelamplementation. Section 5 contains
numerical experiments. Conclusions and some open proldesfeund in the final Section 6.

2 The Cahn-Hilliard equation as a mathematical model for
multiphase flow

The brief description of the model, presented below, is thase[33] and [39]. The principal
concept is outlined in the case of binary fluids, i.e., fluidgwvwo phases, each of them being
incompressible, viscous and isothermal.

Consider the task to numerically simulate the evolutiornefibterface between two phases in
time, subject to various physical processes, such as diffusonvection, etc. To mathematically
describe these processes, we use the so-called phase-fidkl. nin contrast to other lattice-
based approaches, in the phase-field framework, the intei$amodelled by a functiofi(x, t),
which represents the concentration of the fluids. The fondfi(x, t), also referred to as the
phase-field or the order parameter attains a distinct constant value in each bulk phase and
rapidly, but smoothly, changes in the interface region leetwthe phases. For a binary fluid,
a usual assumption is that takes values betweenl and 1, or 0 and1. The form of the
function C' can be generalized for multifluids, for example, for a teyrférid one can assume
thatd " Ci(x,t) =1,i =1,2,3 (see, e.qg., [17]).

The model goes back to a pioneering work by van der Waals i {{88]), and is based on
classical thermodynamics arguments, developed by Gibb878 ([23]). The interface profiles
are the minimizers of the so-callé@e energy functional

B(©) = [ f(C)a0 ®
Q
for some spatial domaift € IR¢, d = 1,2, 3 andf is the free energy density.

Depending on the particular physical phenomena, the fremgrdensity function may have
different forms. In the test problems, considered hereastthe form

£(C) = 3alVCP + B¥(C), @

wherea and g are some coefficients to be described below. The two term8)iarg referred
to as thegradient energy. | VC|? and thebulk energy or molar Gibbs energys¥(C). The

3



term |[VC|? can be related to intermolecular interactions and can beedeas penalizing the
creation of interfaces (cf. i.e., [20]). The functidnC) is a double-well potential with two
stable minima. If we assume that for the two phaSegries between-1 and1, these minima
are att1. In the current study we considé(C) = 1(C? — 1)2.

Define nextd to be the rate of change &f with respect ta”,

E
o= OF = [ [~aAC + pY'(C)]dSQ. (3)
oC Q
Then, the equilibrium profiles are the solutions of the eiguat
n = —aAC + V' (C) = const, 4)

wherer is the so-callegdhemical potentiabf the liquid mixture.
Equation (4), together with the two stable constant sohst© = +1 (recall that¥'(C) =
C(C? — 1)), turns out to have a one-dimensional nonuniform solutfost(found by van der

Waals) in the form
T

C(x) = tanh (E) :

where{ = \/% is the mean-field thickness. With the help of (4) one can firedetuilibrium
surface tensiow, which has the following form,

aza/oo @ 2dx:&\/@
o \ dz 3 '

o0

Thus, via the choice of the parametersand 5, one can controb, as well as the so-called
equilibrium interface thickness defined as the distance betwegrandx,, C'(x;) = —0.9 and
C(x3) = 0.9 (cf. e.g., [26]).

Later, in [12, 11], the following equation, referred to as hahn-Hilliard (C-H) equation,
has been derived. It is considered to capture the dominaatljgems, which describe phase
separation dynamics.

The Cahn-Hilliard equation for two-phase flow reads as fe$io

oC

T V- [k(C)V(V'(C) - EAC)], (x,t) € QxR (5)
n-vVC =0 ondQ, (6)

n-[k(C)V(V'(C) - EAC) =0 onos, (7)
C(X7 0) = CO(X)a (8)

wheren is the outer normal to52. Here,x(C') is the so-callednobility, which is assumed to be
dependent od’. The relations (6) (the variational condition), (7) (thefhux condition) and the
initial condition (8), added to the C-H equation (5), enstlre well-posedness of the problem.
To relate (5) to (4) and see the relationship between thenetease, «, 3, it suffices to assume

thate = \/gwith B=1.



Remark 2.1

- Some available results regarding existence and unige@fdise solution of the C-H equa-
tion, can be found in [32, 33]. A proof of the existence andjueness for the constant
mobility case with a free energy of a polynomial form is given[16]. Under certain
conditions, some results for the degenerate mobility cagae dimension are shown in
[27, 33].

- We note that (5) is a fourth order parabolic equation. H®vewm general, the maximum
principle does not hold (see, e.g., [30]).

- Due to the assumption that the processes are isothermigtigq (5) may seem rather
simple to describe complex physics phenomena. It does peindiexplicitly on tempera-
ture, thus, thermal effects are not included. Furthertielagscoelastic effects, as well as
anisotropies are also not accounted for. As is describe®Pijp however, the Cahn-Hilliard
equation is the limit case for much more complex models aatktbre, understanding its
dynamics and being able to perform efficient numerical satoihs with it, creates the
building blocks for tackling those more complicated andaed models.

