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Abstract

In this work we consider preconditioned iterative solutionmethods for numerical sim-
ulations of multiphase flow problems, modelled by the Cahn-Hilliard equation. We focus
on diphasic flows and the construction and efficiency of a preconditioner for the algebraic
systems arising from finite element discretizations in space and the�-method in time. The
preconditioner utilizes to a full extent the algebraic structure of the underlying matrices and
exhibits optimal convergence and computational complexity properties. Large scale umerical
experiments are included as well as performance comparisons with other solution methods.

Keywords Cahn-Hilliard� finite elements� two-by-two block matrices� preconditioning

1 Introduction

The diffuse-interface phase-field approach has emerged as apowerful mathematical model for
simulating the creation and evolution of various morphological patterns and interface motion. A
brief account of the phenomena, treated using this model contains

- coarsening kinetics of two- or three-phase microstructures such as binary or multicompo-
nent alloys, polymer systems, crystal growth and spinodal decomposition (cf. [36]);

- capillary phenomena, wetting (cf. [14])
- evolution of two components of intergalactic materials, the dynamics of two populations;
- modelling the dynamics of the biomass and the solvent components of a bacterial or other

thin films (cf. [34];
- phase separation in presence of elastic interactions, seee.g [22];
- phase transition with memory, for instance, delayed response of a system to thermal gra-

dients [37];
- impainting the binary images (cf. [8]);
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- river bed formation (cf. [34]);
- galaxy formation (cf. [34]), etc.

A relevant question is what are the features of the diffuse-interface phase-field model, which
make it so broadly applicable. The main reason is that the model is based on the so-called
total free energyof the physical system, which can be adapted to the particular system under
consideration. In this way, based on one and the same theoretical fundament, we obtain the
corresponding equations for a large variety of models, spanning from micro to macro scales.

As a consequence of the complexity and mutual coupling of themodelled physical phe-
nomena, the arising numerical models are, in general, of very large size, may have complex
geometries and require adaptive discretization methods toaccurately track the dynamics of inter-
face movement. This, in its turn, poses extra demands on the discretization techniques as well as
on the numerical solution techniques with respect to robustness, fast convergence, efficient usage
of computer resources and parallelization aspects.

To meet the latter requirements, we use as a discretization technique the Finite Element
method (FEM), exploiting its flexibility with respect to handling both complex geometries and
adaptively refined meshes.

The general applicability, high robustness and the available efficient implementations of
sparse direct solution methods, makes these to be the preferred choice in many reported nu-
merical simulations of complex coupled phenomena. However, when very large scale, in space
and/or in time, simulations have to be performed, these may require several days or even weeks
when direct solvers are used. Therefore, due to their lesserdemands for computer resources,
iterative solution methods become a necessity. As is well known, the utilization of iterative me-
thods brings concurrently the additional task to constructand apply computationally efficient
and robust preconditioners. In the research literature, dealing with the same physical problem,
most often the numerical solution method is not even mentioned, In this work, where iterative
techniques are allied, it appears, that most often a nonlinear geometric multigrid is used, applied
to the whole system of CH equations, using regular refinements and a hierarchy of meshes (see,
e.g. [28, 41, 13] for two-phase flow problems). In some studies, ILU-preconditioning techniques
are used (cf. [42], for example). In almost all papers the authors came across, no performance
(timing) information has been revealed. One exception is [41], however, no comparison with any
other solution method is given in order to judge the efficiency of the solution procedure.

We consider here the task to construct preconditioners for the discrete systems of equations,
arising in numerical simulations of multiphase problems, modelled by the Cahn-Hilliard equa-
tion, with emphasize to binary flows. All aspects of the preconditioners are considered - ease of
construction, numerical efficiency, robustness with respect to problem, discretization and method
parameters, implementation and suitability for HPC platforms. The preconditioner, described
here, satisfies all of the above criteria. It does not requireheavy construction phase and unnec-
essary hierarchy of meshes; for constant meshes it does not have to be recomputed; it allows for
relatively large timesteps (of order of the space discretization parameter) without degrading the
convergence rate; all its ingredients are standard matrix blocks and general parallelization tech-
niques, as well as adaptive mesh refinement techniques are straightforwardly applicable; it could
make use of any of-the-shelf generally applicable Algebraic Multigrid type of method, applied to
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a matrix of size, twice smaller than the original system matrix. We also compare the suggested
technique to other methods and include timing results for comparison.

This paper is organized as follows. Section 2 briefly describes the mathematical model used
to simulate the physical processes, related to phase separation and interface tracking, as well as
some particular formulations and properties. In Section 3 we present the space and time dis-
cretization schemes, outline the treatment of the nonlinearity using Newton’s method and the
structure of the matrices in the so-arising linear systems.In Section 4 we discuss suitable pre-
conditioners for solving the discrete Cahn-Hilliard equation and analyze their convergence prop-
erties, computational complexity and suitability for parallel implementation. Section 5 contains
numerical experiments. Conclusions and some open problemsare found in the final Section 6.

2 The Cahn-Hilliard equation as a mathematical model for
multiphase flow

The brief description of the model, presented below, is based on [33] and [39]. The principal
concept is outlined in the case of binary fluids, i.e., fluids with two phases, each of them being
incompressible, viscous and isothermal.