In practice, adjustments are done, in order to take intowadcother physical processes.
Consider as an example temperature changes, when we waniiioie the evolution and
pattern formation in a binary liquid under cooling. A tygisaenario is to assume that the
temperature of the system rapidly decreases and the sysséamianeously equilibrates to
that. The later equilibration is modelled by coupling C-Hiwan energy balance equation
(cf. [33] and the references therein).

Another example is to include anisotropies in the phases.o#isotropic model with
anisotropic surface energy is derived in [1] (see also tfex@aces therein).

Consider now some versions of the C-H equation.
() A simplified version of (5) is the so-callezbnstant mobilitform of C-H,

% = kAW (C) — EA0). 9)

As mentioned in [33], in this case the solution needs not neMmaunded between 1 and
1, even if the initial conditiorC(x) is.

(I) As a cure for the latter, the so-calletegenerate mobilitfjormulation is introduced, in
which
k(C)=C(1-0C),
i.e. it may degenerate &t = 0 andC' = 1. Note that in the formulation used thefi,has
a meaning only in [0,1], sinc&(C') = g{ClnC +(1-C)ln(1 -} +7C(1 =0,



whereT" > 0 denotes a scaled temperature. The resulting formulatexfsras

oc T 9 "
% = SAC -V K(C)V (2rC + €AC), (x,t) € QxR (10)
n-VC = n-k(C)VAC =0, (x,t)e€ .
See [33] for more details and references.
(11N It is also relevant to note that C-H can be written in them of a gradient flow
oC
i v A 11

whereG = x(C)V(¥'(C) — 2AC). The latter formulation shows that C-H is fully mass-
conservative. The form (11) has led to numerical schemesite she C-H equation using
methods for general gradient flows (see [18] and [19]).

(IV) Another formulation of the model, important for the tggoblems and the target applica-
tions in this work is theonvective C-H equatignvhere the interface develops due to both
diffusion and convection

oC / 2

En + (u-V)C =V -[k(C)V(YV(C)—eAC). (12)

Above,u is the velocity vector, obtained as a solution of the timpedalent Navier-Stokes

(N-S) equation,

9
pa_‘tl +(pu-Vyu=-Vp+V-[u(Vu+vul]-yVC +F, (13)

equipped with appropriate boundary conditions. Heie the pressurey and . are the
density and viscosity, correspondingly, afAds the force term. The termVC, where
n = W'(C) — AC, gives the coupling with (12) and represents the surfacgidarforce
in a potential form (cf. [14]). Note, that in the context okétboupled C-H-N-S system,
andy vary with time and space.

3 Space and time discretization of the Cahn-Hilliard equaton

Here, we consider only two space dimensions and constanilitpoldhe C-H formulations,
which are studied numerically in this paper, are the folloyvi

(1) Evolution of flow interface and material transport duéoh diffusion and hydrodynamic

flow:
80 o 1 ! 2
57t V)0 =5-A (¥'(C) — Cn*AC), (14)



whereu is the solution of the coupled time-dependent nonlineariétestokes equation
for an incompressible fluid,

CVn

ou
Re(aﬂL(u-V)u) = _Vp+Au_Ca-Cn

V-u = 0,

(15)

wheren = ¥'(C) — Cn?AC.

Formulation (14) serves as a model in multiphase simulatiamere the interface thick-
ness ('n) and the diffusion speed’) play an important role.

(2) Phase separation with coarsening of a binary mixturegdigerface diffusion,
i.e., the case of absence of convectiar 0 in (14)). This model is often used to simulate
processes, for instance, in metallurgy. The formulatiotinig case reads as follows:

aa—f — A(V'(C) — EAC) =0, (16)
Without going into details, we note that in this caBe = 1 is a usual assumption. In
the corresponding dimensionless formulatié, ande are not exactly the same physical

guantities. Mathematically, however, both parametersarall positive constants.

(For brevity, the details about the domain of definition amelhoundary conditions are excluded
from the above problem formulations.)

Equations (14), (15) and (16) are in a nondimensionalizesh foThe parameterge, Cn,
Re, Ca are the Peclet, Cahn, Reynolds, and Capillary numbersecésply. Details on the
nondimensionalization are given in [9]. In case (1), we assthat the coupled system (14)—
(15) is solved using operator splitting, i.e., at each tineg she velocityu in equation (14) has
already been found as a solution of (15).