Consider the task to numerically simulate the evolution of the interface between two phases in
time, subject to various physical processes, such as diffusion, convection, etc. To mathematically
describe these processes, we use the so-called phase-field model. In contrast to other lattice-
based approaches, in the phase-field framework, the interface is modelled by a functionC(x; t),
which represents the concentration of the fluids. The function C(x; t), also referred to as the
phase-field, or theorder parameter, attains a distinct constant value in each bulk phase and
rapidly, but smoothly, changes in the interface region between the phases. For a binary fluid,
a usual assumption is thatC takes values between�1 and 1, or 0 and 1. The form of the
functionC can be generalized for multifluids, for example, for a ternary fluid one can assume
that

PCi(x; t) = 1; i = 1; 2; 3 (see, e.g., [17]).
The model goes back to a pioneering work by van der Waals in 1893 ([38]), and is based on

classical thermodynamics arguments, developed by Gibbs in1873 ([23]). The interface profiles
are the minimizers of the so-calledfree energy functionalE(C) =

Z
Ω

f(C)dΩ (1)

for some spatial domainΩ 2 IRd; d = 1; 2; 3 andf is the free energy density.
Depending on the particular physical phenomena, the free energy density function may have

different forms. In the test problems, considered here, it has the formf(C) =
1

2
�jrCj2 + �Ψ(C); (2)

where� and� are some coefficients to be described below. The two terms in (2) are referred
to as thegradient energy1

2
�jrCj2 and thebulk energy, or molar Gibbs energy, �Ψ(C). The
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term jrCj2 can be related to intermolecular interactions and can be viewed as penalizing the
creation of interfaces (cf. i.e., [20]). The functionΨ(C) is a double-well potential with two
stable minima. If we assume that for the two phasesC varies between�1 and1, these minima
are at�1. In the current study we considerΨ(C) = 1

4
(C2 � 1)2.

Define nextΦ to be the rate of change ofE with respect toC,

Φ =
�E�C =

Z
Ω

[��∆C + �Ψ0(C)]dΩ: (3)

Then, the equilibrium profiles are the solutions of the equation� � ��∆C + �Ψ0(C) = 
onst; (4)

where� is the so-calledchemical potentialof the liquid mixture.
Equation (4), together with the two stable constant solutionsC = �1 (recall thatΨ0(C) =C(C2 � 1)), turns out to have a one-dimensional nonuniform solution (first found by van der

Waals) in the form bC(x) = tanh� xp
2�� ;

where� =
q�� is the mean-field thickness. With the help of (4) one can find the equilibrium

surface tension�, which has the following form,� = � Z 1�1 d bCdx!2 dx =
2
p

2

3

p��:
Thus, via the choice of the parameters� and�, one can control�, as well as the so-called
equilibrium interface thickness�, defined as the distance betweenx1 andx2, C(x1) = �0:9 andC(x2) = 0:9 (cf. e.g., [26]).

Later, in [12, 11], the following equation, referred to as the Cahn-Hilliard (C-H) equation,
has been derived. It is considered to capture the dominant paradigms, which describe phase
separation dynamics.

The Cahn-Hilliard equation for two-phase flow reads as follows:�C�t = r � [�(C)r(Ψ0(C)� �2∆C)]; (x; t) 2 Ω� IR+ (5)

n � rC = 0 on �Ω; (6)

n � [�(C)r(Ψ0(C)� �2∆C)] = 0 on �Ω; (7)C(x; 0) = C0(x); (8)

wheren is the outer normal to�Ω. Here,�(C) is the so-calledmobility, which is assumed to be
dependent onC. The relations (6) (the variational condition), (7) (the no-flux condition) and the
initial condition (8), added to the C-H equation (5), ensurethe well-posedness of the problem.
To relate (5) to (4) and see the relationship between the parameters�; �; �, it suffices to assume

that� =
q�� with � = 1.
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Remark 2.1

- Some available results regarding existence and uniqueness of the solution of the C-H equa-
tion, can be found in [32, 33]. A proof of the existence and uniqueness for the constant
mobility case with a free energy of a polynomial form is givenin [16]. Under certain
conditions, some results for the degenerate mobility case in one dimension are shown in
[27, 33].

- We note that (5) is a fourth order parabolic equation. However, in general, the maximum
principle does not hold (see, e.g., [30]).

- Due to the assumption that the processes are isothermic, Equation (5) may seem rather
simple to describe complex physics phenomena. It does not depend explicitly on tempera-
ture, thus, thermal effects are not included. Further, elastic, viscoelastic effects, as well as
anisotropies are also not accounted for. As is described in [32], however, the Cahn-Hilliard
equation is the limit case for much more complex models and therefore, understanding its
dynamics and being able to perform efficient numerical simulations with it, creates the
building blocks for tackling those more complicated and coupled models.

In practice, adjustments are done, in order to take into account other physical processes.
Consider as an example temperature changes, when we want to follow the evolution and
pattern formation in a binary liquid under cooling. A typical scenario is to assume that the
temperature of the system rapidly decreases and the system instantaneously equilibrates to
that. The later equilibration is modelled by coupling C-H with an energy balance equation
(cf. [33] and the references therein).

Another example is to include anisotropies in the phases. A non-isotropic model with
anisotropic surface energy is derived in [1] (see also the references therein).

Consider now some versions of the C-H equation.

(I) A simplified version of (5) is the so-calledconstant mobilityform of C-H,�C�t = �∆(Ψ0(C)� �2∆C): (9)

As mentioned in [33], in this case the solution needs not remain bounded between�1 and
1, even if the initial conditionC0(x) is.

(II) As a cure for the latter, the so-calleddegenerate mobilityformulation is introduced, in
which �(C) = C(1� C);
i.e. it may degenerate atC = 0 andC = 1. Note that in the formulation used then,C has

a meaning only in [0,1], sinceΨ(C) =
T
2
fC lnC + (1 � C) ln(1 � C)g + �C(1 � C);
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whereT > 0 denotes a scaled temperature. The resulting formulation reads as�C�t =
T
2

∆C �r � �(C)r �2�C + �2∆C� ; (x; t) 2 Ω� IR+

n � rC = n � �(C)r∆C = 0; (x; t) 2 �Ω: (10)

See [33] for more details and references.