Consider the more general form of C-H, (14), which, as alyestdted, is a fourth order
nonlinear parabolic equation. In what follows, for notaabsimplicity, we use to denoteCn
andw to denotel /Pe. We choose to deal with the equation by decomposing it intoupled
system of two second-order partial differential equati(fiSE) (see e.g. [15]). We consider
as an unknown function and obtain the following system fahlibe concentratiod’ and the
chemical potential).

n—V(C)+eAC = 0, (x,t)e€Q=0x(0,7),QcCR?
—wAT]—i-@—l—(u-V)C = 0, (xt)eQy

ot

17)
oc oy (
8—1’1 = 0, 8_1’1 = 0, x € 0N

C(l’, O) = C(](SU),

where) < e < 1 and0 < w < 1.



Remark 3.1 Within the phase-field theory, the boundary condition tratoants for the free
energy distribution between the different phases, setwétigng boundary conditiord] for the
interface, see [14]), which is of the form

Here,g(C) is a local surface energy and is set0t@>C — 0.25C? in this formulation. Here we
consider only the cage= /2.

Discretization in space

System (17) is discretized in space using the standard wuoifg piece-wise linear finite ele-
ments (FEM) and we use the same finite element space for bo#bles. The weak variational
formulation of (17) reads as follows:

FindC,n € H'(Q) such that

(n,v) — (¥'(C),v) — (VC,Vv) = 0

18
w(Vn, Vv) + (%,V) + ((u-V)C,v) = 0 (18)
forallv € H'(9).
After discretizing (18) in space, the semi-discrete probieads as follows.
Findc(t) = {c;(t)} Y, andd(t) = {d;(¢)} Y, such that
Md(t) — f(c(t)) — €Kc(t) = 0
(19)
WKA(t) + Md(;sf) L We(t) = 0,

where the elements of the vecttic(t)) = {fi(c(t))}Y., are defined ag;(c(t)) = (¥'(C"(¢)), x:)
and M, K andW are, respectively, the Gramian mass matrix, the discrepdacean stiffness
matrix and the matrix, corresponding to the discrete cameterm in (18), respectively.

Discretization in time

For discretization of the time derivative we consider #hmethod, and more precisely, the two
schemes corresponding to the backward Eulet (1) and Crank-Nicolsond = 1/2) methods.
Both are implicit, with first and second order accuracy ingjmespectively (see, e.g., [4]).

Consider a sequence of time steps,}, £ = 0,1,..., wheret, = 0, ¢, = t,_1 + Atg, and
denote byc* = c(t;,),d* = d(t). After applying thef-method,f € [0, 1], the fully discretized
C-H system to be solved at each time step 1, 2, ... reads as follows:

Md* — f(c*) — Kch=0

20
OwAt Kd¥+McP+0AtW ek +(1-0) (wAt K A" + At Wk — Mt =o. (20)
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For# = 1 we obtain the fully implicit backwards Euler form
MdF — f(cF) — Kk = 0

(21)
wAt,Kd*¥ + Mck + Ay, Wk — Mck—t = 0.

Thus, the time stepping procedure is as follows. Startingimitial vectorsc® = {Co ()},
andd’ = {(V'(Cy) — €ACy)(x;)}Y,, the vectors* andd” that correspond to successive time
stepsty, k = 1,2, ..., are computed using the already known approximatidné andd* ' at
the previous time step. At each time step one has to solvelampansystem, (20).

Remark 3.2 As is known, in certain cases, when using the Crank-Nicotstremef = 1/2),
the approximate solutions can contain (decaying) spumagslations. Therefore, in particular
in the beginning of the time interval, it is recommended te tre fully implicit Euler method
with small time steps, of = 1/2 + ¢ for some small, 0 < ¢ < 1. If ( = O(At), the
latter method preserves the second order of accuracy dse@rank-Nicolson method, see, for
instance [2].

Handling the nonlinearity

Due to the terny (c¥) in (20), the systems to be solved at each time step are nanlifiberefore,
some nonlinear solution technique must be used and we cheoséewton’s method.

For convenience, leX* = [d’“, c’“}T denote the combined vector of unknowns. Then the
problem of solving the system (20) can be rewritten in thiofoing way.

Find X* € IR*", such that
Fu(XF) =0, (22)

where the nonlinear operaté}, (X*) has the form

P (XF)= Md* — f(c*) — 2Kck (23)
T At K AP+ M AL W (1 —0) (WAL K ¥+ At W) —M k1|

We note thatF, (X*) changes from one time step to the next, sintect !, d* andd*! are
different for differentk.

To solve (22) we apply the classical Newton method. Stamiith an initial guessX*? =
Xkl = [dk—l,c’“—l]T ands = 0,..., until a suitable stopping criterion is met, we find an
update of the solutiodhX*»* by solving the system

F(XPHAXFS = — Fj (X9 (24)

and form the next approximate solutiond%°+! = X**4+AXks. Here,F},'(X¥) is the Jacobian
of F,(X*). Thus, at each time step we find an approximate solution tmdmtinear problem
(22) by a sequence of Newton iterations, each involving atsni of a linear system with the
Jacobian matrix.



From here on we omit the superscripiand use onlyX instead. The operatadf,(X) =
{F,;(X)}3Y, is a vector function of a vectaX = { X}, with X; = d;,i = 1,..., N and
XN+i :Ci,i: 1,...,N.

A straightforward computation shows that

oM —0J(c) - 0K

FX) = lgont k. M+or,,w |-

(25)
where J(c) is the Jacobian of the nonlinear terfiic) only. Further,J(c) can be assembled
in the usual FEM manner from element matrickse € 7 that have the form/, = j.M,,
where ), is the corresponding element mass matrix gndepends on the nodal values of the
concentration vectat at the previous Newton step. Since there hoelds< ¢; < 1, one can see
that—1 < j. < 2, where avalue close tel corresponds to an elemendn the interface between
the two phases and value€orresponds to an element away from the interface, contaonly
one of the phases. More details are given in [9].

Properties of the arising matrices

We observe that for a fixed mesh, the mass and stiffness emtri@and /& need to be assembled
only once in the beginning of the time stepping procedure. eline C-H equation is coupled
with N-S, the convection matri¥” depends on the velocity field and, thus, has to be recomputed
at each time step. The only matrix to be recomputed at eachtdweiteration is.J(cF*). For
brevity, from here on we usé for .J(c®*).

At each nonlinear iteration step we need to solve systents #itX*), as in (25). For
simplicity, in the sequel we use the generic nam® denote the system matrix, namely, we let

oM —0(J + eK)

! f— —
Fi(X)=A= QuwAt, K M+ 0AL,W |7

(26)
with# = 1or1/2 + (.

Clearly, A is nonsymmetric. We take a closer look at the problem at hamde specific, we
consider the matrix, resulting from the implicit Euler soiee however, the analysis is analogous
for the case < 1/2.

In general, the difference in magnitude of the entries ofdheobian matrixd depends on
the problem parameteksand w, the discretization parametehsand At, and the amount of
convection in the problem, relative to diffusion. In turhetchoice ofAt, related toh, which
controls the total discretization error, depends on theddithe numerical simulation. When the
task is to obtain the stationary solutiaht should be taken as big as possible, within the desired
discretization error bounds.

First, we estimate the order of the entries of the block4,ias a function of the problem and
discretization parameters. We see that

R R - €

0(4) = wAt  h?+ Ath

(27)
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The parametes is the thickness of the interface. Since the interface isetqu to be thin, it
has to be resolved reasonably well by the mesh. Thimgs to be chosen agr, wherer is an
integer, usually betweeh— 10. The parameter in many applications is of order one. We see
from (27), that whem\¢t = O(h?), the size of the entries in all blocks itis O(h?). In case the
velocity field is of orderO(1), the term, corresponding to convection, becomes of afdér)
and is not dominating. The entries.jnhave different signs, thus, in general the block 2K
may be indefinite.

From (27) we also see, that whéns small andAt¢ is also small relative ta@, the influence
of J andW becomes negligible and the matrix

oM — 0K

P= 0wt K M

(28)
becomes a good candidate for a preconditioned ofThis proposition is further quantified in
Section 4.

4 Preconditioners for the discrete Cahn-Hilliard equation

Next, we discuss the task to solve systems wifhX*) of the form (26) using some precondi-
tioned iterative solution method.

As a rule, efficient preconditioners and iterative methaatsblving linear systems of equa-
tions utilize the properties of the corresponding systerrioes. One such important property is
the block structure. Due to the fact thatarises from the discretization of a system of PDEs, it
admits a two-by-two block form.

We note that the blockd/ and K are symmetric)M is positive definite ands is positive
semi-definite —0(J + ¢2K) is symmetric, possibly indefinite, and’ + 0A¢, W is in general
nonsymmetric. In the case of zero convection, the lowerahagblock becomes also symmetric
and positive definite.

We start by considering the issue of simplificationdofAs it has already been discussed, for
small enoughh andAt, the influence of the blockg andWW diminishes and the idea to neglect
those naturally arises. To this end we first simplify the tiotes and assume théat= 1, thus, let

M —EK-J
A=l u ) @9)
whered = wAt,. Then we consider the simplified matrix
M —éeK
and analyze the properties of the spectrum of the genedatigeenvalue problem
Aq = Myq. (31)
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First, we transform (31) to

(A= Ag)q = pAoq, (32)
wherep = A — 1. Next, we note, that
a1 Syt EMTKS)!
AO - |:_5SO—1KM1 So—l ) (33)
whereS, = M + 26K M~'K. From the expression
ia a0 =S+ EAtMTIKSTW
Ag (A = Ao) = {0 + 68y KM~ + AtSy W (34)

we see that the eigenvalue problem (32) hagero eigenvalues, corresponding to eigenvectors

[%1] , WhereN is the size of the blocks. Thug/ of the eigenvalues of (31) are equalltoTo

analyze the rest, we write out (32) in detalil.