(III) It is also relevant to note that C-H can be written in theform of a gradient flow�C�t = �r �G; (11)

whereG = �(C)r(Ψ0(C)� �2∆C). The latter formulation shows that C-H is fully mass-
conservative. The form (11) has led to numerical schemes to solve the C-H equation using
methods for general gradient flows (see [18] and [19]).

(IV) Another formulation of the model, important for the test problems and the target applica-
tions in this work is theconvective C-H equation, where the interface develops due to both
diffusion and convection�C�t + (u � r)C = r � [�(C)r(Ψ0(C)� �2∆C)]: (12)

Above,u is the velocity vector, obtained as a solution of the time-dependent Navier-Stokes
(N-S) equation,��u�t + (�u � r)u = �rp +r � [�(r)u +ruT ]� �rC + F; (13)

equipped with appropriate boundary conditions. Herep is the pressure,� and� are the
density and viscosity, correspondingly, andF is the force term. The term�rC, where� = Ψ0(C)� �2∆C, gives the coupling with (12) and represents the surface tension force
in a potential form (cf. [14]). Note, that in the context of the coupled C-H–N-S system,�
and� vary with time and space.

3 Space and time discretization of the Cahn-Hilliard equation

Here, we consider only two space dimensions and constant mobility. The C-H formulations,
which are studied numerically in this paper, are the following.

(1) Evolution of flow interface and material transport due toboth diffusion and hydrodynamic
flow: �C�t + (u � r)C =

1Pe∆
�
Ψ0(C)� Cn2∆C� ; (14)
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whereu is the solution of the coupled time-dependent nonlinear Navier-Stokes equation
for an incompressible fluid,Re��u�t + (u � r)u

�
= �rp + ∆u� 1Ca � CnCr�r � u = 0; (15)

where� = Ψ0(C)� Cn2∆C.

Formulation (14) serves as a model in multiphase simulations, where the interface thick-
ness (Cn) and the diffusion speed (Pe) play an important role.

(2) Phase separation with coarsening of a binary mixture dueto interface diffusion,
i.e., the case of absence of convection (u � 0 in (14)). This model is often used to simulate
processes, for instance, in metallurgy. The formulation inthis case reads as follows:�C�t �∆(Ψ0(C)� �2∆C) = 0; (16)

Without going into details, we note that in this casePe = 1 is a usual assumption. In
the corresponding dimensionless formulation,Cn and� are not exactly the same physical
quantities. Mathematically, however, both parameters aresmall positive constants.

(For brevity, the details about the domain of definition and the boundary conditions are excluded
from the above problem formulations.)

Equations (14), (15) and (16) are in a nondimensionalized form. The parametersPe, Cn,Re, Ca are the Peclet, Cahn, Reynolds, and Capillary numbers, respectively. Details on the
nondimensionalization are given in [9]. In case (1), we assume that the coupled system (14)–
(15) is solved using operator splitting, i.e., at each time step the velocityu in equation (14) has
already been found as a solution of (15).

Consider the more general form of C-H, (14), which, as already stated, is a fourth order
nonlinear parabolic equation. In what follows, for notational simplicity, we use� to denoteCn
and! to denote1=Pe. We choose to deal with the equation by decomposing it into a coupled
system of two second-order partial differential equations(PDE) (see e.g. [15]). We consider�
as an unknown function and obtain the following system for both the concentrationC and the
chemical potential�.� � Ψ0(C) + �2∆C = 0; (x; t) 2 ΩT � Ω� (0; T );Ω � IR2�!∆� +

�C�t + (u � r)C = 0; (x; t) 2 ΩT�C�n
= 0; ���n

= 0; x 2 �ΩC(x; 0) = C0(x); (17)

where0 < �� 1 and0 < ! � 1.
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Remark 3.1 Within the phase-field theory, the boundary condition that accounts for the free
energy distribution between the different phases, sets thewetting boundary condition (�) for the
interface, see [14]), which is of the form

n � rC = �cos ��2
g0(C):

Here,g(C) is a local surface energy and is set to0:75C � 0:25C3 in this formulation. Here we
consider only the case� = �=2.

Discretization in space

System (17) is discretized in space using the standard conforming piece-wise linear finite ele-
ments (FEM) and we use the same finite element space for both variables. The weak variational
formulation of (17) reads as follows:

FindC; � 2 H1(Ω) such that

(�; �)� (Ψ0(C); �)� �2(rC;r�) = 0!(r�;r�) +

��C�t ; ��+ ((u � r)C; �) = 0
(18)

for all � 2 H1(Ω).
After discretizing (18) in space, the semi-discrete problem reads as follows.
Find c(t) = f
i(t)gNi=1 andd(t) = fdi(t)gNi=1 such thatMd(t)� f(c(t))� �2Kc(t) = 0!Kd(t) + Mdc(t)dt + Wc(t) = 0; (19)

where the elements of the vectorf(c(t)) = ffi(c(t))gNi=1 are defined asfi(c(t)) = (Ψ0(Ch(t)); �i)
andM , K andW are, respectively, the Gramian mass matrix, the discrete Laplacian stiffness
matrix and the matrix, corresponding to the discrete convective term in (18), respectively.

Discretization in time

For discretization of the time derivative we consider the�-method, and more precisely, the two
schemes corresponding to the backward Euler (� = 1) and Crank-Nicolson (� = 1=2) methods.
Both are implicit, with first and second order accuracy in time, respectively (see, e.g., [4]).