—Jqy = M(MQ1—€2KQ2)

35
AtWqy = p(éKai + Mqs). (33)

We expressy; from the first equation in (35), substitute it into the seceggiation and after
some transformations, we obtain

AL MW +wM KM ' J)qy = p(I + Atwe* (M K)*)qs. (36)

We recall thak = rh, wherer > 5,0 < w < 1, andAt is of orderO(h) or smaller. Consider
the matrix
Q = At(l + Atw (M K™Y (MW + wM ' KM™)).

Then el MK M|
< At At
QI = AR oear o T AT+ Awe (1K)
At [|[M W] Atw .
< + M—J
S VA TN T oA M (37)

= O(VPeV/At) + O(VAth™)
= O(VCVALh=) + O(zVAth™Y)

The above result is based on the following argumemitd/ —'W || = O(h™'), |M'K]| =
O(h™2), ||M~1J|| = O(1), |a|/(1 + a®b*) < 1/(2b), € = rh. Further, we recall that < w < 1
is the inverse Peclet number, which may be large (see thadpgeWe note that’eh is the so-
calledmesh Peclet numbgwhich should be small enough, sdh = ¢ for some0 < ¢ < 1,
in order to insure sufficient resolution of the discretiaatmesh.

The relations (37) show how to choose the time gkpn order to ensure a high quality of
the preconditioned,. We collect the results in a proposition.
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Proposition 1 For the eigensolutiong\®), q*)) of the generalized eigenvalue problem (31),
there holds "
Y q(S) = [qé ] ) §= 17 "'7N7

A =1 4, s=1,..,N,

() =
A 1 (38)

where,

(i) ¢ —0 for At< h? whenPe =1,

(i) ¢—0 for At < h,whenPe>1,

We see from the above, that when keepinfixed and enlarging’e, even if we choosé\t <
h, we can expect an increase in the iteration counts due to@gase of the corresponding
proportionality constant.

An analysis of the behaviour of the eigenvalues of (31) is enaldo in [7], however the
derivations are based on (34).

In Section 4.1, we address the question how to solve effigisgstems with the matrix,.

4.1 Efficient solution of systems withA,

It turns out that systems with, can be solved very efficiently by preconditioned inner itierss.
An analysis in [7], related to earlier work in [5], shows tlia¢ matrix

121\ _ M — 2K
7 ISK M+ 2eV0K

is an optimal preconditioner fot,, and, furthermore, can be efficiently implemented.
For completeness, we include here the derivations.

Proposition 2 (Proposition 4.1 in [7]) Consider the matrices

H —?FT
B*F ~*H + apfy(F+ FT),

H —o?*F"

A:{@F V2H

|

whereH is spd, the symmetric part &, :(F + F) is positive semidefinite and 5 and~ are
some real constants. Then, the eigenvalues of the gerextaigenvalue problem

AsrﬂzArﬂ (39)

Vo Vo
satisfy the relations:
{ A € [0.5,1],

A =1 forv,inthe null space of + F7T.
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Proof
We note first, that

0 0
A=B- [O aﬁv(FjLFT)} '

Then, problem (39) is equivalent to
vi| 0 0 Vi
(A-1B |:V2:| = {0 —aﬁy(FjLFT)} |:V2:| )

()\ — 1)(HV1 - O[ZFTVQ) =0
A=1)(B*Fvi+ (V"H +afy(F+ F"))vy) = —afy(F+F")vy '

Clearly, if v, is in the null space of” + F7, then)\ = 1. Next, we consideA # 1 and express
v, = o2H ' F1v, from the first equality in (40). Substituting it in the secavliality, we obtain

A=1D(B*?FH'FT + v*H + afy(F + F))vy = —aBy(F + FT)v,.

(40)

We combine the similar terms, and after straight-forwaads$formations obtain
1
(X — 1)(B*PFH'FT + v*H)vy = afy(F + F')vs.
SinceH is spd, we transform the latter relation as

(% —1)(I + FF")y = (F + F')%,

whereF = ‘ITBH*%FH*% andv, = Hzv,. Hence,

1 W(F+F v

A o oy + (ﬁT%)T(ﬁT%)'
We now utilize the assumption that + F7' is positive semidefinite together with the Cauchy-
Schwartz inequality, and obtain:

0 < VL (F 4+ FD)Wy = (FT) v + oL (FT¥3) = 29 (FTv,) < o'V + (FT90) T (FT'+y).