Consider a sequence of time steps,ftkg; k = 0; 1; : : : , wheret0 = 0; tk = tk�1 + ∆tk, and
denote byck = c(tk);dk = d(tk). After applying the�-method,� 2 [0; 1], the fully discretized
C-H system to be solved at each time stepk = 1; 2; : : : reads as follows:Mdk � f(ck)� �2Kck = 0�!∆tkKdk+Mck+�∆tkWck+(1��)(!∆tkKdk�1 + ∆tkWck�1)�Mck�1 = 0: (20)
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For � = 1 we obtain the fully implicit backwards Euler formMdk � f(ck)� �2Kck = 0!∆tkKdk + Mck + ∆tkWck �Mck�1 = 0: (21)

Thus, the time stepping procedure is as follows. Starting with initial vectorsc0 = fC0(xi)gNi=1

andd0 = f(Ψ0(C0)� �2∆C0)(xi)gNi=1, the vectorsck anddk that correspond to successive time
stepstk, k = 1; 2; : : : , are computed using the already known approximationsck�1 anddk�1 at
the previous time step. At each time step one has to solve a nonlinear system, (20).

Remark 3.2 As is known, in certain cases, when using the Crank-Nicolsonscheme (� = 1=2),
the approximate solutions can contain (decaying) spuriousoscillations. Therefore, in particular
in the beginning of the time interval, it is recommended to use the fully implicit Euler method
with small time steps, or� = 1=2 + � for some small�, 0 < � � 1. If � = O(∆t), the
latter method preserves the second order of accuracy as for the Crank-Nicolson method, see, for
instance [2].

Handling the nonlinearity

Due to the termf(ck) in (20), the systems to be solved at each time step are nonlinear. Therefore,
some nonlinear solution technique must be used and we choosehere Newton’s method.

For convenience, letXk =
�
dk; ck�T denote the combined vector of unknowns. Then the

problem of solving the system (20) can be rewritten in the following way.

Find Xk 2 IR2N , such that Fk(Xk) = 0; (22)

where the nonlinear operatorFk(Xk) has the formFk(Xk)=� Mdk � f(ck)� �2Kck�!∆tkKdk+Mck+�∆tkWck+(1��)(!∆tkKdk�1+∆tkWck�1)�Mck�1

� : (23)

We note thatFk(Xk) changes from one time step to the next, sinceck, ck�1, dk anddk�1 are
different for differentk.

To solve (22) we apply the classical Newton method. Startingwith an initial guessXk;0 =

Xk�1 =
�
dk�1; ck�1

�T
and s = 0; : : : , until a suitable stopping criterion is met, we find an

update of the solution∆Xk;s by solving the systemFk 0(Xk;s)∆Xk;s = �Fk(Xk;s) (24)

and form the next approximate solution asXk;s+1 = Xk;s+∆Xk;s. Here,Fk 0(Xk) is the Jacobian
of Fk(Xk). Thus, at each time step we find an approximate solution to thenonlinear problem
(22) by a sequence of Newton iterations, each involving a solution of a linear system with the
Jacobian matrix.
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From here on we omit the superscriptk and use onlyX instead. The operatorFk(X) =fFk;j(X)g2Nj=1 is a vector function of a vectorX = fXig2Ni=1, with Xi = di; i = 1; : : : ; N andXN+i = 
i; i = 1; : : : ; N .
A straightforward computation shows thatF 0k(X) =

� �M � �J(c)� ��2K�!∆tkK M + �∆tkW � ; (25)

whereJ(c) is the Jacobian of the nonlinear termf(c) only. Further,J(c) can be assembled
in the usual FEM manner from element matricesJe; e 2 T that have the formJe = jeMe,
whereMe is the corresponding element mass matrix andje depends on the nodal values of the
concentration vectorc at the previous Newton step. Since there holds�1 � 
i � 1, one can see
that�1 � je � 2, where a value close to�1 corresponds to an elemente on the interface between
the two phases and value of2 corresponds to an element away from the interface, containing only
one of the phases. More details are given in [9].

Properties of the arising matrices

We observe that for a fixed mesh, the mass and stiffness matricesM andK need to be assembled
only once in the beginning of the time stepping procedure. When the C-H equation is coupled
with N-S, the convection matrixW depends on the velocity field and, thus, has to be recomputed
at each time step. The only matrix to be recomputed at each Newton iteration isJ(ck;s). For
brevity, from here on we useJ for J(ck;s).

At each nonlinear iteration step we need to solve systems with F 0k(Xk), as in (25). For
simplicity, in the sequel we use the generic nameA to denote the system matrix, namely, we letF 0k(X) � A =

� �M � �(J + �2K)�!∆tkK M + �∆tkW � ; (26)

with � = 1 or 1=2 + �.
Clearly,A is nonsymmetric. We take a closer look at the problem at hand.To be specific, we

consider the matrix, resulting from the implicit Euler scheme, however, the analysis is analogous
for the case� � 1=2.

In general, the difference in magnitude of the entries of theJacobian matrixA depends on
the problem parameters� and!, the discretization parametersh and ∆t, and the amount of
convection in the problem, relative to diffusion. In turn, the choice of∆t, related toh, which
controls the total discretization error, depends on the aimof the numerical simulation. When the
task is to obtain the stationary solution,∆t should be taken as big as possible, within the desired
discretization error bounds.

First, we estimate the order of the entries of the blocks inA, as a function of the problem and
discretization parameters. We see thatO(A) =

� h2 �h2j�ej � �2!∆t h2 + ∆th � : (27)
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The parameter� is the thickness of the interface. Since the interface is expected to be thin, it
has to be resolved reasonably well by the mesh. Thus,h has to be chosen as�=r, wherer is an
integer, usually between5 � 10. The parameter! in many applications is of order one. We see
from (27), that when∆t = O(h2), the size of the entries in all blocks inA isO(h2). In case the
velocity field is of orderO(1), the term, corresponding to convection, becomes of orderO(h3)
and is not dominating. The entries inJ have different signs, thus, in general the blockJ + �2K
may be indefinite.