The latter shows thdt < { — 1 <1,0r1 < ; < 2, thatis] <A < 1. n
Further, 4, possesses the following factorization (cf. [5], [7])
I M — 2K M 0 1 — MK (41)
"7 6K M+2/0K|  [6K M+e/oK| |0 M (M+e/oK)|

Thus, implementing straightforwardly a block solver fod)4we see that solutions witﬁo
require one solution wit/, two with M/ + ev/6 K and some matrix-vector operations:

Forward step: Backward step:
(1) Solve My, = b, (3) Solve(M + eV/dK)xy = My, (42)
(2) Solve(M + eV/0K )y, = b, — 6Ky, (4) Computex; = y; — T5(y2 —x2)

14



We envision the following computational procedures to sdirear systems with the matrix.
Algorithm [A] (included for completeness)
[Al] Solve A, preconditioned by,
[A2] Solve A by inner iterations, preconditioned b@() factored as in (41)
[A3] Solve A, via the computational steps (42)
[A4] Solve M andM + /K using some suitable solution procedure

Algorithm [AQ] (recommended)

[AO1] Solve A, preconditioned byﬁTo, factored as in (41)

[A02] Solve A, via the computational steps (42)

[A03] Solve M andM + ¢/$K using suitable solution procedures

One last issue to consider is the solution withand M/ + ev/6K. We see, that the matrix
M + e/$K is suitable to be solved by some off-the-shelf AMG solver. & simplify the
preconditioner further and repladé by its diagonal,D,; = diag(M), which makes solutions
with it trivial. The matrixD,; + ev/0 K is nonsingular, easy to form explicitly and can be solved
by an AMG solver. Below we analyse the effect of replaciigoy D), on the already derived
condition number estimates fei; ' A,.

Remark 4.1 For the solution of systems with,, it is shown in [7] that the complexity of the
solution with the preconditioner can be further reducedjding one solution with\/ by rear-
ranging the computations in the solution procedure.

5 Numerical experiments

The preconditioning techniques, presented above, arécapf® for a general setting of problem
parameters of the C-H equation. To illustrate the perfoceari the preconditioning techniques,
discussed in Section 4, we use the following test problems.

Problem 1 (Phase separation and coarsening due to diffusion)

We consider problem (17) it = [—1/2,1/2] x [0, 1] with parametersv = 1, ¢ = 0.0625 and
u = (0,0) . Thus, no convection due to fluid flow is included in the model the process
of phase separation and coarsening takes place only dueffissitin. Figure 1 illustrates the
evolution of a binary mixture in time.

Problem 2 (Front movement due to convection)

We consider problem (17) it = [—1,1] x [0, 1] withw = 1/300, ande = 0.1. The velocity
vector is assumed to be constant in time with components (1,0). The initial condition is
Cy = —tanh(10z). This problem describes the movement of the front betwesetwihphases,
as shown in Figure 2.

In order to verify our numerical approach, we perform thédiwing two tests to solve the
fully coupled convective C-H equation with the Navier-Stelequations.
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(b) Solution attime = 0.012

(a) Random initial condition

0.04

(d) Solution at time

(c) Solution at timg = 0.025

Figure 1: Phase separation and coarsening with no conwectio
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(a) Initial position of the interface (b) Position of the interface at tinte= 0.4

Figure 2: Interface movement for convective Cahn-Hilliard

Problem 3 (The static bubble test)

Consider a circular bubble in static equilibrium. In thist8eg, the net surface force should be
zero, since at each point on the bubble surface the tensioa f® counteracted by a force, equal
in size and opposite in direction, acting at a diametricallyposed point. The correct solution
is a zero velocity field and a pressure field that rises from astant value op,,; outside the
bubble to a value a#;,, = p,.: + o/ R inside the bubble, according to the Laplace-Young I&w (
is the bubble radius). Figure 4 illustrates the correctnesthe computed solution.

Problem 4 (The dynamic bubble test)

We consider an elliptic droplet with main axes= 0.16 andb = 0.14, Figure 5(a). The non-
dimensional numbers alge = 10 andC'a = 0.1 andCn = 0.00625. The droplet oscillates due
to the curvature until it reaches a circular shape with raslid = 0.15, Figure 5(b). As a result
of numerical simulations one can observe spurious velacityents of amplitudé/ < 1 10~1°
near the bubble interface. There are few vortices With< 1 10~° outside of the interface.

The numerical tests in Tables 1-4 are performed/t | ab and those in Tables 5-7 - in
Fortran. To solve systems withl, a nonsymmetric iterative solution method is applied. In
Mat | ab we use the Generalized Conjugate Gradient - Minimal Resi@@G-MR) method,
see e.g. [3] and GMRES in the rest of the experiments.

In all numerical tests, presented throughout the paper,sgeuegular triangular mesh with
a characteristic mesh size Note that due to the smaller interface thickness, we neesttarb
resolution for Problem 1 than for Problem 2.