From (27) we also see, that whenh is small and∆t is also small relative toh, the influence
of J andW becomes negligible and the matrixP =

� �M � ��2K�!∆tkK M �
(28)

becomes a good candidate for a preconditioner ofA. This proposition is further quantified in
Section 4.

4 Preconditioners for the discrete Cahn-Hilliard equation

Next, we discuss the task to solve systems withF 0k(Xk) of the form (26) using some precondi-
tioned iterative solution method.

As a rule, efficient preconditioners and iterative methods for solving linear systems of equa-
tions utilize the properties of the corresponding system matrices. One such important property is
the block structure. Due to the fact thatA arises from the discretization of a system of PDEs, it
admits a two-by-two block form.

We note that the blocksM andK are symmetric,M is positive definite andK is positive
semi-definite,��(J + �2K) is symmetric, possibly indefinite, andM + �∆tkW is in general
nonsymmetric. In the case of zero convection, the lower diagonal block becomes also symmetric
and positive definite.

We start by considering the issue of simplification ofA. As it has already been discussed, for
small enoughh and∆t, the influence of the blocksJ andW diminishes and the idea to neglect
those naturally arises. To this end we first simplify the notations and assume that� = 1, thus, letA =

�M � �2K � JÆK M + ∆tW � ; (29)

whereÆ = !∆tk. Then we consider the simplified matrixA0 =

�M � �2KÆK M � ; (30)

and analyze the properties of the spectrum of the generalized eigenvalue problemAq = �A0q: (31)

11



First, we transform (31) to
(A� A0)q = �A0q; (32)

where� = �� 1. Next, we note, thatA�1
0 =

� S�1
0 �2M�1KS�1

0�ÆS�1
0 KM�1 S�1

0

� ; (33)

whereS0 = M + �2ÆKM�1K. From the expressionA�1
0 (A� A0) =

�
0 � S�1

0 J + �2∆tM�1KS�1
0 W

0 + ÆS�1
0 KM�1J + ∆tS�1

0 W �
(34)

we see that the eigenvalue problem (32) hasN zero eigenvalues, corresponding to eigenvectors�
q1

0

�
, whereN is the size of the blocks. Thus,N of the eigenvalues of (31) are equal to1. To

analyze the rest, we write out (32) in detail.�Jq2 = �(Mq1 � �2Kq2)
∆tWq2 = �(ÆKq1 + Mq2): (35)

We expressq1 from the first equation in (35), substitute it into the secondequation and after
some transformations, we obtain

∆t(M�1W + !M�1KM�1J)q2 = �(I + ∆t!�2(M�1K)2)q2: (36)

We recall that� = rh, wherer � 5, 0 < ! � 1, and∆t is of orderO(h) or smaller. Consider
the matrix Q = ∆t(I + ∆t!�2(M�1K)2)�1(M�1W + !M�1KM�1J):
Then kQk � ∆t kM�1WkkI + ∆t!�2(M�1K)2)k + ∆t! kM�1Kk kM�1JkkI + ∆t!�2(M�1K)2)k� ∆t

2
p

∆t!� kM�1Wkk(M�1K))k +
∆t!

2
p

∆t!�kM�1Jk
= O(

pPep∆t) + O( 1pPep∆t h�1)

= O(
p�p∆t h�1) + O( 1p�p∆t h�1)

(37)

The above result is based on the following arguments:kM�1Wk = O(h�1), kM�1Kk =O(h�2), kM�1Jk = O(1), jaj=(1 + a2b2) � 1=(2b), � = rh. Further, we recall that0 < ! � 1
is the inverse Peclet number, which may be large (see the appendix). We note thatPeh is the so-
calledmesh Peclet number, which should be small enough, say,Peh = � for some0 < � � 1,
in order to insure sufficient resolution of the discretization mesh.

The relations (37) show how to choose the time step∆t in order to ensure a high quality of
the preconditionerA0. We collect the results in a proposition.
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Proposition 1 For the eigensolutions(�(s);q(s)) of the generalized eigenvalue problem (31),
there holds 8<: �(s) = 1; q(s) =

�
q

(s)
1

0

� ; s = 1; :::; N;�(s) = 1 + &; s = 1; :::; N; (38)

where,

(i) & ! 0 for ∆t < h2, whenPe = 1,

(ii) & ! 0 for ∆t < h, whenPe > 1,

We see from the above, that when keepingh fixed and enlargingPe, even if we choose∆t <h, we can expect an increase in the iteration counts due to an increase of the corresponding
proportionality constant.

An analysis of the behaviour of the eigenvalues of (31) is made also in [7], however the
derivations are based on (34).

In Section 4.1, we address the question how to solve efficiently systems with the matrixA0.

4.1 Efficient solution of systems withA0

It turns out that systems withA0 can be solved very efficiently by preconditioned inner iterations.
An analysis in [7], related to earlier work in [5], shows thatthe matrixbA0 =

�M � �2KÆK M + 2�pÆK�
is an optimal preconditioner forA0, and, furthermore, can be efficiently implemented.

For completeness, we include here the derivations.