The stopping criterion for the Newton method at each timg istalways taken to bgA X 5|| <
10~. The iterative method used to solve the arising systems -8R, and the solution pro-
cess is stopped when the norm of the residual is reduced hbgtar f®—° or the norm itself is
smaller thanl 02,
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At
Size ™ 7 nj2 hjA hji0 W
M

8450 7/28 3/12 3/9 3/8 3/8
33282 3/11 3/8 3/8 317 317
132098 3/8 317 3/7 317 317

diag(M)

8450 7/26 3/13 3/12 3/11 3/12
33282 3/12 3/11 3/10 3/11 3/12
132098 3/9 3/9 3/10 3/10 3/12

Table 1: Problem 1, no convectioA:is preconditioned withd,

In Tables1-4 we monitor the convergence of the nonlineahotstas well as that of various
combinations of inner solvers and their influence on the remolbthe nonlinear iterations. We
report results, averaged over ten time steps. Each taldleasghins Two or three integer digits
of the form N, /N, or N, /N, /N3, whereN; denotes the average number of Newton iterations
per time step/V, is the average number of GCG-MR iterations per Newton it@naand Vs,
whenever present, shows the average number of AMG-pretiomelil conjugate gradient (PCG)
iterations to solve iteratively systems witth + ev/d K.

As predicted, for relatively small values ¢, which is achieved already fér/4 andh/10,
the performance of the preconditioner is stable with resfpelgoth discretization parameters.

Tables 1 to 4 illustrate the numerical performance of Altjon [AO]. We useA, as a pre-
conditioner forA, solved as shown in (42). We test first the convergence whstesg with
M + e/ K are solved via direct method (Tables 1 and 3) and next - wiene\/d K is solved
by an AMG-preconditioned conjugate gradient method (T@Blend 4). We also illustrate the
effect of replacingV/ by its diagonal.

The tables consist of two parts. In the upper part of eacle tal# present the iteration counts
where the original mass matri is used. In the lower part, we see the effect of repladihgy
its diagonal in all blocks ofi,, - the linear iterations increase approximately by a factawo.

In Tables 1 and 3 we see the averaged nonlinear and lineatiates to solve the Jacobian
matrix A, preconditioner byd,, where systems with/ + e/ BK are solved directly.

In Tables 2 and 44, is considered in its factored form (41) and systems systeithsitiare
solved via Algorithm (42). The matrix blocke +¢./3K are solved by an inner PCG solver with
AMG from [25] as a preconditioner. The inner stopping ciiaris 10~3, which results in about
two to three iterations. We see that the inner solver doesflaence the outer convergence of
both the nonlinear and the linear solution methods.

Table 5 contains comparisons of the performance of thetiteraolver with that of a fast
sparse direct method (MUMPS, see [31], the same solverasualsd in [14]), shows the compu-
tational time and the memory consumption for four diffengrblem sizes. When the size of the
problem is small enough, the direct solver is faster tharbtmek preconditioned iterations. For
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At
Size h h/2 h/4 h/10 h?
M

8450 7/22/3 3/14/3 3/11/3 3/8/3 3/8/3
33282 3/13/3 3/10/3 3/9/3 3/8/3 3/713
132098 3/18/3 3/9/3 3/8/3 3/8/3 3/713

diag(M)

8450 7/23/3 3/14/3 3/13/3 3/12/3 3/12/3
33282 3/15/3 3/13/3 3/12/3 3/12/3 3/12/3
132098 3/16/3 3/12/3 3/11/3 3/12/3 3/12/3

Table 2: Problem 1, no convectio is preconditioned withflo, AMG used for the matrix

M + e/BK

At
Size h h/2 h/4 h/10 h?
M
4290 4/10 419 3/9 3/8 317
16770 4/8 3/9 3/8 317 3/6
66306 4/7 3/8 317 3/6 3/5
diag(M)
4290 4/15 4/14 3/15 3/15 3/14
16770 4/13 3/14 3/13 3/12 3/11
66306 3/14 3/12 3/11 3/10 3/9

Table 3: Problem 2, convection-diffusioA:is preconditioned withd,

At
Size 7 e n/d 110 72
M
4290 4/10/3 4/9/3 3/9/3 3/8/2 31712
16770 4/8/3 3/9/3 3/8/3 3/71/3 3/6/3
66306 4/7/3 3/8/3 3/7/3 3/6/3 3/5/3
diag(M)
4290 4/15/3 4/14/3 3/15/3 3/15/3 3/14/3
16770 4/13/3 3/14/3 3/13/3 3/12/3 3/11/3
66306 3/14/3 3/12/3 3/11/3 3/10/3 3/9/3

Table 4: Problem 2, convection-diffusiod:is preconditioned withl,, AMG used for the matrix