Proposition 2 (Proposition 4.1 in [7]) Consider the matricesA =

� H ��2F T�2F 
2H �
and B =

� H ��2F T�2F 
2H + ��
(F + F T );�
whereH is spd, the symmetric part ofF , 1

2
(F + F T ) is positive semidefinite and�, � and
 are

some real constants. Then, the eigenvalues of the generalized eigenvalue problem�B �v1

v2

�
= A �v1

v2

�
(39)

satisfy the relations: � � 2 [0:5; 1];� = 1 for v2 in the null space ofF + F T :
13



Proof
We note first, that A = B � �0 0

0 ��
(F + F T )

� :
Then, problem (39) is equivalent to

(�� 1)B �v1

v2

�
=

�
0 0
0 ���
(F + F T )

� �
v1

v2

� ;
i.e.,

(�� 1)(Hv1 � �2F Tv2) = 0
(�� 1)(�2Fv1 + (
2H + ��
(F + F T ))v2) = ���
(F + F T )v2

: (40)

Clearly, if v2 is in the null space ofF + F T , then� = 1. Next, we consider� 6= 1 and express
v1 = �2H�1F Tv2 from the first equality in (40). Substituting it in the secondequality, we obtain

(�� 1)(�2�2FH�1F T + 
2H + ��
(F + F T ))v2 = ���
(F + F T )v2:
We combine the similar terms, and after straight-forward transformations obtain

(
1� � 1)(�2�2FH�1F T + 
2H)v2 = ��
(F + F T )v2:

SinceH is spd, we transform the latter relation as

(
1� � 1)(I + eF eF T ) ev2 = ( eF + eF T ) ev2;

whereeF = ��
 H� 1

2FH� 1

2 and ev2 = H 1

2 v2. Hence,

1� � 1 =
ev2

T ( eF + eF T ) ev2ev2
T ev2 + ( eF T ev2)T ( eF T ev2)

:
We now utilize the assumption thatF + F T is positive semidefinite together with the Cauchy-
Schwartz inequality, and obtain:

0 � ev2
T ( eF + eF T ) ev2 = ( eF T ev2)T ev2 + ev2

T ( eF T ev2) = 2 ev2
T ( eF T ev2) � ev2

T ev2 + ( eF T ev2)T ( eF T ev2):
The latter shows that0 � 1� � 1 � 1; or 1 � 1� � 2; that is 1

2
� � � 1:

Further, bA0 possesses the following factorization (cf. [5], [7])bA0 =

�M � �2KÆK M + 2�pÆK� =

�M 0ÆK M + �pÆK� �I � �2M�1K
0 M�1(M + �pÆK)

� : (41)

Thus, implementing straightforwardly a block solver for (41), we see that solutions withbA0

require one solution withM , two withM + �pÆK and some matrix-vector operations:

Forward step: Backward step:
(1) SolveMy1 = b1 (3) Solve(M + �pÆK)x2 = My2

(2) Solve(M + �pÆK)y2 = b2 � ÆKy1 (4) Computex1 = y1 � �pÆ (y2 � x2)
(42)

14



We envision the following computational procedures to solve linear systems with the matrixA.
Algorithm [A] (included for completeness)
[A1] SolveA, preconditioned byA0

[A2] SolveA0 by inner iterations, preconditioned bybA0, factored as in (41)
[A3] Solve bA0 via the computational steps (42)
[A4] SolveM andM + �pÆK using some suitable solution procedure

Algorithm [A0] (recommended)
[A01] SolveA, preconditioned bybA0, factored as in (41)
[A02] Solve bA0 via the computational steps (42)
[A03] SolveM andM + �pÆK using suitable solution procedures

One last issue to consider is the solution withM andM + �pÆK. We see, that the matrixM + �pÆK is suitable to be solved by some off-the-shelf AMG solver. Wecan simplify the
preconditioner further and replaceM by its diagonal,DM = diag(M), which makes solutions
with it trivial. The matrixDM + �pÆK is nonsingular, easy to form explicitly and can be solved
by an AMG solver. Below we analyse the effect of replacingM by DM on the already derived
condition number estimates forbA�1

0 A0.

Remark 4.1 For the solution of systems withbA0, it is shown in [7] that the complexity of the
solution with the preconditioner can be further reduced, avoiding one solution withM by rear-
ranging the computations in the solution procedure.

5 Numerical experiments

The preconditioning techniques, presented above, are applicable for a general setting of problem
parameters of the C-H equation. To illustrate the performance of the preconditioning techniques,
discussed in Section 4, we use the following test problems.

Problem 1 (Phase separation and coarsening due to diffusion)
We consider problem (17) inΩ = [�1=2; 1=2]� [0; 1] with parameters! = 1, � = 0:0625 and
u = (0; 0) . Thus, no convection due to fluid flow is included in the model and the process
of phase separation and coarsening takes place only due to diffusion. Figure 1 illustrates the
evolution of a binary mixture in time.

Problem 2 (Front movement due to convection)
We consider problem (17) inΩ = [�1; 1] � [0; 1] with ! = 1=300, and� = 0:1. The velocity
vector is assumed to be constant in time with componentsu = (1; 0). The initial condition isC0 = �tanh(10x1). This problem describes the movement of the front between the two phases,
as shown in Figure 2.

In order to verify our numerical approach, we perform the following two tests to solve the
fully coupled convective C-H equation with the Navier-Stokes equations.
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(a) Random initial condition (b) Solution at timet = 0:012

(c) Solution at timet = 0:025 (d) Solution at timet = 0:04

Figure 1: Phase separation and coarsening with no convection
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(a) Initial position of the interface (b) Position of the interface at timet = 0:4
Figure 2: Interface movement for convective Cahn-Hilliard

Problem 3 (The static bubble test)
Consider a circular bubble in static equilibrium. In this setting, the net surface force should be
zero, since at each point on the bubble surface the tension force is counteracted by a force, equal
in size and opposite in direction, acting at a diametricallyopposed point. The correct solution
is a zero velocity field and a pressure field that rises from a constant value ofpout outside the
bubble to a value ofpin = pout + �=R inside the bubble, according to the Laplace-Young law (R
is the bubble radius). Figure 4 illustrates the correctnessof the computed solution.

Problem 4 (The dynamic bubble test)
We consider an elliptic droplet with main axesa = 0:16 and b = 0:14, Figure 5(a). The non-
dimensional numbers areRe = 10 andCa = 0:1 andCn = 0:00625. The droplet oscillates due
to the curvature until it reaches a circular shape with radiusR = 0:15, Figure 5(b). As a result
of numerical simulations one can observe spurious velocitycurrents of amplitudeU < 1 10�10

near the bubble interface. There are few vortices withjU j < 1 10�5 outside of the interface.

The numerical tests in Tables 1-4 are performed inMatlab and those in Tables 5-7 - in
Fortran. To solve systems withA, a nonsymmetric iterative solution method is applied. In
Matlab we use the Generalized Conjugate Gradient - Minimal Residual (GCG-MR) method,
see e.g. [3] and GMRES in the rest of the experiments.

In all numerical tests, presented throughout the paper, we use a regular triangular mesh with
a characteristic mesh sizeh. Note that due to the smaller interface thickness, we need a better
resolution for Problem 1 than for Problem 2.

The stopping criterion for the Newton method at each time step is always taken to bejj∆Xk;sjj <
10�6. The iterative method used to solve the arising systems is GCG-MR, and the solution pro-
cess is stopped when the norm of the residual is reduced by a factor 10�6 or the norm itself is
smaller than10�12.
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∆t
Size h h=2 h=4 h=10 h2M

8450 7 / 28 3 / 12 3 / 9 3 / 8 3 / 8
33282 3 / 11 3 / 8 3 / 8 3 / 7 3 / 7

132098 3 / 8 3 / 7 3 / 7 3 / 7 3 / 7diag(M)
8450 7 / 26 3 / 13 3 / 12 3 / 11 3 / 12

33282 3 / 12 3 / 11 3 / 10 3 / 11 3 / 12
132098 3 / 9 3 / 9 3 / 10 3 / 10 3 / 12

Table 1: Problem 1, no convection:A is preconditioned withbA0

In Tables1-4 we monitor the convergence of the nonlinear method, as well as that of various
combinations of inner solvers and their influence on the number of the nonlinear iterations. We
report results, averaged over ten time steps. Each table cell contains Two or three integer digits
of the formN1=N2 or N1=N2=N3, whereN1 denotes the average number of Newton iterations
per time step,N2 is the average number of GCG-MR iterations per Newton iteration andN3,
whenever present, shows the average number of AMG-preconditioned conjugate gradient (PCG)
iterations to solve iteratively systems withM + �pÆK.

As predicted, for relatively small values of∆t, which is achieved already forh=4 andh=10,
the performance of the preconditioner is stable with respect to both discretization parameters.

Tables 1 to 4 illustrate the numerical performance of Algorithm [A0]. We usebA0 as a pre-
conditioner forA, solved as shown in (42). We test first the convergence when systems withM + �pÆK are solved via direct method (Tables 1 and 3) and next - whenM + �pÆK is solved
by an AMG-preconditioned conjugate gradient method (Tables 2 and 4). We also illustrate the
effect of replacingM by its diagonal.

The tables consist of two parts. In the upper part of each table, we present the iteration counts
where the original mass matrixM is used. In the lower part, we see the effect of replacingM by
its diagonal in all blocks ofbA0 - the linear iterations increase approximately by a factor of two.

In Tables 1 and 3 we see the averaged nonlinear and linear iterations to solve the Jacobian
matrixA, preconditioner bybA0, where systems withM + �p�K are solved directly.

In Tables 2 and 4,bA0 is considered in its factored form (41) and systems systems with it are
solved via Algorithm (42). The matrix blocksM+�p�K are solved by an inner PCG solver with
AMG from [25] as a preconditioner. The inner stopping criterion is10�3, which results in about
two to three iterations. We see that the inner solver does notinfluence the outer convergence of
both the nonlinear and the linear solution methods.

Table 5 contains comparisons of the performance of the iterative solver with that of a fast
sparse direct method (MUMPS, see [31], the same solver is also used in [14]), shows the compu-
tational time and the memory consumption for four differentproblem sizes. When the size of the
problem is small enough, the direct solver is faster than ourblock preconditioned iterations. For
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∆t
Size h h=2 h=4 h=10 h2M

8450 7 / 22 / 3 3 / 14 / 3 3 / 11 / 3 3 / 8 / 3 3 / 8 / 3
33282 3 / 13 / 3 3 / 10 / 3 3 / 9 / 3 3 / 8 / 3 3 / 7 / 3

132098 3 / 18 / 3 3 / 9 / 3 3 / 8 / 3 3 / 8 / 3 3 / 7 / 3diag(M)
8450 7 / 23 / 3 3 / 14 / 3 3 / 13 / 3 3 / 12 / 3 3 / 12 / 3

33282 3 / 15 / 3 3 / 13 / 3 3 / 12 / 3 3 / 12 / 3 3 / 12 / 3
132098 3 / 16 / 3 3 / 12 / 3 3 / 11 / 3 3 / 12 / 3 3 / 12 / 3

Table 2: Problem 1, no convection:A is preconditioned withbA0, AMG used for the matrixM + �p�K
∆t

Size h h=2 h=4 h=10 h2M
4290 4 / 10 4 / 9 3 / 9 3 / 8 3 / 7

16770 4 / 8 3 / 9 3 / 8 3 / 7 3 / 6
66306 4 / 7 3 / 8 3 / 7 3 / 6 3 / 5diag(M)
4290 4 / 15 4 / 14 3 / 15 3 / 15 3 / 14