M + e/BK
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Block precondition

Direct solver [14]

h DOF N1/N2 time(s) Mem(MB) N1 time(s) Mem(MB)
1/256 131072 4/10 16.98 185 7.2 352
1/512 528392  4/10 72.61 646 03.4 1409
1/768 1176 578  4/10 170 1429 193.75 3126
1/1024 2097152 4/10  306.05 2 587 Out of memory

Table 5: Problem 2: Memory consumption and run time for twlotsan methods

350

Calculation time
= = N N w
o (o] o (o) o
©c o ©o o o
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o
T
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0.5 1 15 2 25
Size of problem % 10°

o

Figure 3: Problem 2: Computing time per linear step vs. mobsize

problem sizes, larger than a million degrees of freedomitérative method becomes superior
over the direct solver in terms of performance. Figure 3tHates that the computing time of the
iterative solver increases linearly with the problem size.

Tables 6 and 7 contain comparisons between three solutibnitpues, including ILU-precon-
ditioned GMRES (the same as used in [42]). The ILU precoodér is constructed for the whole
systemA. As can be seen from the tables, the ILU preconditioner iseragfficient in some
cases while in others it diverges. The block preconditiofieshows a very robust behaviour in
all cases.

6 Concluding remarks

In this paper we address preconditioning techniques fatéh&tive solution methods for numeri-
cal simulations of multiphase flow problems. The model issbasn the Cahn-Hilliard equation.
In its original form, it is a fourth order parabolic partiaffdrential equation, however, in this
study it is reformulated as a coupled nonlinear system oftamond order equations, one of
which is time-dependent.

As a space discretization method, we consider finite elesnémangular meshes and con-
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Precond.with4, Direct solver [14] ILU[42]

dt N1/N2  time(s) N1 time(s) N1/N2  time(s)
h 4/10  14.58 3 7.19

h/4 4/10 16.98 3 7.23 no convergence
h/5 4/10 16.77 3 7.16

h/10  4/10 14.67 3 7.21 4/42 23.66
h/20  4/10 14.62 3 7.21 4/13 13.23
h/40  4/10  14.11 3 7.23 4/10  10.55

Table 6: Computing time and number of iteration for threéedént methodsPe = 1000

Precond.with4, Direct solver [14] ILU[42]
dt N1/N2  time(s) N1 time(s) N1/N2  time(s)
h 3/10 16.66 3 7.25
h/4  3/10  16.54 3 7.23
h/5 3/10 16.53 3 7.22 no convergence
h/10  3/10 16.28 3 7.21
h/20  3/10 15.82 3 7.19
h/40  3/10  15.59 3 7.18

Table 7: Computing time and number of iteration for threéedént methodsPe = 1.

Figure 4: Problem 3: The pressure profile, a simulation with= 0.1, Re = 10 andCn =
0.00625.
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0 . . -0. -0. 0
X X

(a) Velocity & the interface at = 1e — 2. (b) Velocity & the interface at = 1.

Figure 5: Problem 4: The Interface movement for convectigbrGHilliard and the ’spurious
currents’ around the bubble in a stationary state

forming bilinear basis functions. The system matrix is rygnshetric, due to the Jacobian of the
nonlinear term and, if present, a discrete convection dperéhe time discretization is implicit,
using thef-method.

The numerical simulation consists of a time-stepping pilace, where during each time step
we solve a nonlinear system of algebraic equations usind\eilvton method. That, in turn,
during each nonlinear iteration requires the solution ahadr system with the corresponding
Jacobian matrix.

The target goal of this work is the efficient solution of syssawith the Jacobian matrix using
preconditioned iterative solution methods and the constrm and analysis of the convergence
properties of the proposed preconditioners.

We consider a preconditioner of block form, which utilizes tavailable two-by-two block
matrix structure. We proceed in two steps. First we simglhiy original system by dropping
the nonsymmetric matrix blocks. We show that for small ertotilgpe step, relative to the space
discretization parameter, the resulting matrix is a highligy preconditioner for the original
system. In its turn, that resulting system is of special f@ama can be preconditioned by an
optimal preconditioner. Solution of systems of the lat@guire some vector operations and
off-shelf solvers such as AMG.

The approach is straightforwardly applicable in two or ¢hckmensions as well as in an
adaptive finite element framework. We note, that for corntstagshes, the preconditioner needs
not to be recomputed.

We provide extensive numerical evidence of the efficiencyhef derived preconditioner.
Comparisons with a direct method regarding execution tiamesmemory requirements confirm
that the performance of the suggested preconditioninghiqak is superior over a fast sparse
direct solver and also shows a very robust convergence lmhrav
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The preconditioner is applicable also to other problemsgkvexhibit the same matrix struc-
ture, such as in constraint optimization with a PDE constrai
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