16770 4 / 13 3 / 14 3 / 13 3 / 12 3 / 11
66306 3 / 14 3 / 12 3 / 11 3 / 10 3 / 9

Table 3: Problem 2, convection-diffusion:A is preconditioned withbA0

∆t
Size h h=2 h=4 h=10 h2M

4290 4 / 10 / 3 4 / 9 / 3 3 / 9 / 3 3 / 8 / 2 3 / 7 / 2
16770 4 / 8 / 3 3 / 9 / 3 3 / 8 / 3 3 / 7 / 3 3 / 6 / 3
66306 4 / 7 / 3 3 / 8 / 3 3 / 7 / 3 3 / 6 / 3 3 / 5 / 3diag(M)
4290 4 / 15 / 3 4 / 14 / 3 3 / 15 / 3 3 / 15 / 3 3 / 14 / 3

16770 4 / 13 / 3 3 / 14 / 3 3 / 13 / 3 3 / 12 / 3 3 / 11 / 3
66306 3 / 14 / 3 3 / 12 / 3 3 / 11 / 3 3 / 10 / 3 3 / 9 / 3

Table 4: Problem 2, convection-diffusion:A is preconditioned withbA0, AMG used for the matrixM + �p�K
19



Block precondition Direct solver [14]h DOF N1=N2 time(s) Mem(MB) N1 time(s) Mem(MB)
1=256 131 072 4=10 16:98 185 3 7:2 352
1=512 528 392 4=10 72:61 646 3 53:4 1 409
1=768 1 176 578 4=10 170 1 429 3 193:75 3 126
1=1024 2 097 152 4=10 306:05 2 587 Out of memory

Table 5: Problem 2: Memory consumption and run time for two solution methods
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Figure 3: Problem 2: Computing time per linear step vs. problem size

problem sizes, larger than a million degrees of freedom, theiterative method becomes superior
over the direct solver in terms of performance. Figure 3 illustrates that the computing time of the
iterative solver increases linearly with the problem size.

Tables 6 and 7 contain comparisons between three solution techniques, including ILU-precon-
ditioned GMRES (the same as used in [42]). The ILU preconditioner is constructed for the whole
systemA. As can be seen from the tables, the ILU preconditioner is rather efficient in some
cases while in others it diverges. The block preconditionerbA0 shows a very robust behaviour in
all cases.

6 Concluding remarks

In this paper we address preconditioning techniques for theiterative solution methods for numeri-
cal simulations of multiphase flow problems. The model is based on the Cahn-Hilliard equation.
In its original form, it is a fourth order parabolic partial differential equation, however, in this
study it is reformulated as a coupled nonlinear system of twosecond order equations, one of
which is time-dependent.

As a space discretization method, we consider finite elements, triangular meshes and con-
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Precond.withbA0 Direct solver [14] ILU[42]dt N1=N2 time(s) N1 time(s) N1=N2 time(s)h 4=10 14:58 3 7:19h=4 4=10 16:98 3 7:23 no convergenceh=5 4=10 16:77 3 7:16h=10 4=10 14:67 3 7:21 4=42 23:66h=20 4=10 14:62 3 7:21 4=13 13:23h=40 4=10 14:11 3 7:23 4=10 10:55

Table 6: Computing time and number of iteration for three different methods,Pe = 1000

Precond.withbA0 Direct solver [14] ILU[42]dt N1=N2 time(s) N1 time(s) N1=N2 time(s)h 3=10 16:66 3 7:25h=4 3=10 16:54 3 7:23h=5 3=10 16:53 3 7:22 no convergenceh=10 3=10 16:28 3 7:21h=20 3=10 15:82 3 7:19h=40 3=10 15:59 3 7:18

Table 7: Computing time and number of iteration for three different methods,Pe = 1.
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Figure 4: Problem 3: The pressure profile, a simulation withCa = 0:1, Re = 10 andCn =
0:00625.
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Figure 5: Problem 4: The Interface movement for convective Cahn-Hilliard and the ’spurious
currents’ around the bubble in a stationary state

forming bilinear basis functions. The system matrix is nonsymmetric, due to the Jacobian of the
nonlinear term and, if present, a discrete convection operator. The time discretization is implicit,
using the�-method.

The numerical simulation consists of a time-stepping procedure, where during each time step
we solve a nonlinear system of algebraic equations using full Newton method. That, in turn,
during each nonlinear iteration requires the solution of a linear system with the corresponding
Jacobian matrix.

The target goal of this work is the efficient solution of systems with the Jacobian matrix using
preconditioned iterative solution methods and the construction and analysis of the convergence
properties of the proposed preconditioners.

We consider a preconditioner of block form, which utilizes the available two-by-two block
matrix structure. We proceed in two steps. First we simplifythe original system by dropping
the nonsymmetric matrix blocks. We show that for small enough time step, relative to the space
discretization parameter, the resulting matrix is a high quality preconditioner for the original
system. In its turn, that resulting system is of special formand can be preconditioned by an
optimal preconditioner. Solution of systems of the latter require some vector operations and
off-shelf solvers such as AMG.

The approach is straightforwardly applicable in two or three dimensions as well as in an
adaptive finite element framework. We note, that for constant meshes, the preconditioner needs
not to be recomputed.

We provide extensive numerical evidence of the efficiency ofthe derived preconditioner.
Comparisons with a direct method regarding execution timesand memory requirements confirm
that the performance of the suggested preconditioning technique is superior over a fast sparse
direct solver and also shows a very robust convergence behaviour.
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The preconditioner is applicable also to other problems, which exhibit the same matrix struc-
ture, such as in constraint optimization with a PDE constraint.
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